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Abstract
The administration of reserpine to rodents was one of the first models used to investigate
the pathophysiology and screening for potential treatments of Parkinson’s disease (PD).
The reserpine model was critical to the understanding of the role of monoamine system in
the regulation of motor and affective disorders, as well as the efficacy of current PD
treatments, such as L-DOPA and dopamine agonists. Nevertheless, with the introduction of
toxin-induced and genetic models of PD, reserpine became underused. The main rationale
to this drawback was the supposed absence of reserpine construct validity with PD. Here,
we highlight classical and recent experimental findings that support the face, pharmaco-
logical, and construct validity of reserpine PD model and reason against the current
rationale for its underuse. We also aim to shed a new perspective upon the model by
discussing the main challenges and potentials for the reserpine model of PD.

INTRODUCTION
Parkinson’s disease (PD) is the second most common neuro-
degenerative disorder after Alzheimer’s disease. Its onset is rarely
before the age of 50 years and a sharp increase of the incidence
occurs after the age of 60 years (19). PD affects approximately
1%–2% of the population over the age of 60 (63), with a higher
prevalence in men than in women (19, 62). Most importantly,
it is a disorder with progressive onset and escalating deterioration
of quality of life (28). Therefore, PD is a social and economic
burden to countries with increasing life expectancy, and for this
reason, the scientific interest in the disorder is continuously
emphasized.

PD diagnosis is based on its cardinal motor symptoms, which
include bradykinesia, rigidity, resting tremor, and postural insta-
bility (108). However, even though PD is essentially a motor dis-
order, patients present equally incapacitating nonmotor symptoms.
Furthermore, those symptoms may appear previously or concomi-
tantly to motor symptoms (126) and include sleep disorders (83,
134, 152), anxiety (154), depression (15, 97), neuropathic pain and
nociceptive sensitization (27, 72, 196), impulsivity (160, 203,

204), dementia and executive function impairment (1, 7, 49, 123),
olfactory dysfunction (7, 60), and constipation (48, 152).

The motor alterations are a consequence of dopaminergic
neuronal loss in the substantia nigra (SN) (92, 108), where the
main dopaminergic projection to the motor-regulating nucleus in
the basal ganglia originates (52, 120). Nonetheless, loss of
dopaminergic neurons in the ventral tegmental area (VTA)—
projecting to limbic areas and to prefrontal cortex—is also
reported in PD (192, 197). This loss results in emotional and
cognitive deficits (154, 165). Furthermore, other neurotrans-
mission disturbances are described, as revealed by histopatho-
logical markers in serotonergic (101, 194), noradrenergic (28, 211,
213), and cholinergic (197, 211) neurons.

Studies have also characterized the neurochemical alterations in
PD at the cellular and genetic levels. Five to 10% of PD cases are
traced to familial heritage and studies have identified some genes
that underlie rare familial forms of the disease (206). This
approach highlighted genes involved in cellular pathways impli-
cated in synaptic function (SNCA: α-synuclein), ubiquitin-
proteasome protein degradation (Parkin and UCHL1), respiratory
chain (PINK1), protein phosphorylation (LRRK2), and oxidative
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stress response (DJ-1) (59, 163, 202, 206). Hence, impairment of
these pathways leads to oxidative stress and defective protein
folding, signaling, and degradation (47, 104, 114, 184). Finally, the
accumulation of defective protein aggregates—mainly constituted
by α-synuclein, parkin, and ubiquitin, known as Lewy’s bodies
(200)—is followed by cell death. Thus, the pathogenesis of PD
primarily relates to the generation of oxidative stress and accumu-
lation of defective proteins.

The genetic alterations are in accordance with epidemiological
associations to PD. These associations comprise exposure to envi-
ronmental toxins that act on the respiratory chain (42, 143, 195)—
such as pesticides, heavy metals, and carbon monoxide—and
neuroinflammation (88, 200). Both events result in the generation
of toxic reactive oxygen (ROS) and reactive nitrogen species,
giving rise to cell damage and eventually cell death. In brief, PD
harbors the oxidative imbalance as a common molecular pathway
to cellular stress and neurodegeneration. Thus, animal models of
PD aim to reproduce the aforementioned cellular and molecular
damages (44, 61, 129), while clinical and preclinical therapeutic
strategies target different candidate steps of these pathways to slow
PD progression (34, 91).

