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Abstract

Rhabdoid phenotype and loss of SMARCB1 expression in a brain tumor are characteristic
features of atypical teratoid/rhabdoid tumors (ATRT). Rare non-rhabdoid brain tumors
showing cribriform growth pattern and SMARCB1 loss have been designated cribriform
neuroepithelial tumor (CRINET). Small case series suggest that CRINETs may have a
relatively favorable prognosis. However, the long-term outcome is unclear and it remains
uncertain whether CRINET represents a distinct entity or a variant of ATRT. Therefore, 10
CRINETs were clinically and molecularly characterized and compared with 10 ATRTs of
each of three recently described molecular subgroups (i.e. ATRT-TYR, ATRT-SHH and
ATRT-MYC) using Illumina Infinium HumanMethylation450 arrays, FISH, MLPA, and
sequencing. Furthermore, outcome was compared to a larger cohort of 27 children with
ATRT-TYR. Median age of the 6 boys and 4 girls harboring a CRINET was 20 months. On
histopathological examination, all CRINETs demonstrated a cribriform growth pattern and
distinct tyrosinase staining. On unsupervised cluster analysis of methylation data, all
CRINETs examined exclusively clustered within the ATRT-TYR molecular subgroup. As
ATRT-TYR, CRINETs mainly showed large heterozygous 22q deletions (9/10) and
SMARCB1 mutations of the other allele. In two patients, SMARCB1 mutations were also
present in the germline. Estimated mean overall survival in patients with CRINETs was 125
months (95% confidence interval 100–151 months) as compared to only 53 (33–74) months
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in patients with ATRTs of the ATRT-TYR subgroup (Log-Rank P< 0.05). In conclusion,
CRINET represents a SMARCB1-deficient non-rhabdoid tumor, which shares molecular
similarities with the ATRT-TYR subgroup but has distinct histopathological features and
favorable long-term outcome.

INTRODUCTION

Rhabdoid phenotype and loss of SMARCB1 (also known as
hSNF5/INI1) protein expression are characteristic features of atypi-
cal teratoid/rhabdoid tumors (ATRT). Apart from genetic altera-
tions affecting the SMARCB1 region on chromosome 22q, ATRT
show stable genomic profiles without further recurrent chromo-
somal alterations (9). On an epigenetic level, however, ATRT has
recently been shown to be a heterogeneous disease comprised of
three different molecular subgroups (i.e. ATRT-TYR, ATRT-SHH
and ATRT-MYC), which are characterized by distinct methylome
profiles, enhancer landscapes and subgroup-specific regulatory net-
works (13). The same holds true for histopathologic features
encountered in ATRT, which are remarkably diverse. In addition to
rhabdoid tumor cells, areas with primitive neuroectodermal, mesen-
chymal and epitheloid features are commonly encountered (3, 7).
For rare non-rhabdoid brain tumors showing a cribriform growth
pattern and loss of SMARCB1 expression the term cribriform neu-
roepithelial tumor (CRINET) has been coined (8). Small case series
and individual case reports suggest that CRINETs may have a rela-
tively favorable prognosis (2, 4, 8, 11). As yet, however, little is
known on long-term outcome of CRINET and there is uncertainty
whether CRINET represents a distinct entity or a variant of ATRT.
We thus aimed to further characterize the clinical and molecular
features of CRINET as compared with ATRT. Here we show that
CRINET is a tumor with distinct histopathologic features, molecu-
lar similarities with the ATRT-TYR subgroup and favorable long-
term outcome.

MATERIALS AND METHODS

Samples and patients

Formalin-fixed paraffin-embedded (FFPE) samples of 10 CRINETs
were collected from the archives of the Institute of Neuropathology
M€unster and by contacting institutions, which had previously pub-
lished CRINET cases (2, 11, 19). Our tumor bank received local
ethical committee approval (Ethics committee of the University
Hospital M€unster) and parents had given informed consent for sci-
entific use of the archival samples. Follow-up information for all
patients was obtained by contacting treating physicians. For cluster-
ing analyses, available clinical and molecular data of 10 ATRTs of
each of three recently described molecular subgroups (i.e. ATRT-
TYR, ATRT-SHH and ATRT-MYC) (13) were evaluated (for
characteristics see Supporting Information Table S1). Furthermore,
outcome of patients with CRINET was compared to a larger cohort
of 27 patients with ATRT-TYR (including eight of the ATRT-TYR
cases used for clustering analyses), for which information on over-
all survival was available. Protein expression of SMARCB1 and
tyrosinase was examined using immunohistochemistry (13, 14).
Fluorescence in situ hybridization (FISH) analyses of the

SMARCB1 region and SMARCB1 sequencing were performed as
described previously (17) and Multiplex ligation-dependent probe
amplification (MLPA) was carried out using the SALSA MLPA
P258 (SMARCB1) kit (MRC-Holland, Amsterdam, the
Netherlands) according to the manufacturer’s protocol.

