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Abstract
The unexpectedly high frequency and universality of alterations to the chromatin machin-
ery is one of the most striking themes emerging from the current deluge of cancer genomics
data. Medulloblastoma (MB), a malignant pediatric brain tumor, is no exception to this
trend, with a wealth of recent studies indicating multiple alterations at all levels of chro-
matin processing. MB is typically now regarded as being composed of four major molecu-
lar entities (WNT, SHH, Group 3 and Group 4), which vary in their clinical and biological
characteristics. Similarities and differences across these subgroups are also reflected in the
specific chromatin modifiers that are found to be altered in each group, and each new cancer
genome sequence or microarray profile is adding to this important knowledge base. These
data are fundamentally changing our understanding of tumor developmental pathways, not
just for MB but also for cancer as a whole. They also provide a new class of targets for the
development of rational, personalized therapeutic approaches. The mechanisms by which
these chromatin remodelers are dysregulated in MB, and the consequences both for future
basic research and for translation to the clinic, will be examined here.

INTRODUCTION
Brain tumors currently account for more than a quarter of all
deaths from pediatric cancer (3). Medulloblastoma (MB), the most
common embryonal brain tumor, is a major contributor to this
unfortunate figure. Improvements in patient outcomes over the
past few decades have largely been achieved through advances in
the application of chemotherapy and craniospinal radiation, as
opposed to the biology-driven risk stratification that has been so
successful in treating leukemia, for example (58). A significant
fraction of patients will still die from their disease, and those who
survive often experience long-term side effects (19, 42, 63). Thus,
there is clearly scope for a shift toward more rational patient
stratification and for the application of personalized targeted
therapy based on sound tumor-biological data (55).

In the recent era of high-throughput genomics, several major
advances have been made in terms of our understanding of the
biology behind MB tumorigenesis (47). Arguably, the most impor-
tant paradigm shift has been the recognition that MB is not a
single entity, but rather is composed of multiple molecular sub-
groups (WNT, SHH, Group 3 and Group 4) that differ in their age
and gender distribution, clinical outcome and molecular genetic
features (10, 34, 35, 48, 75, 76). Despite these differences, some
common threads have also emerged. One such feature that is found
across subgroups is the recurrent alteration of the chromatin
remodeling machinery, as discussed in the following paragraphs.
Even here, however, the importance of molecular classification is
highlighted by the fact that certain types of chromatin modifier
alterations are restricted to specific subgroups.

The packaging and organization of chromatin is the principal
mechanism by which cell-specific transcriptional programs are
established and maintained during organismal development (8, 39,
41), including the specification of neural cell types (28, 73). This
organization is mediated in large part by an array of post-
translational modifications (PTMs) at key residues on histone
tails—the so-called histone code (29, 36). Genes involved in this
process of chromatin regulation are typically grouped into four
main categories. First, there are “writers” of covalent histone
marks such as histone methyltransferases (HMTs) and histone
acetyltransferases (HATs) that establish patterns of PTMs on
histone tails. Next, there are “erasers,” histone demethylases
(HDMs) and histone deacetylases (HDACs), which can remove
these PTMs. An additional class of genes, the “readers” of PTMs,
binds to specific histone tail motifs in order to coordinate the
downstream consequences of these marks. Finally, there are also
large-scale remodelers of nucleosome structure and chromatin
architecture such as the SWI/SNF, INO80 or CHD/NuRD com-
plexes (11, 25, 38, 61, 78), or CTCF (52).

Disruptions of these normal regulatory processes, including in
nervous system formation, have been linked to multiple disorders
(23, 37, 64). Indeed, it has become increasingly clear in recent years
that alterations in how chromatin structure controls cellular proc-
esses are one of the most important features of human cancer, irres-
pective of tumor site or histology (9, 12, 84). Intriguingly, mutations
at key regulatory residues in histone proteins themselves (histone
3.1 and the variant 3.3), as well as the histone chaperones ATRX and
DAXX, have recently been identified in a subset of another malig-
nant pediatric brain tumor—glioblastoma (33, 68, 81) (see also
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Fontebasso et al in this issue). Importantly, these alterations in
chromatin modifying genes also provide new classes of candidates
for targeted therapeutic intervention, with several compounds
already showing promise in preclinical or clinical settings (13, 56).

The purpose of this article is to highlight what is currently
known about the role of dysregulation of chromatin remodeling in
MB and to provide an outlook as to how this knowledge may be
expanded upon in the future, as focus shifts toward translating
these findings into benefit for patients.