ANIMAL MODELS OF PD
Current studies use genetic and neurotoxic approaches to repro-
duce pathophysiological hallmarks in animal models of PD. In
genetic studies, some strategies focus on the overexpression of
normal or truncated autosomal dominant genes, such as SNCA (23,
105, 137, 205) and LRRK2 (117, 118), and knockout or knock-
down of autosomal recessive genes, as Parkin, PINK1, or DJ-1
(106, 107, 157, 191). Nevertheless, none of these strategies reca-
pitulates the key clinical and neuropathological features of PD and
they only account for 5%–10% of PD cases (206). As a result, the
most frequently used strategy is to induce oxidative imbalance and
dopamine (DA) depletion by the administration of toxins or drugs
that act upon dopaminergic neurons (37, 44, 61, 71, 129, 136, 167,
177, 210).

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and
6-hydroxydopamine (6-OHDA) are the most used toxins in animal
models of PD because of their rather selective actions upon
dopaminergic neurons (9, 18, 61, 129). Both enter the dopaminergic
neuron by the DA transporter (DAT) and inhibit the complex I in the
respiratory chain, causing adenosine triphosphate (ATP) reduction,
oxidative damage, protein aggregation, cell death, and DA deple-
tion (61, 94, 129, 181). MPTP is a highly lipophilic protoxin that
readily crosses the blood–brain barrier when peripherally adminis-
tered (161). Once in the brain, MPTP is converted by glial
monoamine oxidase (MAO)-B into its intermediate 1-methyl-4-
phenyl-2,3,dihydropyridinium, which is rapidly oxidized into
1-methyl-4-phenylpyridinium and then reabsorbed by the
dopaminergic neuron through the DAT (45). A disadvantage of this
model is that rodents are more resilient to cell damage induced by
MPTP compared with primates. This results in the need for higher
dosages and increased variability in neurodegeneration within
treated animals (43, 61, 170). In addition, there is a high risk of
contamination to researchers because of the handling of large doses
of MPTP and the respective biological waste (155).

6-OHDA, on the other hand, does not cross the blood–brain
barrier and is directly administered into the brain (18, 26, 61, 170).

Contrastingly from MPTP, 6-OHDA enters noradrenergic neurons
as well, through the noradrenaline (NA) transporter (NAT) (29).
This lack of specificity is usually resolved by the coadministration
of inhibitors of NA and serotonin (5-HT) reuptake, such as
nortriptyline or desipramine (27, 56, 188). Although safer regard-
ing contamination risk compared to MPTP, bilateral administration
of 6-OHDA results in extensive neuronal loss and severe motor
impairment followed by death. After administration, animals need
tube-feeding because of aphagia and adipsia (55, 198). In order to
avoid these issues, most studies perform the unilateral lesion with
6-OHDA and assess motor deficit by inducing unilateral rotating
behavior with dopaminergic agonists (171, 188). Although rota-
tional behavior lacks face validity with PD (55), some studies
evaluate forelimb akinesia (evaluated by adjusted stepping and
limb-use asymmetry tests) after unilateral 6-OHDA administration
(145, 169, 183). Nevertheless, even though the forelimb akinesia
provides face validity, the unilateral lesion is still a weak approach
to mimic PD pathology and symptomatology.

Alternatively, studies have employed environmental toxins such
as rotenone, paraquat and maneb to model PD in rodents (9). Of
those, rotenone is the most used because of its lipophilic structure,
easiness to cross biological membranes, ability to inhibit complex I,
and generate ROS (16, 93, 172). However, despite its close relation-
ship to epidemiological risk factors of PD, rotenone’s lack
of selective action results in systemic and peripheral toxicity (74,
151, 158) and highly variable dopaminergic lesions (22, 43, 172,
212).

Finally, the administration of reserpine—an inhibitor of the
vesicular transporter of monoamines in the central nervous system
(VMAT2)—was one of the earliest animal models of PD. Reserpine
is an alkaloid extracted from Rauwolfia serpentine and was first
used as a potent antihypertensive drug because of its capacity to
deplete cellular monoamine content (76, 125, 150). The clinical use
of reserpine led to the observation that patients chronically treated
with reserpine developed lethargy, depression, and motor dyskine-
sia, implicating the monoamine system in the pathophysiology of
affective and motor disorders (76, 102). Readily after, reserpine was
used in rodents to mimic parkinsonian motor and nonmotor impair-
ments (17, 38, 39, 51, 69, 164, 175). Although considered outdated
in comparison with the aforementioned models, the reserpine
model mimics key features of PD symptomatology, neuroche-
mistry, and pharmacology. For this reason, the model was useful to
elucidate the relevance of dopaminergic neurotransmission to
motor control as well as to screen for candidate drugs for treatment
of PD. This review will highlight a new perspective upon the model
and reason against the current rationale for the undervaluation of
the reserpine-induced parkinsonism model.

