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Abstract
The discovery of biallelic, inactivating SMARCB1 mutations in rhabdoid tumors (RTs) over
a decade ago represented the first recognized link between chromatin remodeling and tumor
suppression. SMARCB1 is a core subunit of the SWI/SNF chromatin remodeling complex,
and the recent emergence of frequent mutations in genes that encode subunits of this
complex across a wide variety of cancers suggests that perturbation of this chromatin
remodeling complex constitutes a key driver of cancer formation. Despite the highly
aggressive nature of RTs, they are genetically simple cancers that appear to lack chromo-
somal instability and contain very few mutations. Indeed, the mutation rate in RTs is among
the lowest of all cancers sequenced, with loss of SMARCB1 as essentially the sole recurrent
event. Given the genetic simplicity of this disease, understanding the chromatin dysregu-
lation caused by SMARCB1 loss may provide more general insight into how epigenetic
alterations can contribute to oncogenic transformation and may reveal opportunities for
targeted therapy not only of RT but also the variety of other SWI/SNF mutant cancers.

CHROMATIN AND CANCER
History has revealed a theme that genes mutated in early onset
pediatric cancers and familial cancer predisposition syndromes
are often of fundamental importance to cancer in general. For
example, retinoblastoma is a rare pediatric cancer but served as the
initial clue to the importance of the RB gene in tumor suppression.
In 1998, the causative mutation of rhabdoid tumors (RTs) was
identified as biallelic inactivation of the gene SMARCB1 (SNF5/
INI1/BAF47) (5, 6, 71). SMARCB1 encodes a core subunit of
SWI/SNF chromatin remodeling complexes (53, 76). This finding
represented the first identified link between ATPase chromatin
remodeling complexes and tumor suppression—a link that has
since blossomed with findings of SWI/SNF subunit mutations in
many types of cancer, both pediatric and adult. Indeed, recent
cancer genome sequencing efforts have further highlighted the role
of chromatin regulators in cancer as a variety of genes whose
products covalently modify histones and chromatin have also been
found to be mutant in cancer. Here we review and discuss RT and
describe mechanistic and potential therapeutic insights that have
resulted from subsequent studies.

RTs are aggressive pediatric cancers that arise most frequently
in the brain, where they are referred to as atypical teratoid/
rhabdoid tumor (AT/RT), and the kidney, but can also arise in soft
tissues throughout the body (3, 8, 59, 78). These tumors tend to
have a very early onset, with roughly half of cases arising in
children less than 1 year of age and the large majority of cases
occurring in children under the age of 3 (3). These tumors
are highly malignant and confer a particularly poor prognosis,

although the recent use of highly intensive multimodality thera-
peutic regimens may offer some improvement in outcome (14).
Although an origin from neural progenitors has been hypothesized,
analyses of gene expression have yielded conflicting conclusions,
and the cell(s) of origin remains unclear (11, 20).

After cytogenetic analysis identified the deletion of chromo-
some 22q11.2 region as the only frequent copy number change in
RT cell lines and primary tumors, further mapping showed that the
gene SMARCB1 was almost universally missing in these cancers
(4, 6, 31, 71). These findings provided the first clear evidence that
AT/RT, renal RT and soft-tissue RT are all genetically related
(6, 64). Analogous to retinoblastoma, germ line mutations in
SMARCB1 strongly predispose to RTs and the rare cases of famil-
ial rhabdoid predisposition syndrome are predominantly due to
inherited heterozygous mutations in SMARCB1 (65, 68). Indeed,
biallelic loss of SMARCB1, particularly as evidenced by negative
immunostaining with the INI1 antibody, is now used in the diag-
nosis of RT (3). It should be noted, however, that in a very small
percentage of RT cases, the tumors lack SMARCB1 mutations but
carry mutations in another SWI/SNF subunit, SMARCA4 (BRG1/
SNF2-beta) (24, 61), further establishing mutation of the SWI/
SNF complex as a signature event of RT.

SWI/SNF COMPLEX SUBUNITS ARE
FREQUENTLY AND WIDELY MUTATED
IN CANCER
SWI/SNF complexes were originally characterized in yeast as
factors being essential for mating type switching (SWI) or for

Brain Pathology ISSN 1015-6305

200 Brain Pathology 23 (2013) 200–205

© 2013 The Authors; Brain Pathology © 2013 International Society of Neuropathology



sucrose metabolism (mutants were sucrose non-fermenting, SNF).
Mammalian versions of these complexes consist of 10–12 subunits
and are transcriptional modulators that possess ATP-dependent
nucleosome remodeling activity (9, 16). SWI/SNF complexes
are comprised of one of two ATPase subunits (SMARCA4 or
SMARCA2/BRM), a set of highly conserved “core” subunits
(SMARCB1, SMARCC1/BAF155 and SMARCC2/BAF170), and
variant subunits thought to contribute to lineage-specific functions
of the complexes (26, 27, 36, 51, 53, 75). While SMARCB1 is
constitutively present in SWI/SNF complexes, its biochemical
contribution remains unclear.

