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Abstract

Sepsis, a dysregulated immune system response to infection, is among the leading causes of 

morbidity, mortality, and cost overruns in the Intensive Care Unit (ICU). Early prediction of sepsis 

can improve situational awareness amongst clinicians and facilitate timely, protective 

interventions. While the application of predictive analytics in ICU patients has shown early 

promising results, much of the work has been encumbered by high false-alarm rates and lack of 

trust by the end-users due to the ‘black box’ nature of these models. Here, we present DeepAISE 

(Deep Artificial Intelligence Sepsis Expert), a recurrent neural survival model for the early 

prediction of sepsis. DeepAISE automatically learns predictive features related to higher-order 

interactions and temporal patterns among clinical risk factors that maximize the data likelihood of 

observed time to septic events. A comparative study of four baseline models on data from 

hospitalized patients at three different healthcare systems indicates that DeepAISE produces the 

most accurate predictions (AUCs between 0.87 and 0.90) at the lowest false alarm rates (FARs 

between 0.20 and 0.25) while simultaneously producing interpretable representations of the 

clinical time series and risk factors.
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1. Introduction

Sepsis is a life-threatening condition that arises when the body’s immune and inflammatory 

response to infection injures its own internal organs [1]. Though the condition lacks the 

same public notoriety as other conditions like heart attacks, 6% of all hospitalized patients in 

the United States carry a primary diagnosis of sepsis as compared to 2.5% for the latter [2]. 

When all hospital deaths are ultimately considered, nearly 35% are attributable to sepsis [2]. 

This condition stands in stark contrast to heart attacks which have a mortality rate of 2.7–

9.6% and only cost the US $12.1 billion annually, roughly half of the cost of sepsis [3].

Starting in 2004 the Surviving Sepsis Campaign (SSC) began addressing the variations in 

clinical treatment regimens for sepsis and septic shock through the advocacy of evidence-

based practice guidelines called ‘sepsis bundles’ [4]. The most recent recommendation from 

the Center for Medicare and Medicate (CMS) is a 3-hr bundle (aka, SEP-1) that in addition 

to obtaining diagnostic tests like cultures and lactate levels, prescribes standard treatment 

with broad spectrum antibiotics, IV fluid, and vasoactive drugs if necessary, all within 3 

hours of a sepsis diagnosis [5]. Various investigations have demonstrated improvement in 

mortality amongst the septic population after timely compliance with the SEP-1 bundle 

[6,7]. Although there are effective protocols for treating sepsis once it has been detected, 

there still exists challenges in reliably identifying septic patients early in their course. As a 

result, there has been an increased focus on developing automated methods for reliably 

identifying early onset of sepsis to facilitate the timely administration of antibiotics and 

other life-saving interventions.

In recent years, the increased adoption of electronic health records (EHRs) in hospitals [8] 

has motivated the development of machine learning based surveillance tools for detection or 

classification [9–13] and prediction [9,14–17] of patients with sepsis or septic shock. For 

prediction of sepsis in particular, Desautels et al. [9] used a proprietary machine learning 

algorithm called InSight to achieve an Area Under the Curve (AUC) of 0.78 in predicting 

onset of sepsis four hours in advance. Nemati et al. [14] used a modified Weibull-Cox model 

on a combination of low-resolution Electronic Health Record (EHR) data and high-

resolution vital signs time series data to predict onset of sepsis four hours in advance with an 

AUC of 0.85. Other works [15] have focused on developing models to predict septic shock, 

which occurs when sepsis leads to low blood pressure that persists despite treatment with 

intravenous fluids. However, a direct comparison of these methods is not possible for several 

reasons: 1) utilization of different labels for sepsis and septic shock, 2) variations in 

prediction horizon (finite horizon prediction vs infinite horizon prediction, 3) differences in 

frequency of prediction (single event classification vs sequential prediction), and 4) 

variations in study design and disease prevalence (case-control design vs calibrated real-

world prevalence models). To date most sepsis prediction research has failed to make the 

transition into viable Clinical Decision Support (CDS) systems owing to the relatively low 

clinical tolerance for false-alarms [18], as well as the interpretability and workflow 

integration requirements for CDS systems [19,20]. False clinical alarms not only increase 

the cognitive load on clinicians but can also expose patients to unnecessary antibiotics and 

may contribute to emergence of antibiotic resistance pathogens [21]. Nevertheless, 
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identifying and treating true cases of sepsis before they are clinically apparent is 

categorically one of the most important needs for modern medicine to address.