MOTOR AND NONMOTOR BEHAVIORAL
IMPAIRMENT IN THE RESERPINE
MODEL
The relationship between reserpine and PD was first reported by
Carlsson et al, who observed that the akinetic state induced by
reserpine in rodents was alleviated by L-DOPA (38, 39). At doses
varying from 1 to 10 mg/kg, reserpine induces a wide range of
motor impairments that resemble PD, mainly akinesia,
hypokinesia, catalepsy, limb rigidity, and oral tremor (17, 51, 164).
These motor features are a consequence of the blockage of

Reserpine as a Model of Parkinson’s Disease Leão et al

378 Brain Pathology 25 (2015) 377–390

© 2015 International Society of Neuropathology



VMAT2 (201), leading to total monoamine depletion, including
DA, NA, and 5-HT.

Besides the typical motor impairment, reserpine is also able to
produce aversive (70, 174) and recognition (167) memory deficits,
anxiety-like behavior (25, 112), depressive and anhedonic-like
behaviors (10, 11, 175), and nociceptive sensitization (10, 11, 119,
144). Moreover, the memory impairment and the anxiety-like
behavior were described in a dose range (0.1–0.5 mg/kg) that did
not produce motor impairment (25, 70, 167, 174). This outcome
allowed the dissociation of an important confounding factor in
behavioral analyses.

More recently, the repeated treatment with low doses of reser-
pine (0.1 mg/kg) has been suggested as a progressive model of PD
(71, 167). Under this treatment regimen, animals progressively
developed motor impairment in the open field, catalepsy bar, and
oral movement tests after repeated injections of a low dose
(0.1 mg/kg) of reserpine. Deficits in these motor tests recapitulate
main motor symptoms of PD, such as hypokinesia and
bradykinesia, in the open field and catalepsy bar test (ie, slowness
and difficulty to initiate movements) and resting tremor in the oral
movement test.

In the aforementioned study (167), the motor impairments were
preceded by cognitive impairment in the novel object recognition
task. This impairment was also accompanied by neuronal altera-
tions compatible with the pathophysiology of PD such as reduction
in tyrosine hydroxylase (TH) immunostaining (167) and increased
lipid peroxidation in the striatum (71). Furthermore, the object
recognition index positively correlated with VTA immunostaining
for TH, suggesting neuronal pathways disruption other than the
nigrostriatal pathway playing an important role in nonmotor symp-
toms of PD. In addition, the object recognition deficit occurred
after a 1-h interval between training and test sessions (167), but not
when the two sessions were 24-h apart (71). In other words,
reserpine-treated rats presented short-term, but not for long-term,
memory deficit previously to motor deficits. Thus, performance in
the task requires recognition and executive functions. These find-
ings are in accordance with early PD symptomatic description, as
executive function, attention deficit and episodic and procedural
memory impairment have been described (20, 64, 115, 160, 162,
204). Furthermore, acute administration of low dose of reserpine
resulted in emotional processing deficits in aversive memory tasks,
such as context conditioning (70) and discriminative avoidance
(40) task, but not motor impairment. In parallel, immobility in the
forced swim test correlated with pain indexes, indicating a
comorbid relationship between different reserpine-induced
nonmotor symptoms (10). Similarly, PD nonmotor impairments
comprise anxiety (154), depression (15, 97), and nociceptive
sensitization (30, 72, 196). Thus, nonmotor findings induced by
reserpine resemble nonmotor PD symptoms, reinforcing reser-
pine’s face validity as a PD model.

PHARMACOLOGICAL AND PREDICTIVE
QUALITY OF THE RESERPINE MODEL
The use of reserpine was critical to the first demonstration of the
therapeutic efficacy of L-DOPA (38, 178). This effect was shortly
after observed in humans (54) and the reserpine model was estab-
lished for screening of potential symptomatic treatment efficacy of
new drugs for PD. Indeed, besides L-DOPA, the reserpine model