Although SWI/SNF complexes were first linked to cancer
when SMARCB1 was found to be recurrently mutated in RT,
recent findings from cancer genome sequencing studies reveal
that at least seven SWI/SNF subunits are mutated, often at high
frequency, across a wide variety of cancers (Table 1) (82). For
example, the ARID1A (BAF250a) subunit is mutated in 50% of
ovarian clear cell carcinomas, 30% of endometrioid carcinomas,
27% of gastric cancers, 13% of bladder carcinomas, 10% of color-
ectal and lung adenocarcinomas, 10% of hepatocellular carcino-
mas, and occasionally in breast, pancreatic, and prostate cancers
and neuroblastomas (10, 15, 19, 29, 30, 34, 35, 54, 62, 66, 80, 84).
The PBRM1 (BAF180) subunit is mutated in 40% of renal carci-
nomas, as well as occasionally in breast, gastric and pancreatic
cancers (18, 52, 66, 70, 85). The BRD7 subunit is lost in up to 20%
of p53 wild-type breast cancers (17), and the ARID2 (BAF200)
subunit is mutated in 18% of hepatitis C-associated hepatocellular
carcinomas, 7% of melanomas, and occasionally in some pancre-
atic cancers (19, 28, 43, 46). The SMARCA4 subunit is mutated in
35% of non-small cell lung cancers and in medulloblastomas,
particularly the WNT (26%) and group 3 (11%) subtypes (44, 49,
50, 54, 55, 58). Finally, mutations in SWI/SNF subunits were
identified in one-third of pancreatic cancers (2, 66). It remains
unclear why different SWI/SNF subunits are mutated in different
cancers, although it raises the possibility of lineage-specific con-
tributions of individual subunits. Collectively, a broad role for the
SWI/SNF complex as a tumor suppressor has recently emerged,
suggesting substantial relevance for this complex in tumor sup-
pression beyond RT.

RT: REMARKABLY SIMPLE GENOMES
Since first being linked to RT, studies have sought to identify
additional genetic mechanisms and mutations that cooperate with
SMARCB1 loss to drive RT. While SMARCB1 was initially impli-
cated in DNA repair (72), a subsequent evaluation found no clear
role and further found that 16 out of 18 primary RT samples were
diploid and indistinguishable from normal peripheral blood DNA
by SNP array, other than SMARCB1 loss, suggesting an unusual
degree of genomic stability in RT (47). To characterize the
genomes of RT and search for genetic mutations that cooperate
with SMARCB1 loss to drive RT formation, SNP analysis and
exome sequencing were recently performed on 32 frozen primary
RT samples paired with matched normal genomic DNA. RT
genomes were found to be remarkably simple with no recurrent
copy number variations other than focal deletions of the
SMARCB1 locus or monosomy of chromosome 22, where
SMARCB1 is located (42, 47). Whole exome sequencing revealed
a particularly low mutation rate, with an average of four non-

synonymous somatic mutations detected per tumor exome (42).
This mutation rate is among the lowest of all sequenced cancer
genomes, and indeed two tumors contained no somatic mutations
other than biallelic loss of SMARCB1. Across the 32 samples,
SMARCB1 was the only gene found to have significant recurrent
mutations. Two additional studies focused upon known cancer-
related genes also found an essential absence of cooperating muta-
tions (25, 39). Collectively, these data raise the possibility that, at
least within the protein coding exome, SMARCB1 loss might be
the sole genetic driving event in RT, although it remains possible
that germ line variants or mutations located outside the exome
could be required to cooperate with SMARCB1 loss to drive RT
tumor formation.

The surprisingly low mutation rate seen in RT suggests that
widespread genomic instability might not be a necessary hallmark
for the genesis of even highly aggressive cancers such as RT.
Rather, at least in certain contexts, perhaps only a few, or one,
genetic perturbation can be sufficient to drive cancer formation.
Other pediatric cancers such as infant leukemia, neuroblastoma
and retinoblastoma have also been found to possess mutation rates
several log-fold lower than highly mutagenic adult cancers such
as melanoma (28, 60, 87). Some adult cancers, such as acute
myeloid leukemia (AML), have also been found to have low muta-
tion rates, and occasional individual cases of most common cancer
types also have very low mutation rates (79). While 5–15 somatic
driver mutations had been predicted as being essential for the
genesis of cancer (7), it now appears that substantially lower
numbers are required, at least in some contexts. But how could a
single genetic lesion be sufficient for cancer? The mathematics
would seem to suggest, were this true, that everyone would
develop cancer at a young age. This raises the possibility that
cooperating events, rather than being genetic mutations, might
occur as epigenetic chromatin alterations.

