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Abstract

The inflammasome complex is part of the innate immune system, which serves to protect the
host against harm from pathogens and damaged cells. It is a term first proposed by
Tschopp’s group in 2002, with numerous original research articles and reviews published on
the topic since. There have been many types of inflammasome identified, but all result in the
common pathway of activation of caspases and interleukin 1b along with possible cell death
called pyroptosis. Despite a growing body of research investigating the structure and function
of the inflammasome in animal models, there is still limited evidence identifying
inflammasome components in human physiology and disease. In this review, we explore the
molecular structure and mechanism of activation of the inflammasome with a particular focus
on inflammasome complexes expressed in humans. Inflammasome components have been
identified in several human peripheral and brain tissues using both in vivo and ex vivo work,
and the inflammasome complex has been shown to be associated with several genetic and
acquired inflammatory and neoplastic disorders. We discuss the strengths and weaknesses of
the information available on the inflammasome with an emphasis on the importance of
prioritizing work on human tissue. There is a huge demand for more effective treatments for
a number of inflammatory and neurodegenerative diseases. Modulation of the inflammasome
has been proposed as a novel treatment for several of these diseases and there are currently
clinical trials ongoing to test this theory.

INTRODUCTION

Inflammation is a protective immune response against pathogens
and damaged host cells. The innate immune system must react rap-
idly and appropriately to harmful signals in order to eliminate
threats whilst also preserving tissue function. The key step in this
early inflammatory cascade is activation of the cytokine interleukin
(IL)-1b. IL1b is an endogenous pyrogen, produced as a precursor
protein (pro-IL1b) and proteolytically processed to its active form
by cysteine proteases, such as caspase 1. In 2002, Tschopp’s group
proposed for the first time that caspase 1 activates pro-IL1b in a
molecular complex termed the “inflammasome” (51).

THE INFLAMMASOME COMPLEX

The innate immune system senses pathogen-associated molecular
patterns (PAMPs), derived from infecting pathogens, and damage-
associated molecular patterns (DAMPs), derived from damaged
host cells and extracellular matrix, via sensor receptors called pat-
tern recognition receptors (PRRs) (68). After sensing danger from
PAMPs/DAMPs, specific PRRs will oligomerize and associate
with an adaptor protein and a specific caspase, triggering caspase
activation (68). Activation of the caspase then initiates the

processing and maturation of proinflammatory cytokines (IL1b and
IL18) and/or inflammatory programmed cell death called pyropto-
sis. Therefore, the inflammasome is defined as an intracellular mul-
timeric protein complex that contains (1) a sensor receptor (PRR),
(2) an adaptor protein and (3) an effector enzyme (caspase), and
catalyses a cellular reaction to protect against an immediate danger
via cytokine secretion and cell death (68) (Figure 1). A variety of
different harmful signals can activate a range of specific inflamma-
somes. Furthermore, specific inflammasomes can be divided into
two groups based on the type of caspase involved: (1) the classical,
canonical inflammasome that triggers activation of caspase 1
directly, and (2) and the non-canonical inflammasome, which uses
other caspases to convey inflammation (Figure 1).

In this review, we will describe the concept embedded in the
term “inflammasome.” We will focus on evaluating current knowl-
edge of this complex in humans, including molecular structure and
associated genetics and disease processes.

MOLECULAR COMPONENTS OF THE
INFLAMMASOME COMPLEXES

As stated above, the inflammasome encompasses a range of differ-
ent molecular components. These will now be described in turn,
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with a specific focus on those found in humans. As the regulatory
elements and activity of many genes of the immune system vary
between mice and humans (43), it should come as no surprise that
there are differences in the structural and biochemical elements of
inflammasome complexes between the two species (Table 1).

PRR superfamily

Several families of PRRs exist and they can be divided into two
groups, based on their cellular localization. Firstly, the transmem-
brane PRRs include toll-like receptors (TLRs) and C-type lectin
(CTL) families. Secondly, the cytoplasmic PRRs include the
nucleotide-binding and oligomerization domain (NOD)-like recep-
tors (NLRs), retinoic acid inducible gene-I (RIG1)-like receptors
(RLRs) and absent-in-melanoma (AIM)-like receptors (ALRs)
(35). Recent studies have revealed that all PRRs may play a role in
either the assembly or activation of inflammasome complexes (47).