predicted other current symptomatic anti-Parkinson treatments:
apomorphine (85), pramipexole (68, 122), ropinirole (77),
rotigotine (199), pergolide (51, 98), bromocriptine (98, 99), and
cabergoline (133). Likewise, reserpine-induced motor impairment
is also reversed by agents that are used in association with
L-DOPA, for example: muscarinic antagonists, such as
benztropine and trihexyphenidyl (85); MAO-B or catechol-O-
methyltransferase (COMT) inhibitors, such as selegiline (51, 176),
rasagiline (73), and tolcapone (121); and amantadine (51, 53, 85,
100, 176). Table 1 summarizes different types of motor impair-
ment induced by reserpine that are reversed by these drugs. In fact,
reserpine is still currently used to assess anti-parkinsonian efficacy
of novel agents, such as D3 receptor agonists (80), inhibitors of
glutamate release (103), group III metabotropic glutamate receptor
agonists or positive allosteric modulators (14, 32, 142), group I
muscarinic metabotropic receptor antagonists or allosteric modu-
lator (207), and mixed adenosine A2A/A1 antagonists (13, 173).

Reserpine is also employed in the screening for antioxidant and
anti-inflammatory treatments to prevent motor impairments such as
dyskinesia (5, 10, 24, 66, 139, 147, 148). Current literature on oral
dyskinesia implicates oxidative stress on the pathophysiology of the
disorder (3, 4, 136, 186, 187).Accordingly, monoamine depletion in
reserpine-treated rats is followed by increase of reactive oxygen and
nitrogen species and cell damage (179). The metabolism of
catecholamine (CA) intrinsically results in ROS formation, which is
increased as a consequence of free CA in the cytoplasm of
reserpine-treated rats (127, 156). Thus, oxidative stress and cell
damage sums up to the monoamine depletion to impair motor
performance. For this reason, treatment with antioxidants is able to
revert reserpine-induced oxidative stress and oral dyskinesia (3,
147). Finally, the treatment with 40 mg/kg vitamin E concomitant to
the repeated treatment with 0.1 mg/kg reserpine (71, 167) pre-
vented cognitive and motor impairments (168), as well as the
reduction of TH immunostaining in rats (unpublished data).

These neurochemical imbalances resemble features of PD, as
oxidative stress and DA depletion, which are keystones of the
pathophysiology of the disease (33, 79). Thus, the pharmacologi-
cal mechanism of reserpine comprises important qualities of PD
pathophysiology and constitutes a good model for screening for
candidate drugs to both symptomatic treatment and possible
slowing of PD symptom progression. This advantage is reinforced
by its low toxicity to researchers, low cost, and reproducibility
among laboratories, which points out the reserpine model of PD as
a suitable model for drug screening.

MOLECULAR AND NEUROCHEMICAL
FEATURES OF THE RESERPINE MODEL
Despite the robust face and pharmacological validities, the current
literature does not recognize reserpine as a useful PD model,
arguing the lack of construct validity (61). This drawback is due to
the experimental observations that (i) reserpine do not induce
neurodegeneration and protein aggregation (61, 208); (ii) motor
performance, monoamine content, and TH staining are partially
restored after treatment interruption (144, 167); and (iii) reserpine
lacks specificity regarding dopaminergic neurotransmission (10,
11, 119, 141, 144).

Nevertheless, the behavioral and neurochemical features of
reserpine administration are highly reproducible with little
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variance across studies. Reserpine peripherally administered in the
dose range of 1–10 mg/kg is known to produce a robust
(70%–95%) depletion of monoamine content in several brain areas
(10, 11, 58, 65, 86, 90, 119, 141, 144, 189; for a summary, see
Table 2). This monoamine depletion starts 30 minutes after reser-
pine injection and may endure up to 14 days, finally returning to
normal levels after 21 days of retrieval (90, 144). At first, the
absence of specificity was considered a disadvantage regarding
accurate modeling of PD neurochemistry. However, there is evi-
dence of relevant alterations in 5-HT and NA imbalances in PD as
well (28, 101, 194, 211, 213). This argues in favor of the resem-
blance of the neurochemical disruptions in the reserpine model
with those in PD. Moreover, this characteristic is especially impor-
tant to the aforementioned nonmotor deficits of PD. For instance,
NA and 5-HT transmissions are related to cognitive and emotional
function (130, 175). Accordingly, reserpine treatment results in
monoamine depletion in areas involved in emotional processing—
as the amygdala (119)—and cognition—as the hippocampus,
cortex (9, 10), and prefrontal cortex (144). Furthermore, repeated
reserpine treatment reduces TH staining in the hippocampus,
prefrontal cortex, dorsal striatum, VTA, SN pars compacta (SNpc),
and locus coeruleus (167).

Finally, acute or short-term DA depletion by reserpine treatment
results in upregulation of D1, but not D2 (46, 132, 189). Never-
theless, long-term treatment also leads to D2 upregulation (140,
193). These neurochemical modifications also occur because of
dopaminergic denervation in untreated PD patients. Functional

imaging techniques report upregulation of D2 receptor, whereas
upregulation of D1 is not yet clearly defined (87, 95).