FUNCTIONAL INSIGHTS INTO
SMARCB1
Insights come from studies regarding the normal function of
SMARCB1 and the mechanisms by which its loss drives cancer
formation. Several mouse models of Smarcb1 inactivation have
been developed (22, 40, 56, 57, 69). Homozygous deletion of
Smarcb1 results in early embryonic lethality while heterozygous
knockout mice develop tumors comparable to human RT (22, 40,
56). Analysis revealed that these tumors have spontaneously lost
the second Smarcb1 allele, a requirement that likely explains the
30% penetrance and 11-month median onset. In comparison, in
conditional mice in which Smarcb1 is inducibly inactivated in
some cells, 100% of mice develop lymphomas or RTs with a
median onset of only 11 weeks, markedly faster than that occurs
following inactivation of tumor suppressors such as p53, p16 or
p14 (37, 57, 63, 81). Of note, as cancers driven by Smarcb1 loss
occur in multiple genetic backgrounds, this could suggest that
a specific germ line variant is not essential for the genesis of
cancers driven by Smarcb1 loss. Collectively, these experiments
demonstrated a potent and bona fide role for Smarcb1 as a tumor
suppressor.

Providing important insight into transformation driven by
Smarcb1 loss, while Smarcb1 inactivation results in rapid cancer
onset, its loss is detrimental to the vast majority of cells. Inactivation
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in embryonic stem cells blocks development and causes arrest at the
blastocyst stage (40). Deletion of Smarcb1 in primary fibroblasts
results in cell cycle arrest and a block in proliferation (41). Indeed,
even in a T-cell lymphoma model where Smarcb1 deletion in vivo

results in rapid cancer onset in all mice (57), the vast majority of T
cells do not tolerate Smarcb1 loss, resulting in markedly reduced
T-cell numbers in these animals. From this aberrant T-cell environ-
ment, cancer arises like a phoenix from the ashes. As the human

Table 1. SWI/SNF subunits are mutated in a wide variety of cancers. Selected studies revealing SWI/SNF subunit mutations in cancer.

Common SWI/SNF subunit mutations discovered by cancer genome sequencing

SWI/SNF
complex subunit

Cancer type Cell line or
primary tumor

Mutation type %
Mutated

Reference

SMARCB1 Rhabdoid tumor Primary tumors Deletions and copy neutral loss of heterozygosity 94 (25)
Primary tumors Homozygous inactivation: deletions, nonsense

and other null mutations
100 (42)

Primary tumors Homozygous inactivation: deletions, nonsense
and other null mutations

98 (31)

SMARCA4 Medulloblastoma Primary tumors Missense mutations 4 (54)
Primary tumors Null and missense mutations 5 (33)

Lung adenocarcinoma Both Unknown point mutation 32 (44)
Primary tumors Null and missense mutations 11 (30)

Pancreatic ductal adenocarcinoma Both Heterozygous deletions 9.6 (66)
SMARCA2 Pancreatic ductal adenocarcinoma Both Heterozygous deletions 2.6 (66)
PBRM1 Renal clear cell carcinoma Primary tumors Null mutations 53 (52)

Both Null mutations 60 (18)
Primary tumors Null and missense mutations 21 (23)
Primary tumors Truncating mutations 41 (70)

Pancreatic ductal adenocarcinoma Both Null mutations and deletions 9.6 (66)
Cell lines Truncating mutations 27 (74)

ARID2 Hepatocellular carcinoma Primary tumors Indel, nonsense and null mutations 5.8 (19)
Primary tumors Truncating mutations 14–18 (43)

Non-small cell lung carcinoma Both Homozygous deletions, null mutations 7.3 (46)
Pancreatic ductal adenocarcinoma Primary tumors Null and missense mutations, copy number

changes
12 (2)

Melanoma Primary tumors Null and missense mutations 9 (28)
ARID1A Ovarian clear cell carcinoma Both Null and missense mutations 46 (80)

Primary tumors Null mutations 57 (35)
Endometrioid carcinoma Primary tumors Null and missense mutations 30 (80)
Gastric adenocarcinoma Primary tumors Null mutations 8 (86)