Consistently identifying the onset time of sepsis presents unique challenges because the 

condition manifests as constellation of signs and symptoms with significant variability in 

presentation and timing. The Third International Consensus Definitions for Sepsis (Sepsis-3) 

guidelines have provided two primary criteria for making a formal diagnosis of sepsis: 1) 

There must be a suspicion for infection (indicated by the administration of antibiotics for at 

least 72hrs with the concomitant collection of cultures) 2) There must be a two-point 

increase in the SOFA (Sequential Organ Failure Assessment) score [1]. These criteria have 

associated time points and from these time points, sepsis can be consistently labeled. While 

the Sepsis-3 criterion is considered the current standard for labeling sepsis onset time, 

previous consensus criteria for sepsis (based on Sepsis-1 and Sepsis-2 definitions) [22,23] 

remain in wide use. Additionally, there are other sepsis criteria developed by the Center for 

Disease Control (CDC) and Center for Medicare and Medicaid Services (CMS) for use in 

surveillance studies [5,24].

The primary contribution of this work is a deep learning framework for prediction of sepsis 

(called DeepAISE) that reduces incidents of false alarms by automatically learning 

predictive features related to higher-order interactions and temporal patterns among clinical 

risk factors for sepsis. Unlike comparable models, this algorithm maintains interpretability 

by tracking the top relevant features contributing to the sepsis score as a function of time, 

providing clinicians with rationale for alerts. Most importantly, DeepAISE is a generalizable 

algorithm developed using over 25,000 patient admissions to the Intensive Care Units 

(ICUs) at two Emory University hospitals, over 18,000 ICU admissions to the UC San Diego 

Health system and over 40,000 ICU admissions from the Medical Information Mart for 

Intensive Care-III (MIMIC-III) ICU database.

2. Materials and Methods

In this section, we describe the training and evaluation of DeepAISE and the patient cohorts 

utilized in this study.

2.1 Study design

We performed a retrospective study of all patients admitted to the ICUs at two hospitals 

within the Emory Healthcare system in Atlanta, Georgia from 2014 to 2018. This 

investigation was conducted according to Emory University Institutional Review Board 

(IRB) approved protocol #33069 and the UCSD IRB approved protocol #191098X. External 

evaluation of the DeepAISE algorithm was performed on two separate cohorts – a) the 

UCSD cohort, which consisted of all patients admitted to the ICUs at two hospitals within 

the UC San Diego Health system in San Diego, California from 2016 to 2019, and b) the 

Medical Information Mart for Intensive Care-III (MIMIC-III) ICU database [25], which is a 

publicly available database containing de-identified clinical data of patients admitted to the 

Beth Israel Deaconess Medical Center in Boston, Massachusetts from June 2001 to October 

2012. Patients 18 years or older were followed throughout their ICU stay until discharge or 

development of sepsis, according to Sepsis-3 guidelines [1]. The purpose of this evaluation 

Shashikumar et al. Page 3

Artif Intell Med. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



study was to show that the algorithm can be tailored to the characteristics of each local 

population and provide accurate predictions. During the external evaluation step, the 

DeepAISE model (trained on the Emory cohort) was fine-tuned and tested on the UCSD and 

MIMIC-III cohorts separately, and a comparison with baseline models was performed. The 

labels of tsuspicion, tSOFA, tsepsis-3, are used extensively throughout the work to define key 

time points and are clearly described in Table 1. For the purpose of defining sepsis, the 

order-time of antibiotics and cultures were obtained.

For the Emory cohort, data from the EHR (Cerner, Kansas City, MO) were extracted through 

a clinical data warehouse (MicroStrategy, Tysons Corner, VA). High-resolution heart rate 

and Mean arterial pressure time series at 2 seconds resolution were collected from select 

ICUs, through the BedMaster system (Excel Medical Electronics, Jupiter, FL). The 

BedMaster system is a third-party software connected to the hospital’s General Electric 

monitors for the purpose of electronic data extraction and storage of high-resolution 

waveforms. Patients were excluded if they developed sepsis within or prior to the first 4 

hours of ICU admission (by analyzing pre-ICU IV antibiotic administration and culture 

acquisition) or if their length of ICU stay was less than 8 hours or more than 20 days.

The Emory cohort contained a total of 25,820 patients, 1,445 of whom met the Sepsis-3 

criterion four hours or later after ICU admission (see Table S2 for patient characteristics). 