DNA methylation array processing

For DNA methylation profiling of CRINETs, we used Illumina
Infinium HumanMethylation450 Bead Chip arrays according to the
manufacturer’s instructions and protocols at the German Cancer
Research Center (DKFZ) Genomics and Proteomics Core Facility.
DNA methylation data were generated from FFPE tissue samples
using 250 ng of DNA as input material. All DNA methylation anal-
yses were performed in R version 3.2.0 (R Development Core
Team, 2015). The following criteria were applied to filter the data:
removal of probes targeting sex chromosomes (n 5 11 551),
removal of probes containing a single nucleotide polymorphism
(dbSNP132 Common) within five base pairs of and including the
targeted CpG-site (n 5 24 536), and probes not uniquely mapping
to the human reference genome (hg19) allowing for one mismatch
(n 5 9993). In total, 438 370 probes were kept for analysis. Unsu-
pervised hierarchical clustering of the samples was performed using
the 5000 most variably methylated probes across the dataset and
the 1-Pearson correlation coefficient as the distance measure. Data
were compared to 450k methylation data generated in 30 ATRTs
of each of three recently described molecular subgroups (i.e.
ATRT-TYR, ATRT-SHH and ATRT-MYC) (13) deposited in
GEO (accession number GSE70460). The cluster dendrogram was
formed by using average linkage as agglomeration method. To re-
order probes for the heatmap visualization, probes were clustered
by agglomerative hierarchical clustering using 1-centered Pearson
correlation as distance measure and average linkage as agglomera-
tion method. Copy-number variation (CNV) analysis from 450k
methylation array data was performed using the conumee Biocon-
ductor package version 1.0.0 (http://bioconductor.org/packages/
release/bioc/html/conumee.html). Scoring of chromosomal gains
and losses was performed by manual inspection of each profile.

Statistical analysis

Continuous and categorical variables were compared using Mann–
Whitney-U-Test and Chi square test, respectively. Survival analysis
was performed using Kaplan-Meier estimation for survival curves
and the Log-rank test using IBM SPSS 23 software (release 23.0).
Overall survival time was defined as the time from the date of diag-
nosis to the date of death. For all analyses, P< 0.05 was considered
to be significant.
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RESULTS

The median age of the 6 boys and 4 girls harboring a CRINET was
20 months (range 10–129 months). CRINETs were either located
supratentorially [midline in the vicinity of the third ventricle (4/10),
near the lateral ventricles (2/10)], or infratentorially in the posterior
fossa (4/10 cases; see Table 1 for detailed patient characteristics).
Based on neuroradiological findings and clinical features, the possi-
bility of a choroid plexus tumor had been considered initially in the

majority of patients (6/10). On histopathological examination, all
CRINETs were characterized by the presence of cribriform strands
and ribbons. In more compact areas, small lumina were also pres-
ent, but rhabdoid tumor cells showing eosinophilic cytoplasms and
eccentric nuclei with prominent nucleoli were absent (Figure 1A).
All CRINETs showed loss of tumoral SMARCB1 protein expres-
sion (Figure 1B). The median Ki67/MIB1 proliferation index was
29% (range: 15%–35%). Furthermore, 10/10 CRINETs exhibited
staining for tyrosinase (Figure 1C), which was also observed in 9/
10 ATRTs of the ATRT-TYR subgroup, but only in 1/10 tumors of
the ATRT-SHH and ATRT-MYC subgroup, respectively, (Chi-
square: 29.2, df:3; P< 0.00001). Tyrosinase staining in CRINETs
was cytoplasmic and heterogeneous as observed in ATRTs of the
ATRT-TYR subgroup.

On unsupervised cluster analysis of methylation profiles using
the 5000 most differentially methylated CpG sites across all sam-
ples, all eight CRINETs for which sufficient DNA was available
for examination, exclusively clustered within the ATRT-TYR
molecular subgroup (Figure 2A). Copy-number profiles as derived
from intensity measures of the methylation probes indicated 22q
losses affecting the SMARCB1 region as the only recurrent altera-
tion in CRINETs with a pattern very similar to that seen in ATRT-
TYR tumors (Figure 2B).