Another highly reproducible biochemical alteration in the reser-
pine model is the induction of oxidative stress. Reserpine, in the
dose range of 1–10 mg/kg, is able to induce decreases in catalase,
superoxide dismutase, total content of reduced glutathione, and
ATP. Similarly, it increases glutathione peroxidase activity, oxi-
dized glutathione, lipid peroxidation, nitric oxide (NO), and iron
(2–4, 10, 11, 24, 35, 36, 65, 66, 71, 119, 138, 139, 147, 149, 159,
166, 174, 179, 186, 187; for a summary, see Table 3). Overall,
there is an increase in oxidative damage. Nevertheless, some
studies report contradicting results. Those differences seem to
emerge from different dosage, treatment regimen, and brain area
studied. For example, repeated treatment with low doses of reser-
pine (0.1 mg/kg) produced cumulative effects upon lipid
peroxidation in the striatum, but not hippocampus, of rats (71). As
well, catalase activity is generally reduced in all brain areas—
except for the striatum in which some studies found increased
activity (186, 187) or no significant differences (4, 66). This oppo-
site outcome may be due to a differential fine-tuning of catalase
activity regulation in the striatum, as catecholaminergic metabo-
lism intrinsically leads to oxidative stress (127, 156). In fact,
hydrogen peroxide (H2O2) is one of the main products of CA
metabolism by MAO-A (127, 156), and naturally one may specu-
late that catalase in catecholaminergic neurotransmission is differ-
entially modulated by increases in H2O2 in order to provide
antioxidant protection. Indeed, this is endorsed by the observation

Table 1. Predictive validity of reserpine Parkinson’s disease (PD) model effectiveness for symptomatic treatment of different motor disturbances in
PD. The table was constructed and updated according to the table presented by Duty and Jenner (61). The drug list was compiled from the Parkinson’s
UK website: parkinsons.org.uk/content/drug-treatments-parkinsons (accessed 6 October 2014). Abbreviations: COMT = catechol-O-
methyltransferase; DA = dopamine; MAO = monoamine oxidase.

Treatment Rigidity Hypokinesia Catalepsy Tremor Oral dyskinesia References

L-DOPA ± Carbidopa + + + + − (51, 85, 99, 133, 176)
DA agonists

Bromocriptine + + + − − (98, 99, 133, 176)
Cabergoline + + + − − (133)
Pergoline + + + + − (51, 98, 122)
Pramipexole − + + − − (68, 122)
Ropinirole − − + − − (77)
Apomorphine + + + − − (85, 98, 99)

Glutamate antagonists
Amantadine + + − + − (51, 85, 176)

Anticholinergics − − − − − −
Orphenadrine − − − − − −
Procyclidine − − − − − −
Trihexyphenidyl + − − − − (85)
Benztropine + − − − − (85)

COMT inhibitors
Entacapone − − − − − −
Tolcapone − − − − − −

MAO-B inhibitors
Rasagiline − + − − − (73)
Selegiline + + − − + (51, 176)

Antioxidative and Dietary therapy
Vitamin E − − − − + (3, 66)
Co-enzyme Q10 − − − − − −

Miscellaneous − − − − + (5, 24, 139, 147, 148)
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that catecholaminergic neurons are relatively abundant in popula-
tions of catalase-positive microperoxisomes (124). Thus, it seems
that treatment duration and brain area studied define the extent of
oxidative damage induced by reserpine.

The oxidative stress induced by reserpine is related to increased
DA metabolism as a result of the reduction on the number of DA
molecules in the vesicle (146) and increased DA turnover (67, 141,
179).Accordingly, MAO-A inhibitor reverts L-DOPA and reserpine
induced increase in oxidized glutathione (179, 180). In addition,
free DA and metabolites in the cytoplasm results in auto-oxidation
of DA and DOPAC to their corresponding reactive quinones—
DA-Q and DOPAC-Q, respectively—(12, 127, 156), which contrib-
utes to cell apoptosis and synuclein dimerization (84).