Those who developed sepsis tended to have a slightly higher percentage of male patients 

compared to non-septic patients (55.2% vs. 53.2%) and had more comorbidities (Charlson 

Comorbidity Index [CCI] 3 vs. 2). Septic patients had longer median lengths of ICU stay 

(5.9 vs. 1.9 days), higher median SOFA scores (5.0 vs. 1.7), and higher hospital mortality 

(15.2% vs. 3.5%). The median [interquartile range (IQR)] time from ICU admission to 

tsepsis-3 in the Emory cohort was 24 [9, 63] hours. Out of the 25,820 patients, 70% of them 

were used for developing the model (training set), 10% were used for hyper-parameter 

optimization (validation set), and the remaining 20% formed the testing set (see Table S6 for 

a description of the various holdout datasets that have been used for analysis in this paper). 

The Emory training set contained a total of 18,074 patients out of which 1,003 patients met 

the Sepsis-3 criterion, and the Emory testing set contained a total of 5,165 patients out of 

which 287 patients met the Sepsis-3 criterion during their stay in the ICU. The UCSD and 

MIMIC-III cohorts were split in a similar fashion, and more details can be found in the 

Appendices E and F of Supplementary Material. Specifically, a) the UCSD cohort consisted 

of a total of 18,752 patients, 1,073 of whom met the sepsis-3 criterion four hours or later 

after ICU admission, and b) the MIMIC-III cohort consisted of a total of 40,474 patients, 

2,276 of whom met the sepsis-3 criterion four hours or later after ICU admission.

The complete set of patient features (65 in total, see Appendix C of Supplementary Material 

for more details) was grouped into three categories: clinical features (e.g. heart rate, mean 

arterial pressure, etc.), laboratory test results (e.g. hemoglobin, creatinine, etc.) and 

demographic/history/context features (e.g. age, care unit type, etc.). Some of the clinical or 

laboratory features that were unavailable in the UCSD and MIMIC-III cohorts were treated 

as ‘missing’ features during fine-tuning of DeepAISE. We refer the reader to Table S1 of 

Supplementary material for a list of features that are present or absent in each of the three 

patient cohorts considered in this study.
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2.2 Development of the DeepAISE model

DeepAISE began producing scores four hours after ICU admission, and it was designed to 

predict (on an hourly basis) the probability of onset of sepsis within the next 2, 4, 6, 8, 10 

and 12 hours. The two distinct characteristics of the model were a) utilization of a class of 

deep learning algorithms for multivariate time series data known as the Gated Recurrent 

Unit (GRU) [26] that allows for modeling the clinical trajectory of a patient over time, and 

b) deployment of a parametric survival model called the Weibull Cox proportional hazards 

(WCPH), which casts the problem of sepsis prediction to a time-to-event prediction 

framework and allows for handling of right censored outcomes [27]. The parametric survival 

model allows for efficient end-to-end learning of the GRU and the WCPH parameters using 

standard deep learning optimization techniques [28].

In preparation for time series modeling, the longitudinal data of patients were binned into 

consecutive windows of 1-hour duration, with the survival data for each of the time bins 

comprising of three elements: a set of input features x, the time to sepsis event τ and sepsis 

event indicator e. If a sepsis event occurred within the prediction horizon, the time interval τ 
would correspond to the duration of time between the time at which sepsis event occurred 

and the time of collection of features x, with the sepsis event indicator e set to 1. If sepsis 

did not occur within the prediction horizon, the time interval τ would correspond to one hour 

more than the duration of the prediction horizon, with the sepsis event indicator e set to 0 

(i.e., a right-censored event). Instead of feeding the features of a patient directly to a WCPH 

model, we first fed the longitudinal data of patients into a GRU model followed by a 

feedforward neural network (FFNN) to learn a representation of patient’s trajectory at the 

current time-step, which was then fed to the WCPH model for time-to-event analysis. The 

WCPH model, a parametric counterpart to the familiar Cox proportional hazards model [27], 

represents the instantaneous risk of sepsis H(t) as a product of a baseline hazard function, 

H0(t) = v
λ

t
λ

v − 1
, and the patient-specific sepsis risk which depends on the output of the 

GRU-FFNN module (or representations of a patient’s clinical trajectory at time t):

H(t) = H0(t)exp βTf xt (2)

In the above equation, f(xt) denotes the output from the GRU-FFNN module, β represents 

the patient-specific hazard parameters, λ>0 is a scale parameter and ν>0 is a shape 

parameter for the Weibull distribution. The DeepAISE model (schematic diagram shown in 

Fig. 1) employed a combination of 2-layer stacked GRU framework and a modified WCPH 

model to predict the onset of sepsis at a regular interval of 1 hour. The parameters of the 

DeepAISE model, including the WCPH weight vector β, the scale and shape parameters of 

the Weibull distribution, and parameters of the GRU-FFNN were then learnt end-to-end by 

employing a mini-batch stochastic gradient descent approach that minimized the negative-

log likelihood of the data. More technical details of the DeepAISE model and learning the 

model parameters can be found in Appendix B of Supplementary Materials. To make 

predictions on new patients, we used the trained model parameters and passed the 

longitudinal patient data sequentially through the GRU-FFNN, and the WCPH model to 

compute the survival scores, which provided the probability of not getting sepsis over the 
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prediction horizon. The predicted probability of the sepsis event occurring within the 

prediction horizon was then defined as one minus the survival score.