FISH and/or MLPA analyses confirmed the presence of large
heterozygous 22q deletions affecting the SMARCB1 region in 9/10
CRINET cases. The only CRINET without a large heterozygous
22q deletion showed loss of heterozygosity for a truncating
SMARCB1 mutation affecting exon 4 (c.367C>T p.Gln123*). In
the remaining CRINET cases, a truncating SMARCB1 mutation
affecting exon 4 (c.367C>T p.Gln123*), an exon 4 mutation
resulting in a frameshift (c.492duplCCTT p.Pro165Leufs*6) and a
mutation affecting intron 7 (c.986 1 1G>T) were identified as a
“second hit,” while two cases showed additional small SMARCB1
deletions on MLPA (delEx7, delEx7-Ex9, Figure 3). Furthermore,
an exon 9 missense mutation (c.1142C>G) expected to result in
disturbed splicing and an exon 6 duplication were encountered in
two CRINETs, both mutations also being present in the germline
of the respective patients. In the boy harboring a germline exon 6
duplication, the mutation was inherited from the apparently healthy
mother and grandmother. The grandmothe�rs brother had died due
to a brain tumor. The grandmothe�rs first cousin and her 3 children
all carry the same mutation. The two daughters both had
SMARCB1-negative pediatric brain tumors initially interpreted as
“ependymoma with monosomy 22” (22). One survived, the other
one passed away as a teenager. The son never developed a tumor.
The surviving daughter has 3 children, two of whom carry the
mutation. Her oldest son presented with a CRINET in 2013
[reported by Dunham (4) but not included in the present series and
is in complete remission.

Importantly, except for one child, who died one month postoper-
atively from respiratory failure, to our knowledge all patients with
CRINET of the present series are alive and well. On Kaplan Meyer
analysis of survival data, mean overall survival was 125 months
(95% confidence interval 100-151 months) and thus longer as com-
pared to the patients of the ATRT groups used for genetic profiling
and methylation clustering [ATRT-TYR: 37 (18–56) months,
ATRT-SHH:16 (8–25) months, ATRT-MYC: 13 (5–22) months,
Log-Rank P< 0.05]. Given the molecular similarities of CRINET
and ATRT-TYR, we next examined outcome of patients with

Figure 1. Histopathology of CRINET. Hematoxylin and eosin staining

(A), immunohistochemistry for SMARCB1 (B) and tyrosinase (C) in a

representative CRINET case. Note loss of nuclear SMARCB1 staining

in the tumor cells, which is retained in the nuclei of non-neoplastic

cells (internal positive control) as well as distinct staining of tumor

cells for tyrosinase. Scale bars denote 50 mm.
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Figure 2. Molecular profiling of CRINET vs. ATRT. Heatmap showing

unsupervised clustering of methylation profiles of 38 samples using

the 5000 most variable probes (A) as well as copy number alterations

affecting chromosome 22q (B) of 8 CRINETs and ATRTs of the

molecular subgroups TYR, SHH and MYC (n 5 10 each). Note that all

CRINETs cluster within the ATRT-TYR subgroup and (like ATRT-TYR)

show large heterozygous deletions of 22q affecting the SMARCB1

locus.
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CRINETs as compared to a larger cohort of 27 patients harboring
ATRTs of the ATRT-TYR subgroup. Here, significantly longer
overall survival as compared to ATRT-TYR patients [53 (33–74)
months] could be confirmed (Log-Rank P< 0.05, Figure 4).

DISCUSSION

The key finding of our study is that genetic and epigenetic profiles
of CRINET are highly similar to those of ATRT-TYR, representing
one of the three recently described molecular subgroups of ATRT
(13). On gene expression profiling, ATRT-TYR is characterized by
overexpression of melanosomal markers, such as tyrosinase and
MITF. Another characteristic feature of this subgroup is the overex-
pression of genes involved in ciliogenesis (13). The observation
that protein expression of tyrosinase was not only present in
ATRT-TYR, but also in CRINET, suggests similarities between
CRINET and ATRT-TYR also at gene expression level. Another
common feature of CRINET and ATRT-TYR is the presence of

large heterozygous 22q deletions affecting the SMARCB1 region,
which are relatively rare in ATRT of the SHH and MYC subgroups
(13). This finding could well point to a role of gene dosage of other
genes on 22q in the biology of CRINET and ATRT-TYR.

