
C O M M E N T A R Y

Losing sleep over mitochondria: a new player
in the pathophysiology of fatal familial insomnia
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This commentary highlights the study by Frau-Mendez and coworkers in this issue of Brain
Pathology (xxx) in which the authors show evidence for involvement of mitochondria in the
pathophysiology of fatal familial insomnia (FFI). Using genetic, biochemical and
morphological means, they provide a comprehensive picture of the degree of mitochondrial
damage in FFI and show that this leads to increased oxidative stress. This adds FFI to the
growing list of dementias with mitochondrial involvement. Future studies will have to
address the causality dilemma of which came first, mitochondrial damage and subsequent
neurodegeneration or vice versa. Either way, these data provide the basis to devise novel
therapeutic strategies for FFI.

Human prion diseases have puzzled generations of scientists and
continue to do so. A rare form of genetic prion disease termed (fatal
familial insomnia, FFI) is a good example for this. This incurable
and invariably fatal condition was firstly reported as a familial dis-
ease causing sleep disturbance and failure of the autonomic nervous
system, later it was linked to a specific mutation (D178N) within
the gene encoding the prion protein (PrPC) (4). Clinicopathological
correlation established that the extent of neuropathology manifest-
ing as neuronal loss, gliosis and limited spongiosis of the thalamus,
inferior olive and entorhinal cortex, is only partially parallel by dep-
osition of pathological prion protein (PrPSc) (8). Evidence for trans-
missibility is not as clear-cut as for other human prion diseases
with some studies showing transmissibility, whereas others includ-
ing studies in FFI mouse models, challenge this view (2). How gen-
eration of mutated PrPC causes such a devastating disease is the
topic of intense research. Structurally, the D178N mutation, located
in the globular domain of PrPC, affects noncovalent interactions
within the molecule thus changing protein stability (4). Addition-
ally, this mutation affects maturation of the protein and leads to
retention in the biosynthetic pathway (2). But how does this lead to
neurodegeneration? Similar mutations in the globular domain of
PrPC impair trafficking of PrPC-interacting proteins and this affects

integrity of synaptic calcium channels (12). Deletions in the globu-
lar domain of PrPC lead to accumulation of mutant PrPC in intracel-
lular compartments and activation of the p38-MAPK pathway with
subsequent neurodegeneration (10).

In this issue of Brain Pathology, Frau-Mendez et al. (7) show
evidence for involvement of mitochondria in the pathophysiology
of FFI. For prion diseases, mitochondrial involvement has been
suggested by a number of studies (5, 15), yet it is unclear whether
PrPSc directly interacts with mitochondria or if this is an indirect
effect caused by astrocyte-mediated up-regulation of nitric oxide
(Table 1) (14). For other neurodegenerative diseases, such as Alz-
heimer’s disease, involvement of mitochondria is less vague (3). In
fact, mitochondrial dysfunction affecting mitochondrial metabolism
and dynamics or presenting with activation of mitochondria-related
cellular death pathways is currently considered a common pathway
of neurodegeneration in several dementias (3, 6). For Alzheimer’s
disease, mitochondrial involvement was shown in patient’s tissue,
in experimental models and in in vitro studies (Table 1). Here,
mitochondrial damage is a consequence of intracellular aggregation
of b-amyloid peptide, leading to increased production of reactive
oxygen species and affecting mitochondrial dynamics (9). Muta-
tions leading to familial Alzheimer’s disease can induce disturbance

Table 1. Mitochondrial dysfunction and associated cell death in Alzheimer’s and prion diseases.

Disease Altered Mitochondrial function Cell Death pathway

Respiration/ROS-RNS Dynamics MAM mtDNA Lipid

synthesis

MPTP

formation

Apoptosis

signalling

Mitophagy

Alzheimer’s disease Yes Yes Yes Yes Yes Yes Yes Yes

Prion disease Hamster and

mouse models

Hamster model No Mouse model No No Yes Mouse model

ROS/RNS 5 reactive oxygen species/reactive nitrogen species; MAM 5 mitochondrial associated membranes; mtDNA 5 mitochondrial DNA;

MPTP5 mitochondrial permeability transition pore formation.
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in the function of mitochondria associated membranes leading to
altered Ca21 homeostasis, defective lipid synthesis and damage of
mitochondrial DNA (1). Whether by direct toxicity or by altered
cellular pathways, mitochondrial dysfunction in Alzheimer’s dis-
ease culminates in mitochondrial transition pore formation, apopto-
tic signaling and mitophagy (11). Finally, mitochondrial damage
leading to degeneration of specific neuronal populations may trans-
late to distinct clinical phenotypes (13).

It remains to be seen whether mitochondrial involvement is
specific for FFI or if other genetic prion diseases show similar char-
acteristics. Mitochondrial involvement in prion diseases could be
relevant and should be further investigated given that it offers a
novel opportunity to design therapeutics to tackle this devastating
group of diseases. In this respect, genetic prion diseases are of spe-
cial interest since they allow to initiate therapy before clinical onset
of disease.
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