NLR family

To date, 22 NLRs have been identified in humans (12, 35). The
common structure of NLRs consists of a variable N-terminal effec-
tor domain (which exerts its function by interacting with other pro-
teins), a central NACHT domain (which has dNTPase activity and
mediates self-oligomerization) and a C-terminal LRR region (which
plays a role in ligand binding or activator sensing). Four different
N-terminal effector domains are used to classify NLRs into four
respective subfamilies: (1) the acidic activation domain (NLRA
subfamily: MHC class II transcription activator—CIITA); (2) the
baculoviral inhibitory repeat(BIR)-like domain (NLRB subfamily:
neuronal apoptosis inhibitory protein—NAIP); (3) the caspase

activation and recruitment (CARD) domain (NLRC subfamily:
NLRC1 or NOD1, NLRC2 or NOD2, NLRC3-5, NLRX1) and (4)
the pyrin domain (PYD) (NLRP: NLRP1-14).

NAIP (38, 81)/NLRC4 (48), NLRP1 (51), NLRP3 (29, 49, 53),
NLRP6 (32), NLRP7 (33) and NLRP12 (75) have been identified
as sensors involved in the formation of different inflammasomes
(Figure 1). Most NLRs recognize various ligands including micro-
bial pathogens (eg, PAMPs derived from bacteria, viruses, fungi
and protozoa), self-derived DAMPs from host cells (eg, ATP,
cholesterol crystals, monosodium urate/calcium pyrophosphate
dehydrate crystals, and amyloid-b) and environmental sources (eg,
alum, asbestos, silica) (35).

Pyrin

Pyrin is a product of the MEFV gene. Human pyrin features an N-
terminal PYD, two B-boxes, CCD and a C-terminal B30.2 domain
(Table 1). B30.2 is specific to humans and a target of many muta-
tions, including one that causes Familial Mediterranean fever,
which is discussed later. Assembly of the pyrin inflammasome can
be triggered by bacteria (eg, Burkholderia Cenocepacia) or bacte-
rial toxins (eg, Clostridium difficile toxin B and Clostridium botuli-
num C3 toxin) (5, 8). Pyrin can also act as a regulator of
inflammasome signaling by targeting NLRP1, NLRP3 and caspase
1 for autophagic degradation (36).

ALR family

ALRs can also be referred to as pyrin and HIN domain-containing
(PYHIN) receptors. The common structure of ALRs consists of an
N-terminal effector domain pyrin (PYD), which initiates

Figure 1. Schematic illustration of the inflammasome complex. (A)

The different steps involved in inflammasome formation. Three main

components of the inflammasome (sensor, adaptor and caspase) are

shown in the yellow rectangle. Some PRRs, such as NLRP1, can bind

caspase directly (large, curvy arrow), without need of the adaptor. (B)

The members of PRR superfamily as part of the inflammasome

complex: directly (canonical) or indirectly (non-canonical). (C) The

inflammasome pathways: canonical directly initiates caspase 1

activation, and non-canonical uses other caspases to facilitate

inflammation.
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inflammasome formation, and a C-terminal HIN domain, which
plays a role in double-stranded (ds)DNA binding (Table 1) (10).
There are four known ALRs in humans: IFI16, IFIX, MNDA and
AIM2. AIM2 is a cytoplasmic sensor that recognizes dsDNA of
microbial (such as intracellular bacteria Francisella tularensis and
Listeria monocytogenes) or host origin (self-DNA). AIM2 can
assemble an inflammasome (6, 14, 22, 64) (Figure 1), and dsDNA
was proposed to provide an oligomerization template (24). Regard-
ing IFI16, one study has shown that it may activate an inflamma-
some by promoting caspase 1 activation (73).