COPY-NUMBER CHANGES AND
ALTERED CHROMATIN IN MB
The first strong evidence for a role of altered chromatin in MB
development emerged from genome-wide investigation of DNA
copy-number alterations (49). A study by Northcott et al identified
multiple changes affecting chromatin modifying genes, including
focal gain or amplification of the histone acetyltransferase KAT6A
(formerly MYST3) and the lysine demethylases JMJD2B and
JMJD2C, together with deletions of polycomb group genes
(L3MBTL2, L3MBTL3 and SCML2) and histone methyltrans-
ferases (EHMT1, SMYD4). Many of these genes converge on regu-
lation of H3K9 methylation status, and hypomethylation at H3K9
was revealed by immunohistochemical analysis to occur in 41% of
tumor samples investigated (49). The same study demonstrated
that re-expression of L3MBTL3 in DAOY cells, in which the gene
is deleted, could restore H3K9 methylation and block cellular
proliferation.

This work was recently expanded upon in a comprehensive
copy-number profiling analysis of more than 1000 MBs by an
international consortium led by the sameToronto group (50), which
confirmed the importance of copy-number alterations at chromatin
modifying genes in a subset of cases. These alterations were par-
ticularly enriched in Group 4 MBs, and novel homozygous dele-
tions on chromosome X affecting the H3K27 demethylase KDM6A
(also called UTX) were identified in this subgroup. Interestingly,
this gene was also found to be recurrently mutated in the same
subgroup, as described in the following paragraphs.

It is also interesting to note that alterations of chromatin archi-
tecture may be a cause of certain structural changes in a cell’s

DNA rather than simply a consequence. For example, a process of
catastrophic rearrangement occurring at a single time point [termed
chromothripsis (70)] has recently been linked to TP53-mutated
SHH-subgroup MB (SHH-MB) (60). One hypothesis as to how
these dramatic rearrangements might arise is through a critical loss
of specialized chromatin structures at the telomeres, resulting in
chromosome end-to-end fusions and subsequent mechanical shear-
ing during mitosis (77).A link between germline TP53 mutation [as
was frequently observed in SHH-MB with chromothripsis (60)],
accelerated telomere shortening and age of tumor onset has previ-
ously been established (72). It will therefore be of interest to further
investigate the role of telomeric chromatin alterations in the gen-
eration of these complex DNA copy-number changes.

MUTATIONS OF CHROMATIN
MODIFYING GENES—INSIGHTS FROM
LARGE-SCALE SEQUENCING STUDIES
The first large-scale, unbiased sequencing effort in MB, published
by Parsons et al in 2011, provided a number of further insights into
the role of chromatin modifying genes in this tumor type (53).
Several truncating mutations in the histone methyltransferases
MLL2 and MLL3 were reported, suggesting a tumor suppressor
function of these two genes in MB. Alterations in chromatin
modifiers in general were clearly a recurring theme, with rarer
mutations being found in the histone demethylase KDM6B, as
well as the SWI/SNF chromatin remodeling complex members
SMARCA4 and ARID1A, among others. The subgroup specificity
of these changes, however, was not clear in this study.

The theme of chromatin modification was also an obvious
feature of three next-generation sequencing studies published in
the summer of 2012 (30, 57, 62), and was summarized in a recent
review and meta-analysis (47). One-third of all tumors, across all
subgroups, were reported as having a mutation in a gene mapping
to the Gene Ontology (GO) term “Chromatin modification”
(GO:0015168). A summary of recurrently mutated chromatin
modifiers, and their frequency of mutation, is shown in Figure 1.

Mutations of SMARCA4, as identified in the Parsons et al study,
were found to be largely restricted to WNT and Group 3 MB, where
they were identified in 25% and 11%, respectively, of tumors in

Figure 1. Chromatin modifier genes
recurrently altered in medulloblastoma (MB).
This figure indicates those genes related to
the GO term “Chromatin Modification”
(GO:0015168), which are mutated at least
twice in the discovery cohorts (whole-exome
or whole-genome sequencing, n = 189) of
the three next-generation sequencing
studies described herein (30, 57, 62).
Percentages by gene names indicate the
overall frequency of mutation in this gene
across the three studies. NB—cases with no
mutation in the listed genes are not shown.
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these subgroups (47). Rarer mutations in ARID1B and ARID2 were
also observed, again implicating the SWI/SNF complex as an
important component of MB development.The question of whether
there may be a link between hyperactivation of c-Myc oncogene
signaling (common to WNT and Group 3 tumors) and alterations in
this complex will be an interesting avenue for further investigation.

SHH-MBs showed a strong enrichment for alterations in several
members of the nuclear receptor co-repressor (N-CoR) complex,
which is associated with histone deacetylation and is thought to
repress target genes by inducing chromatin condensation (51).
Genes of this complex mutated in SHH-MB include BCL6
co-repressor (BCOR), LIM-domain binding 1 (LDB1) and G-
protein pathway suppressor 2 (GPS2). In addition, LIM-domain
only 4 (LMO4), a binding partner of LDB1 (14), has been identified
as a recurrently amplified gene in SHH-MB (50), further supporting
a key role for this complex in the pathogenesis of this subgroup.