The generation of highly reactive molecules results in early
cell damage—as consistently evidenced by lipid peroxidation
(Table 3)—initiating proinflammatory signaling by tumor necrosis
factor (TNF)-α and interleukin (IL)-1β (10, 11). Subsequently, the
increase in proinflammatory cytokines activates microglia, which
leads to a vicious circle of adhesion, inflammation, and release of
more cytokines. Activated microglia upon dopaminergic neurons
also results in increased NO (10, 11, 24). Afterwards, NO—in the
presence of superoxide (O2

−)—produces peroxynitrite (NO3
−)

(127, 156), which is highly reactive and has been shown to inac-
tivate TH via S-thiolation on cysteine residues (8, 96, 110, 111). In
this context, repeated treatment with a low dose of reserpine
(0.1 mg/kg) resulted in reduced TH immunostaining in several
brain areas—that is hippocampus, prefrontal cortex, dorsal
striatum, SNpc, and VTA (167).

Ultimately, these events may terminate in the commitment with
apoptotic pathways. In other words, there is a reduction in anti-
apoptotic molecules, as Bcl-2 (65, 119), and an increase in
proapoptotic molecules, as caspase-3 (10, 11, 119).

Nevertheless, whether reserpine leads to permanent cell damage
or neurodegeneration is not clear yet. In this respect, repeated
treatment with 0.1 mg/kg of reserpine every other day for 20 days
resulted in a reduction of TH immunostaining that was partially
reversed after 30 days of treatment withdrawal (167). Likewise, the
same protocol increased α-synuclein immunostaining in SN and
dorsal striatum and these effects were reversed after treatment
interruption (data not published). Of notice, such increase did not
result in protein inclusions and studies addressing if actual
neuronal loss occurs are currently being held. Thus, in light of the
current evidence (extent of TH reduction and α-synuclein
increase, restauration of motor performance, and reversion of
reduction in TH and α-synuclein immunostaining after interrup-
tion of treatment), data regarding the repeated low-dose reserpine
treatment should be interpreted in terms of TH expression reduc-
tion rather than neurodegeneration.

On the other hand, some evidence support long-lasting or per-
manent cellular and behavioral changes within a high dose chronic
reserpine treatment. Treatment with 1 mg/kg of reserpine every
other day for 6 weeks resulted in persistent behavioral and
neurochemical changes (oral dyskinesia, DA depletion and D1 and
D2 receptor upregulation) up to 60 days after treatment withdrawal
(140). Thus, we do not discard the possibility of some extent of
permanent cell damage or cell death after reserpine treatment,
depending on dose and/or length of treatment.

In this context, untreated VMAT2 genetically deficient mice—
which express only 5% of functional VMAT2—presents age-
associated neurodegeneration in SNpc, locus coeruleus, and dorsal
raphe, followed by α-synuclein accumulation and TH and
tyramine transporter immunostaining reduction (41, 185). This
VMAT2-deficient mice also presents L-DOPA responsive motor
impairment, twofold increase in DA concentration in cytosol,

Table 2. Monoamine content depletion
induced by different reserpine treatment regi-
mens in rodents. Abbreviations: 5-HT = seroto-
nin; BLA = basolateral amygdala; CTX =
cortex; DA = dopamine; HPC = hippocampus;
NA = noradrenaline; N/A = not applicable;
PFC = prefrontal cortex; SN = substantia nigra;
STR = striatum; THA = thalamus.

Dose (mg/kg) Structure Time
window

DA NA 5-HT References

(50×) 0.01 STR 24 h 0% ∼45% 0% (141)
(50×) 0.1 STR 24 h ∼90% ∼90% ∼65%
(50×) 1.0 STR 24 h ∼95% ∼90% ∼90%
5.0 SN 2 h ∼85% N/A N/A (90)

24 h ∼70%
STR 2 h >95%

24 h >95%
1.0 STR 6 h ∼80% N/A ∼50% Unpublished data

24 h ∼90% ∼80%
96 h ∼75% ∼80%

5.0 STR 24 h ∼95% N/A N/A (65)
5.0 STR 24 h ∼70% N/A N/A (189)
10.0 STR 18 h ∼95% N/A N/A (86)

STR* 18 h >95%
1.0 STR 24 h ∼55% N/A N/A (58)
(3×) 1.0 BLA 24 h ∼75% ∼80% ∼70% (119)
(3×) 1.0 CTX 48 h ∼75% ∼60% ∼70% (10)
(3×) 1.0 CTX 48 h ∼80% ∼70% ∼80% (11)

HPC 48 h ∼70% ∼60% ∼85%
3.0 THA* 24 h ∼75% >95% >95% (144)

PFC* 24 h ∼90% >95% ∼90%

*Microdialysis studies.
Time window refers to time after last reserpine injection.
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reduction in TH phosphorylation associated with catechol feed-
back, 95% of DA depletion, and increased DA turnover (50, 135,
185). Moreover, these alterations are accompanied by nonmotor
impairments, such as deficit in olfactory discrimination, delayed
gastric emptying, altered sleep latency, anxiety-like behavior, and
age-dependent depressive behavior (185). In short, all behavioral
and neurochemical alterations in VMAT2-deficient mice resemble
the effects of reserpine treatment. As both reserpine and VMAT2-
deficient mice models are similar in terms of functional construct,
we speculate that neurodegeneration is a plausible outcome in
long-term VMAT2 functional blockade by reserpine treatment. As
mentioned earlier, this issue is currently under investigation.