TLR, CTL, RLR families

There is increasing evidence to suggest that other PRRs may also
play a role in the activation (TLRs and CTLs) or assembly (RLRs)
of inflammasomes, and that these may also promote caspase activa-
tion and an inflammatory response (46, 47) (Figure 1).

ASC

Apoptosis-associated speck-like protein containing a CARD
(ASC), also known as a PYCARD, is an adaptor protein common
to several inflammasomes. It is composed of two protein-protein
interaction domains: N-terminal PYD and C-terminal CARD
(Table 1). The PYD and CARD domains are members of the six-
helix bundle death domain-fold superfamily that facilitates assem-
bly of multimolecular complexes in inflammatory and apoptotic
signaling pathways via the activation of caspases (52).

Caspase family

Caspases are members of a cysteine-aspartic acid protease family.
There are 12 caspases identified in humans and traditionally these
are divided into two groups: inflammatory and apoptotic (47). Sev-
eral inflammatory caspases (caspase 1, caspase 4 and caspase 5)
participate in assembly and/or activation of the inflammasome. The
apoptotic caspases initiate (caspase 2, caspase 8, caspase 9 and cas-
pase 10) and execute (caspase 3, caspase 6 and caspase 7) an
immunologically silent form of programmed cell death known as
apoptosis. The common structure of caspase consists of a C-
terminal protease domain (PD). In addition, some caspases may
possess a prodomain (CARD or DED; Table 1). Recent findings,
neatly described in a review by Man and Kanneganti (47), have
revealed a complex and synergistic role for caspases in maintaining
homeostasis in the innate immune system. While caspase 1 is a key
inflammatory caspase that has the ability to activate cytokines IL1b

and IL18, or pyroptotic mediator gasdermin D, other caspases can
also facilitate cytokine release and pyroptosis. For example, human
caspase 4 and caspase 5, which are orthologues of mouse caspase
11, are activated following recognition of Gram-negative bacteria
and may directly cleave gasdermin D to induce pyroptosis, and ulti-
mately activate the NLRP3 inflammasome (2, 69). Caspase 8 can
mediate both inflammation and apoptosis. Upon ligand recognition
by TLRs, caspase 8 may initiate NF-jB signaling and the transcrip-
tion of genes encoding pro-IL1b and pro-IL18 (9, 70). At the same
time, caspase 8 can be recruited by the NAIP/NLRC4, NLRP3 and
AIM2 inflammasomes and indirectly mediate maturation of IL1b,
IL18 or gasdermin D (47). Finally, caspase 8 may be involved in
the formation of a non-canonical caspase 8 inflammasome that
directly mediates processing of pro-IL1b independently of caspase

1. Indeed, fungi (eg, Candida spp) and mycobacteria (eg, Mycobac-
terium leprae) can bind to the transmembrane receptor Dectin 1, a
PRR from the CTL family, and initiate assembly of a caspase 8
inflammasome which is composed of CARD9, BCL10, MALT1,
ASC and caspase 8 (17).

ACTIVATION PATHWAYS OF THE
INFLAMMASOME

Canonical inflammasome pathways

When NLRs, ALRs or pyrin detect PAMPs and DAMPs, they
recruit ASC via a homotypic pyrin–pyrin domain interaction. Sub-
sequently, pro-caspase 1 binds ASC through CARD–CARD
domains, which completes the formation and activation of the
canonical inflammasome, and drives IL1b/IL18 secretion and
pyroptosis (Figure 2). In addition, caspase 8 may play a role in cas-
pase 1-dependent processing of IL1b via direct binding to ASC in
the NAIP/NLRC4, NLRP3 or AIM2 canonical inflammasome (47).

Non-canonical inflammasome pathways

To date, only two non-canonical inflammasomes have been
described in the literature (47). Firstly, LPS from Gram-negative
bacteria, directly or via TLR4, activates human caspase 4 and
caspase 5, which in turn cleaves gasdermin D to mediate pyroptosis
and activate the NLRP3 inflammasome resulting in caspase
1-dependent processing of IL1b (2, 69) (Figure 2). Secondly, non-
canonical caspase 8 inflammasome can be promoted by certain
microbes via CTL receptors, mediating maturation of IL1b in a
caspase 1-independent manner (17) (Figure 2).