One of the most striking single gene changes was the recurrent
inactivating mutation of KDM6A in 12% of Group 4 tumors (47).
This gene acts in concert with the most commonly mutated chro-
matin modifier in MB as a whole, MLL2, to elevate H3K4me3 and
remove H3K27me3 marks in order to activate target genes (65,
66). Robinson et al further speculated that this loss of KDM6A
function, as well as additional mutations in ZMYM3 and CHD7
(regulators of H3K4me3-mediated patterns) and overexpression of
the H3K27 methyltransferase EZH2, may lead to an imbalance
between trimethylated H3K4 and H3K27 and altered differentia-
tion signaling in this subgroup (62) (see Figure 2).

In a follow-up study of these sequencing efforts, Dubuc et al
screened a large series of MBs specifically for mutations in MLL2
and KDM6A (17). MLL2 mutations were seen in approximately
8% of MBs, with roughly half of those predicted to be truncating

alterations and no clear enrichment in a particular MB subgroup.
Alterations of KDM6A, in contrast, were largely restricted to
Group 4 tumors (in keeping with the above sequencing and copy-
number studies) and were mostly truncating (17). The two altera-
tions were found to be mutually exclusive, as might be expected
from the above-noted similarities in the predicted outcome of these
changes. When further considering copy-number and transcrip-
tional changes of EZH2, KDM6A and KDM6B, the authors found
further support for the concept postulated by Robinson et al (62)
that a subset of Group 3 and Group 4 MBs may show an enrich-
ment of H3K27me3 marks (“K27+”). This was further supported
by immunohistochemical staining for various histone marks, as
well as an overrepresentation of differential expression of poly-
comb repressive complex 2 (PRC2) targets (which are typically
linked to H3K27me3 levels) in Group 3 and Group 4 tumors with
or without this K27+ phenotype (17).

As with copy-number changes, evidence has recently emerged
that the relationship between these DNA mutations and chromatin
architecture may not be solely a one-way process. For example, it
seems that certain marks of heterochromatin, particularly H3K9
trimethylation, are highly enriched in regions of the genome that
show a higher rate of mutation (67), indicating perhaps that DNA
repair processes are not as efficient in these repressive chromatin
domains. It is unclear as yet whether a similar phenomenon may be
shaping the mutational landscape of somatic changes in MB.

OTHER LINKS BETWEEN CHROMATIN
ALTERATIONS AND MB
As noted earlier, several of the reported alterations in chromatin
modifying genes seem to converge on methylation of lysine 27 of

Figure 2. Schematic of key chromatin-related mutations in medulloblastoma (MB). This schematic view indicates some of the recurrently mutated
chromatin modifier genes in medulloblastoma, and their possible effects on disrupting chromatin marks, with a particular focus on the disrupted
H3K4/H3K27 methylation frequently observed in Group 3 and Group 4 tumors.
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histone 3, particularly elevated H3K27me3 in Group 3 and Group
4 tumors (17, 62). In a similar vein, one recent report investigated
the link between polycomb group genes (required for induction of
H3K27 methylation) and the transcription factor OTX2 (7), which
is occasionally amplified and almost universally overexpressed in
Group 3 and Group 4 tumors (1, 6, 50). The authors found upregu-
lation of multiple genes belonging to PRC1 and PRC2, including
EZH2, EED and SUZ12, across MB subgroups, but particularly in
Group 3 and Group 4 MBs (7). Upon silencing of OTX2 in the MB
cell line D425, Bunt et al saw downregulation of these polycomb
genes in conjunction with induction of H3K27 demethylases (e.g.
KDM6A, KDM6B and KDM7A), resulting in reduced levels of
H3K27me3 (7). Thus, further investigation of the role of OTX2 as
a regulator of key chromatin modifiers in certain MB subgroups
may be warranted.

In addition to these OTX2-mediated changes, other examples of
polycomb deregulation have also been reported. In particular, the
PRC1 regulator and stem cell self-renewal factor BMI1 has been
linked to SHH-MB [the only MB subgroup in which OTX2 is
essentially not expressed (1)]. Using Bmi1-null mice, Leung et al
first showed in 2004 that Bmi1 is essential for normal cerebellar
development (40). The same study identified a subset of human
MB characterized by concordant overexpression of PTCH1 and
BMI1. This was built upon by Michael et al in 2008, in a study
which used a SmoA1 mouse model to demonstrate that Bmi1 is
essential for SHH-MB tumorigenesis (43). A recent report also
identified a feedback loop between hedgehog pathway activation
and BMI1, whereby Shh ligand can induce expression of BMI1 in
MB tumor-initiating cells, which then further upregulates hedge-
hog target genes (79).