In conclusion, reserpine treatment is able to induce (i)
monoamine depletion, (ii) oxidative stress, (iii) inflammation, (iv)
proapoptotic commitment, (v) reduction in tyrosine hydroxylase
and increase in α-synuclein immunostaining, and (vi) DA recep-
tors upregulation (for summary of neurochemical events after
reserpine administration, see Figure 1). Despite that there is still
no evidence of some important pathological features of PD—such
as protein aggregation, permanent cellular damage, and

neurodegeneration—most of the reserpine-induced neurochemical
alterations are clearly reminiscent of PD pathophysiology and thus
holds a satisfactory resemblance to PD phenomenology. There-
fore, the lack of construct validity should not be an argument
against the use of the reserpine model to study PD.

It should be noted that the aforementioned toxin-based animal
models do not account for all pathophysiological features of PD as
well. 6-OHDA leads to neurodegeneration and motor impairment,
but studies have not shown protein inclusions, while MPTP admin-
istration resulted in Lewy’s body-like inclusions specifically in
particular mice lineages. Likewise, rotenone treatment induces
Lewy’s body-like inclusions and neurodegeneration in rats, but the
extent of neurodegeneration is highly variable (78, 81, 109, 113,
128, 190).

FINAL CONSIDERATIONS
In addition to the aforementioned features, one might question if
the reserpine model mimics risk factors of PD, such as age and sex,
for example. Neurochemical studies regarding age-related effects

Table 3. Molecular changes related to oxidative stress induced by different reserpine treatment regimens in rodents. Abbreviations: CAT = catalase;
GPX = glutathione peroxidase; GSH = reduced glutathione; GSSG = oxidized glutathione; GST = glutathione-S-transferase; LPO = lipid peroxide;
NO = nitric oxide; NS = not significant; SOD = superoxide dismutase.

Structure Dose
(mg/kg)

Time
window

CAT SOD GPX GST GSH GSSG GSSG/GSH LPO NO References

Total brain 5.0 24 h ↓ ↓ ↑ (65)
(3×) 1.0 3 h ↓ ↓ ↓ ↑ (147)
(3×) 1.0 24 h ↓ ↓ ↓ ↑ (138)
(3×) 1.0 24 h ↓ ↓ ↓ ↑ (139)
(3×) 1.0 17 days ↓ ↓ ↓ ↑ (166)

Cortex (2×) 1.0 24 h NS (149)
(3×) 1.0 24 h NS (35)
(3×) 1.0 48 h ↓ ↓ ↓ ↑ ↑ (11)
(3×) 1.0 48 h ↓ ↓ ↑ ↑ (10)
(3×) 1.0 96 h NS (159)
10 2 h NS (180)

Striatum (10×) 0.1 24 h ↑ (2)
(10×) 0.1 48 h ↑ (71)
(2×) 0.5 24 h NS (66)
(2×) 1.0 24 h NS NS (4)
(2×) 1.0 24 h ↑ ↑ (187)
(2×) 1.0 24 h ↑ (3)
(2×) 1.0 24 h ↑ (36)
(2×) 1.0 24 h ↑ ↓ (186)
(2×) 1.0 24 h NS (149)
(3×) 1.0 24 h ↑ (35)
(3×) 1.0 96 h NS (159)
5.0 90 minutes ↑ NS ↑ ↑ (24)
10 2 h ↑ (180)

Hippocampus (10×) 0.1 48 h NS (71)
(2×) 1.0 24 h NS (149)
(3×) 1.0 48 h ↓ ↓ ↓ ↑ ↑ (11)
(3×) 1.0 48 h ↓ ↓ ↑ ↑ (10)
5.0 90 minutes NS NS ↑ ↑ (24)

Substantia nigra (2×) 1.0 24 h NS (149)
Basolateral amygdala (3×) 1.0 24 h ↓ ↑ (119)

Time window refers to time after last reserpine injection.
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of reserpine treatment found that older rats presents reduced DA
turnover (6) and a tendency to reduced DA recovery (153) com-
pared with younger animals. Furthermore, oral dyskinesia is
increased in older rats (2, 4, 35) and reserpine treatment results in
cumulative (182) and persistent (21) oral dyskinesia in older
animals. However, current literatures have not directly addressed
the influence of age on other reserpine-induced motor deficits. Up
to date, the low-dose repeated reserpine treatment has been con-
ducted with 6-month-old rats (unlike studies with other

parkinsonism-inducing drugs, which are usually conducted with
3-month-old animals), but the studies did not include other age
groups (71, 167).