To summarize, all components involved in the different inflam-
masomes are present on the gene and/or protein levels in humans
(Tables 1 and 2). However, there are structural and molecular dif-
ferences in some inflammasome components between humans and
mice (Table 1). The majority of inflammasome components play a
role in humans, especially in the field of host defence and tumor
progression, as revealed by looking at distinct genetic disorders
(Table 3). A comprehensive understanding of how and where
inflammasomes are formed in humans remains elusive. However,
we may be able to gain clues by reviewing specific human disor-
ders caused by dysregulation of inflammasome activation.

INFLAMMASOMOPATHIES

An inflammasomopathy is defined by the presence of autoinflam-
matory disease caused by disruption of inflammasome activity. The
term “autoinflammatory” has become widely used in the last dec-
ade to describe a set of diseases that satisfy the definition above
and are distinct from autoimmune conditions (30). Familial inflam-
masomopathies are rare genetic disorders of childhood onset that
typically manifest with dysregulated IL1b release, leading to either
enhanced or diminished inflammation (Table 3). Gain or loss-of-
function mutations in several inflammasome-related genes have
been linked with enhanced inflammation. For example, autosomal
dominant, gain-of-function mutations in the NLRP3/CIAS1 gene
(21) encoding cryopyrin, have been shown to be responsible for
three autoinflammatory disorders (30): familial cold-induced auto-
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Table 2. Inflammasome genes, proteins and brain locations in humans (from http://www.proteinatlas.org).

Gene Protein—tissue Brain location Cell location

NAIP Many organs Many organs Neocortex Neurons

NLRC4 Many organs Many organs Neocortex Endothelial cells, neurons

NLRP1 Many organs Many organs Neocortex Endothelial cells, neurons, neuropil

Hippocampus Neurons

NLRP3 Many organs Many organs Hippocampus Neurons

NLRP6 Gastrointestinal (GI) Brain and GI Cortex and hippocampus Neurons

NLRP7 Testis No detection No detection No detection

NLRP12 Immune system Many organs Cortex and hippocampus Neurons

Pyrin Immune system No detection No detection No detection

AIM2 Bone marrow Many organs Cortex Endothelial cells, neurons, neuropil, glia

Hippocampus Neurons, glia

ASC Many organs Many organs Hippocampus Glia

Caspase 1 Many organs Many organs Cortex Endothelial cells, glia, neurons

Hippocampus Neurons, glia

Caspase 4 Many organs Many organs Cortex Endothelial cells, neurons, neuropil

Hippocampus Neurons

Caspase 5 A few organs Many organs Cortex Neurons, glia

Hippocampus Neurons

Caspase 8 Many organs Many organs Cortex Endothelial cells, neurons

Hippocampus Neurons

Pro-IL1b Many organs No detection No detection No detection

Pro-IL18 Many organs Many organs No detection No detection

Gasdermin D Many organs Many organs Cortex Neuropil

Figure 2. Schematic representation of the two pathways and

components involved in inflammasome activation. (A) The canonical

pathway. Upon inflammasome formation, caspase 1 (red) directly

activates cytokines IL1b, IL18 and pyroptotic gasdermin D. (B) The

non-canonical pathways. (i) LPS can activate caspase 4/5 (blue)