Importantly, despite the highly similar (epi)genetic profiles of
CRINETs and ATRT-TYR tumors, patients harboring CRINETs
experience relatively favorable long-term outcomes and do much
better than patients with ATRT-TYR tumors. This situation is remi-
niscent of desmoplastic medulloblastomas, which are also geneti-
cally and epigenetically indistinguishable from classic
medulloblastomas of the SHH subtype, but still show a difference
in outcome (15, 16) and provides another example that information
obtained on histopathologic analysis and molecular profiling is not
redundant, but rather complementary.

Taking into account the limitations of this retrospective series,
which combines outcome data of patients treated at various institu-
tions across several countries, our data suggest that CRINET
responds well to chemotherapy protocols commonly employed for
the treatment of malignant brain tumors and ATRT. What makes

Figure 3. Spectrum of SMARCB1 mutations in CRINET vs. ATRT.

SMARCB1 mutations encountered on FISH, MLPA and sequencing in

CRINETs as compared to ATRTs of the molecular subgroups TYR,

SHH and MYC (n 5 10 each). Note similar distribution of mutations

across the SMARCB1 gene in CRINET and ATRT-TYR. Plotted are

only hits affecting the second SMARCB1 allele. For more details, see

Table 1 and Supporting Information Table S1.
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the difference between the relatively favorable biological behavior
of CRINET and the dismal outcome of ATRT-TYR? The absence
of recurrent genomic alterations apart from 22q losses in CRINET
(also a characteristic feature of ATRT-TYR) (6, 9, 12, 21) argues
against a role of losses or gains of other chromosomal regions in
the biology of CRINET. Even though the possibility of point muta-
tions of genes putatively modifying the detrimental effects of
SMARCB1-deficiency cannot be excluded, it is tempting to specu-
late that the type of SMARCB1 mutation may determine tumor phe-
notype and prognosis.

The distribution of mutations across the SMARCB1 gene
encountered in CRINET seems to be quite similar to that of ATRT-
TYR, but distinct from those seen in ATRT-SHH or ATRT-MYC.
Some mutations encountered in CRINET such as c.367C>T have
also been described in ATRT (5), but histopathological features
and molecular subgroup information of these published cases are
unknown. Interestingly, the somatic mutation affecting intron 7 in
the CRINET of patient #8 (c.986 1 1G>T) has been previously
described in a family with rhabdoid tumor predisposition syndrome
and been shown to result in the exclusion of exon 7 on RNA level
(5). A similar mutation in the donor splice site of exon 7 has been
reported in a family with pediatric posterior fossa brain tumors
diagnosed as ATRT or choroid plexus carcinoma (24). Germline
duplications affecting exon 6 of the SMARCB1 gene have also
been reported in a family with rhabdoid tumor predisposition syn-
drome and schwannomatosis (23). The family of the CRINET
patient harboring a SMARCB1 germline exon 6 duplication, how-
ever, rather shows similarities to a previously described Dutch fam-
ily (1). In this family, two patients survived for an unusually long
time. Of note, both tumors had been initially reported as “anaplastic
ependymomas” and showed growth in strands and ribbons, i.e. his-
topathological features reminiscent of CRINET (18) and a
SMARCB1 mutation affecting a splice site (c.500 1 1G>A) could
be demonstrated in the patients and their unaffected fathers (1). In
schwannomatosis patients, it has been suggested that synthesis of
an altered SMARCB1 protein (either by translation re-initiation or

encoded by missense, splice-site mutations or in-frame deletions)
may prevent the development of malignant rhabdoid tumors (10).
Neither exon 1 mutations nor the mosaic SMARCB1 staining pat-
tern typical for schwannomatosis-associated schwannomas (20)
were encountered in CRINET patients. Nevertheless, as the BAF47
antibody is directed against a relatively C-terminal epitope (amino
acids 257-359), the possibility that a truncated SMARCB1 protein
with some residual function could be responsible for the less
aggressive biological behavior of CRINET cannot be entirely
excluded and warrants attention in future studies. Furthermore, the
potential prognostic role of molecular subgrouping in ATRT will
need to be determined in the carefully characterized patient cohorts
of large international registries.

In conclusion, CRINET represents a SMARCB1-deficient non-
rhabdoid tumor, which shares molecular similarities with the
ATRT-TYR subgroup but has distinct histopathological features
and favorable long-term outcome.
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Table S1. Characteristics of the AT/RT control group. Charac-
teristics of 30 patients harboring AT/RT that were employed for
as controls for clustering analyses and molecular profiling
(WT 5 wildtype).
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