Both Indel, missense and nonsense mutations 10 (34)
Primary tumors Truncating mutations 29 (73)

Bladder transitional cell carcinoma Primary tumors Null and missense mutations 13 (21)
Colorectal carcinoma Primary tumors Indel and nonsense mutations 10 (10)

Both Indel and nonsense mutations 10 (34)
Hepatocellular carcinoma Primary tumors Indel, missense and nonsense mutations 13 (29)

Primary tumors Indel, missense and nonsense mutations 10 (19)
Pancreatic ductal adenocarcinoma Primary tumors Indel and nonsense mutations 10 (2)

Both Null mutations and deletions 8.3 (66)
Both Indel and nonsense mutations 8 (34)

Neuroblastoma Primary tumors Null and missense mutations 6 (60)
Lung adenocarcinoma Primary tumors Indel, missense and nonsense mutations 8 (30)

Both Indels 2 (34)
Breast cancer Primary tumors Indel, missense and nonsense mutations 4 (67)

Primary tumors Deletions (point mutations) 37 (3) (15)
Both Indel, missense and nonsense mutations 4 (34)
Primary tumors Deletion 13 (45)

Prostate cancer Both Indels 8.7 (34)
ARID1B Neuroblastoma Primary tumors Deletions, null and missense mutations 7 (60)

Breast cancer Primary tumors Indel, missense and nonsense mutations 5 (67)
Pancreatic ductal adenocarcinoma Both Null mutations and deletions 3.9 (66)
Hepatocellular carcinoma Primary tumors Indel, missense and nonsense mutations 6.7 (19)
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tumor data suggest that this phenotypic variation is not explained by
the acquisition of genetic mutations, epigenetic differences and
alterations likely play a key role in determining susceptibility to
transformation upon SMARCB1 loss. Notably, while SWI/SNF
subunit mutations are collectively found in a wide variety of
cancers, SMARCB1 loss itself has only been associated with RT and
a few other rare cancers—it is not generally mutated in common
adult cancers. In mouse lymphomas, Smarcb1 loss drives lym-
phoma formation from mature CD8+ memory-like T cells, but not
from immatureT cells or B cells (77). Collectively, this suggests that
only certain cell types, or epigenetic states, are susceptible to
SMARCB1 loss. Other cell types/states might be susceptible to the
loss of other specific SWI/SNF subunits.

Alterations of the epigenetic landscape caused by SMARCB1
loss affect several pathways that might be important in the genesis
of RT in susceptible cell types. Studies of mouse models and
human tumors revealed the existence of epigenetic antagonism
between SMARCB1 and the Polycomb repressor complex subunit
EZH2, such that the loss of SMARCB1 results in unopposed activ-
ity of EZH2 that serves an essential role in tumor formation (38,
83). In addition, the loss of SMARCB1 in RT has been found to have
effects upon a wide spectrum of cellular processes. SMARCB1 and
SWI/SNF complexes appear to modulate the cell cycle through
transcriptional regulation of the p16INK4a-cyclinD/CDK4-pRb-
E2F mitotic checkpoint (1, 13, 72). Similarly, the absence of
SMARCB1 increases cell motility by posttranslational deregula-
tion of RhoA, possibly through epigenetically driven changes in
expression of G-protein guanine exchange factors and activating
proteins (12). These various effects might be modulated by adaptor
proteins such as BIN1 (48). Evidence has also linked SMARCB1
directly to GLI1, an effector in the hedgehog signaling pathway
(32). While it remains unknown whether these same pathways are
activated in cancers linked to mutations in other SWI/SNF subu-
nits, the understanding gleaned from studying RT suggests that
SMARCB1 loss results in the deregulation of multiple pathways
that contribute to oncogenesis in a lineage-specific fashion.

Understanding the mechanisms by which epigenetic changes
contribute to oncogenesis offers the promise of informing devel-
opment of therapeutics. Recent sequencing efforts have revealed a
theme that genes encoding chromatin modifiers, not just SWI/SNF,
are recurrently mutated across a wide spectrum of cancer types,
suggesting that changes in chromatin structure might be important
in oncogenesis. Indeed, epigenetic alterations have been impli-
cated in many cancer types, although it has often been challenging
to define potential epigenetic contributions when they occur in the
setting of high mutation rates and genomic instability. Perhaps in
part due to a low incidence of age-related and environmentally
induced passenger mutations, early onset pediatric cancers such as
RT often have simpler genomes. Consequently, these cancers
might constitute outstanding models with which to mechanisti-
cally characterize the roles of chromatin-based changes in driving
cancer growth and, potentially, with which to identify specific
mutation-driven therapeutic susceptibilities.
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