directly (large, curvy arrow) or via the TLR4 receptor, leading to

gasdermin D maturation and pyroptosis. Cleaved Gasdermin D may

then activate the NLRP3 inflammasome. (ii) Various pathogen signals

(PAMPs), via CTL receptor, may initiate formation of the caspase 8

inflammasome (green). The product of both non-canonical inflamma-

somes is IL1b.
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inflammatory syndrome 1 (FCAS 1), Muckle–Wells syndrome
(MWS) and neonatal onset multisystem inflammatory disorder
(NOMID). These three disorders are commonly known as cryopyri-
nopathies or cryopyrin-associated periodic syndromes (CAPS) and
often cause periodic fever, rashes, arthralgia and cold sensitivity
(12). The most severe phenotype of the three disorders is NOMID,
also known in Europe as chronic infantile neurological, cutaneous
and articular syndrome (CINCA), which typically presents with
near-continuous fever and chronic aseptic meningitis that can result
in hearing loss and mental retardation (30). In addition, autosomal
dominant, gain-of-function mutations in the NLRC4 gene, encoding
NLRC4, have been associated with two diseases: autoinflammation
with infantile enterocolitis [AIFEC (7, 65)] and familial cold-
induced autoinflammatory syndrome 4 [FCAS 4 (37)]. Likewise,
autosomal recessive gain-of function mutations in MEFV, the gene
coding for pyrin (formerly known as marenostrin), can result in
conditions called Familial Mediterranean fever [FMF (8, 55, 67)]
and autoinflammation with neutrophilic dermatosis (54). Addition-
ally, mutations in the NRLP1 gene, encoding NLRP1, have been
linked to susceptibility to develop a condition called vitiligo-
associated multiple autoimmune disease 1 (25). Lastly, autosomal
dominant gain-of-function mutations in NLRP12, encoding
NLRP12, have been associated with familial cold-induced autoin-
flammatory syndrome 2 [FCAS 2 (23)].

Conversely, some mutations in genes coding for other inflamma-
some proteins may have the potential to cause immunodeficiency
disorders. For instance, an autosomal recessive loss-of-function
mutation in the CASP8 gene leaves the caspase 8 protein enzymati-
cally inactive and causes a disease termed Caspase 8 deficiency
state (CEDS), which is also known as autoimmune lymphoprolifer-
ative syndrome IIB [ALPS IIB (9, 70)]. Also, a loss-of-function
mutation in the CLEC7A gene, encoding the Dectin 1 receptor, is
responsible for chronic mucocutaneous candidiasis [candidiasis
familial 4, CANDF4 (15)]. Finally, recurrent hydatidiform mole
has been linked to numerous autosomal recessive loss-of-function
mutations in the NRLP7 gene, encoding NLRP7, which plays role
in imprinting of embryonic maternal genes as well as in negative
regulation of IL1b signaling (57).

Therapeutic interventions have targeted blockade of IL1b in the
treatment of familial inflammasomopathies. Specifically, antibody
mediated inhibition of IL1b has been trialed in CAPS with two
drugs now approved by the US Food and Drug Administration, fol-
lowing successful randomized controlled trials of Rilonacept (20)
and Canakinumab (40). Other molecules currently in development
are reportedly targeting several other inflammasome components,
including NRLP3, IL18, caspase 1 and ASC (59).

HUMAN DISEASES ASSOCIATED WITH
EXPRESSION OF THE INFLAMMASOME

The few years of research into the inflammasome have seemingly
focused on establishing the presence and role of the complex in ani-
mal models of human disease. More recently, there has been a shift
toward the application of these findings to human tissue and disease
processes. Inflammasome proteins have now been identified on
multiple peripheral and central cell types in humans and across a
number of diseases (Table 2). However, the extent of literature
available regarding the inflammasome based on human work is stillT
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very limited compared with the widening pool of published animal
work. Inflammasome proteins identified to date in human cells or
tissue, along with the associated disease when applicable, are sum-
marized in Tables 4 and 5, along with the techniques used to iden-
tify the inflammasome component and a brief summary of the
study findings.