Moreover, regarding sex differences, we have recently con-
ducted the low-dose repeated reserpine treatment (0.1 mg/kg) in
male and female Swiss mice and found that female mice took
longer to develop motor impairment in the catalepsy
(Figure 2A,B) and oral dyskinesia (Figure 2C) tests (refer to
Figure 2 legend for methods and statistical analysis). Conversely,

Figure 1. Neurochemical and molecular events after reserpine treat-
ment. (1) Reserpine precludes dopamine (DA) storage. (2) Increased DA
is metabolized in the cytoplasm (3) generating reactive oxygen species
(ROS) and (4) highly reactive quinones (DA-Q and DOPAC-Q) (5) result-
ing in oxidative stress and (6) lipid peroxidation.(7) Accumulation of ROS
and reactive quinones leads to cell damage and proinflammatory
signalization. (8) Activation of microglia by tumor necrosis factor (TNF)-α
and interleukin (IL)-1β (9) amplify proinflammatory signalization resulting

in (10) nitric oxide (NO) increase and peroxynitrite (NO3
-) formation with

free superoxide (O2
-). (11) NO3

- inhibits tyrosine hydroxylase (TH) activity
and (12) reinforces cell damage committing cell fate in proapoptotic
signalization. At the same time, (13) monoamine depletion in synaptic
cleft results in (14) upregulation of D1 and D2 receptors on the postsy-
naptic and presynaptic membrane. AADC, aromatic L-amino acid
decarboxylase; ALDH, aldehyde dehydrogenases; MAO, monoamine
oxidase.
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other study reported increased oral dyskinesia in female mice that
was inconsistent at different time points (174). Contradicting
results regarding oral dyskinesia might be explained by differences
in protocol—that is length of treatment, dosage, and type of motor
parameter (vacuous chewing vs. jaw twitching). Nevertheless,
studies with CD-1 mice have suggested that female animals
present a more efficient VMAT2 function (57, 58), which could
explain the need of a longer treatment for female mice to develop
the motor alterations (data displayed in Figure 2). Importantly, this
result is in accordance with the lower incidence of PD in women
(19, 62) and adds to the similarities between the reserpine model
and the clinical condition.

The exposed prospect of reserpine-induced behavioral, pharma-
cological, and neurochemical effects restates the use of reserpine as
a valuable and promising model for PD study. Thus, the current
underuse of reserpine to investigate PD features should be recon-
sidered. Of notice, the use of reserpine could be important to the
relevance of VMAT2 functionality to PD in humans. Indeed,
polymorphisms in promoter regions that increases transcription of
VMAT2 are protective against PD (31, 82) and reduction inVMAT2
and its mRNA in nigrostriatal neurons have been reported in PD
patients (89, 131). Furthermore, VMAT2 is present in Lewy’s
bodies in the SN of PD patients (209) and VTA dopaminergic
neurons that are spared in PD harbors higher levels of VMAT2
(131). Finally, increased cytoplasmic DA influences the confor-
mational state of α-synuclein, promoting stabilization of its patho-
genic form (75, 116). Thus, because functional VMAT2 expression
is protective against dopaminergic neurodegeneration, its long-
term blockage might represent an interesting approach to model PD.

In conclusion, we believe that the scientific effort on reserpine
PD model validation should focus in answering whether
neurodegeneration and cell death occur after chronic reserpine
treatment, as well as the exploitation of the model to investigate
progression of symptoms and neurochemical features of PD patho-
physiology. We recently presented a low-dose reserpine-induced
progressive model of PD that could be useful to investigate such
inquiry (71, 167). Therefore, in view of the presented experimental
evidence, the reserpine-induced PD model in rodents reaches
robust face and pharmacological validity criteria, besides present-
ing a significant number of neurochemical and molecular features
that closely resemble the pathophysiology of the disease. Taken
together, these characteristics render the reserpine model a useful
tool for PD basic research.
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