OUTLOOK
The current era of MB research is an exciting one. Significant
advances have been made over the past few years, with the devel-
opment of important subgroup classification schema and the iden-
tification of multiple prognostic markers. As large-scale genomics
projects have come to fruition, chromatin remodeling defects have
taken center stage in multiple studies. There is still much to be
done, however, in translating this increased knowledge into true
clinical benefit. While the genetic alterations affecting chromatin
remodelers are becoming better understood, the downstream
epigenetic consequences of these alterations remain relatively
understudied. In addition, it is not clear whether these changes in
chromatin architecture are really seen across the whole genome, or
whether they affect only a subset of specific targets. The transcrip-
tional consequences of mutations in chromatin modifiers are also
still somewhat unclear. More detailed characterization of the MB
epigenome will therefore be an important area of focus in the
coming years. Several such studies are under way, for example,
under the auspices of International Cancer Genome Consortium
(ICGC) projects in Germany and Canada or the Pediatric Cancer
Genome Project in the USA, to look at global DNA methylation
(Illumina Infinium 450k arrays and whole-genome bisulfite
sequencing), non-coding RNAs (RNA-seq, miRNA-seq) and pat-
terns of critical histone modifications (ChIP-seq).

The repertoire of potential therapeutic targets has also expanded
rapidly in the genomics era. Many novel therapeutic agents target-
ing chromatin modifiers are currently in development or in early

stage trials, although not many have achieved Food and Drug
Administration (FDA) approval as yet (5). The best known class of
approved drugs are histone deacetylase inhibitors such as vorinostat
(31) and romidepsin (26), which are both in phase I/II clinical trials
for pediatric brain tumors (see http://www.clinicaltrials.gov). Vori-
nostat has shown some promising results in preclinical MB models
(44, 46, 69, 74), and knockdown of specific HDACs in MB cells
results in decreased proliferation and cell viability (45). More
recently, inhibition of bromodomain-containing proteins, which
interact with acetylated histones and recruit transcriptional regula-
tors (59), has been suggested as one way of indirectly targeting
Myc-driven tumorigenesis (15). This is of particular interest given
the strong transcriptional upregulation and/or amplification of
c-Myc in WNT and Group 3 MBs. Targeting the aberrant regulation
of H3K27 methylation observed in MB has also been suggested as
a therapeutic avenue (17, 62). As further support for this concept,
DZNep (3-deazaneplanocin A), an inhibitor of the H3K27 methyl-
transferase EZH2, has recently been shown to suppress MB cell
growth in vitro (2). Phase II clinical trials of EZH2 inhibitors are
now part of the Children’s Oncology Group (COG) blueprint for
MB research (20). Particularly for those tumors with elevated OTX2
expression, the combination of polycomb inhibition with a differ-
entiating agent such as all-trans retinoic acid (ATRA) has also been
suggested (4, 7, 16).As it seems, however, that the global process of
histone methylation is affected, rather than a single gene or pathway,
therapeutic targeting of these alterations may prove challenging.

Finally, the development of tumor models that faithfully reca-
pitulate these epigenetic alterations will also be crucial, both for
further characterizing the biological changes resulting from epi-
genetic dysregulation and for the development and testing of novel
therapeutics. The majority of the established MB cell lines are
thought to most closely resemble Group 3 MB, with no WNT
models and only poor representation of the SHH and Group 4
subgroups. As with any long-term culture model, there are also
concerns as to how well these lines truly reflect the primary tumor.
As such, a lot of effort is currently being put into developing
suitable in vivo models. There are already genetically engineered
mouse models (GEMMs) of three of the four molecular subgroups
of MB (18): WNT (21), SHH (22, 24, 27, 80, 82, 83) and Group 3
(32, 54). A MYCN-driven model that may resemble Group 4
tumors in certain contexts has also been established (71). None of
these GEMMs, however, are driven by alterations in chromatin
modifiers, and it will therefore be necessary to build a larger
repertoire to model the variety of changes identified through high-
throughput genomics. A number of research groups are also build-
ing collections of xenografted tumor material from the various
molecular subgroups, which will help recapitulate the wide spec-
trum of alterations observed in primary tumors and provide a
useful additional tool for preclinical testing of targeted agents (85).

Thus, while it is right to acknowledge the multiple advances that
have recently been made in the field, building on these insights into
the role of chromatin remodeling in MB in order to transfer this
knowledge to the bedside will be one of the major challenges in the
emerging post-genomics era.
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