In the periphery, inflammasome components have been shown
to be expressed by a number of cell types, including innate immune
cells (eg, macrophage, Kupffer cells), adaptive immune cells (eg,
lymphocytes) and various tissues that function as the first line of
defence against environmental pathogens (eg, lung epithelial cells,
skin, nasal epithelial cells). This emphasizes the role the inflamma-
some may play in the innate immune response to environmental
pathogens. In addition, several diseases associated with inflamma-
tion have been shown to be related to the expression of inflamma-
some components. Of note, several of these conditions, such as
gout, diabetes mellitus and atherosclerosis, have been shown to be
associated with the expression of NLRP3. This may be because the
NLRP3 inflammasome has been the most studied type in humans,
following the broad research base into this specific complex in
experimental models. Also, the NRLP3 inflammasome has been
shown to be particularly sensitive to activation by a variety of stim-
uli, including microbial and endogenous stimuli, and particulate
matter such as urate crystals and beta-amyloid (16). These points
may explain the broad expression of the NLRP3 inflammasome in
conditions associated with inflammation.

Inflammasome proteins have been identified on a variety of cell
types of the central nervous system, including microglia, astrocytes
and neurons. However, much of this work appears to have been
performed using in vitro cell models, which has limited direct
applicability to human physiological and pathological conditions.
In particular, the use of primary cell cultures and immortalized cell
lines can result in the study of cellular models that markedly differ
from those found within normal physiological and diseased human
tissue (3). The extent of the literature identifying NLRP3 in the
human central nervous system (CNS) appears to be much more
limited compared with research in the human periphery.

When reviewing the specific inflammasome proteins identified
in humans (Tables 4 and 5), it is possible to draw some notable
conclusions. Firstly, in vitro studies have identified numerous
inflammasome proteins across a number of different cell types.
However, when considering only in vivo work, it appears that the
components most frequently detected across a number of different
cell types in the CNS and periphery are: NLRP3, caspase 1 and
ASC. Thus, the NLRP3 inflammasome seems to be the most fre-
quently studied complex in humans, as it is in animal models. Sec-
ondly, there does not appear to be an association between specific
inflammasome proteins identified in human tissue and the location
of their identification. For example, the inflammasome component
ASC has been identified in Kupffer cells of the liver, vascular athe-
rosclerotic plaques, skin cells and in the cerebrospinal fluid. No
obvious pattern can be ascertained where certain inflammasome
components are only identified in certain locations in the human
body. Interestingly, this latter point suggests that many inflamma-
some proteins may be ubiquitous across central and peripheral
areas of the human body. Lastly, there appears to be variability in
the validation of findings in these studies. Many publications have
shown the presence of all the components needed to form an
inflammasome and used several techniques to confirm this, forT
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example using real-time polymerase chain reaction to confirm gene
expression and Western blotting to confirm the presence of associ-
ated proteins. Some studies have also utilized immunohistochemi-
cal double staining to confirm the co-location of inflammasome
proteins expressed in certain cell types (60, 80).

Overall, despite confirmation of the presence of inflammasome
components in a variety of human cell types and tissues, there is
still a lack of clear understanding regarding the significance of the
different types of inflammasome in physiology and human disease.
Direct imaging of an inflammasome complex may provide pointers
to the exact location of the complex and its interactions with normal
physiological processes. Electron microscopy has already allowed
visualization of the NLRC4 inflammasome following reconstitution
of the complex from an embryonic human cell line (18), but this
has not yet been possible in vivo, perhaps due to the relative diffi-
culty in applying this methodology to human tissue.

CONCLUSION

Research in the field of the inflammasome is expanding at a fast
rate. Whilst much work has been performed in animal models, to
date there is limited evidence of the role and function of the inflam-
masome in human tissue. Despite a proliferation of review articles
compared with research articles in recent years, there is a need to
focus efforts on examining the role of the inflammasome in human
conditions. Animal work is important to develop our understanding
of what the inflammasome is, but human work will allow us to
grasp the importance of the role of these proteins in normal physiol-
ogy and disease.

Intriguingly, non-steroidal anti-inflammatory drugs have been
shown to inhibit the NLRP3 inflammasome in rodent models (11).
Recent review articles have suggested that the inflammasome may
be a therapeutic target for inflammatory diseases and Alzheimer’s
disease (as reviewed by White and colleagues in this mini-sympo-
sium). This is an exciting era to be involved in inflammasome
research, with the potential development of drugs to target the
inflammasome as a treatment for a multitude of severe and dis-
abling diseases.
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