2.3 Data processing, model evaluation and statistical analysis

First, features in the Emory training set were normalized by subtracting the mean and 

dividing by the standard deviation (both of which were computed on the Emory training set). 

Next, all the remaining datasets were normalized using the mean and standard deviation 

computed from the Emory training set. For handling missing data, we used a simple sample-

and-hold approach in all the datasets [14].

For all continuous variables, we have reported median ([25th - 75th percentile]). For binary 

variables, we have reported percentages. The area under receiver operating characteristic 

(AUC) curves statistics, specificity (1-false alarm rate) and accuracy at a fixed 85% 

sensitivity level were calculated to measure the performance of the models.

We have reported the DeepAISE performance results of four hours ahead prediction on the 

training and testing sets of the Emory cohort. External evaluation of DeepAISE was 

performed on the UCSD and MIMIC-III cohorts separately. During the external evaluation 

step, the DeepAISE model was fine-tuned on the training set of each external cohort and was 

evaluated on the corresponding test set. The MIMIC-III and UCSD cohorts were split into 

training and testing cohorts in the ratio 80%/20%. The Emory cohort was split into training 

and testing cohorts in the ratio 70%/20%. The remaining 10% was used for hyper-parameter 

optimization (validation set). During the hyper-parameter tuning phase, the optimal hyper-

parameters were chosen based on the performance of the model on the validation set. 

Additionally, we have also reported the performance results for 2, 4, 6, 8, 10 and 12 hours 

ahead prediction of onset of sepsis. Statistical comparison of all AUC curves was performed 

using the method of DeLong et al. [29]

2.4 Parameter Optimization

We trained each model for a total of 200 epochs using the Adam optimizer [28], with a 

learning rate fixed at 1e-2. The mini-batch size was fixed at a total of 1,000 patients (90% 

control patients, 10% septic patients), with data randomly sampled (with replacement) in 

every epoch. To minimize overfitting and to improve generalizability of the model, L1-L2 

regularization was used with L2 regularization parameter set to 1e-3 and L1 regularization 

parameter set to 1e-5. Our final model consisted of 2 GRU layers stacked on top of each 

other (with the size of hidden state being 100 per layer), followed by 1 fully connected layer 

(with the size of the hidden state being 100), and the output of which was fed into a 

modified Weibull-Cox proportional hazards model. All of the hyper-parameters of the 

model: Number of GRU layers, the size of hidden state in each of GRU layers, Number of 

fully connected layers, the size of hidden state in each of the fully connected layers, learning 

rate, mini-batch size, L1 regularization parameter, and L2 regularization parameter were 

optimized using Bayesian optimization [30]. All pre-processing of the data was performed 

using Numpy [31], with the rest of the pipeline implemented using TensorFlow [32].
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2.5 Testing the validity of the relevance scores and model interpretability

The contribution of individual input features to the risk score was calculated using the 

associated relevance scores. The relevance scores were obtained by calculating the gradient 

of the sepsis risk score with respect to all input features and element-wise multiplication by 

the corresponding input features. The relevance scores, were then z-scored and the top 10 

features (i.e., most frequently observed features across patients and across time) with a z-

score of larger than 1.96 (corresponding to a 95% confidence interval) were reported for 

analysis of the overall importance of input risk factors (or ‘global interpretability’). To test 

the hypothesis that individual relevance scores capture meaningful information regarding 

contribution of each input feature to the risk score, we performed a series of studies in which 

we systematically masked (or treated as missing data): 1) the top 10 features with the largest 

positive and negative relevance scores in a global sense (global feature replacement 
analysis), 2) the top 10 locally important features for each individual risk scores (local 
feature replacement analysis) and 3) a random set of 10 features at each point in time 

(repeated 100 times). Once masking was done, the resulting risk scores produced by 

DeepAISE and the corresponding AUCs were computed. This analysis allowed us to 

systematically compare the contribution of the locally important features against the globally 

important predictors and against the 95-percentile of a randomly selected set of features.

3. Results

3.1 DeepAISE prediction performance for sepsis onset

DeepAISE made hourly predictions, starting four hours after ICU admission, and considered 

a total of 65 features that were commonly available in the EHR. The Emory training and 

testing sets contained a total of approximately 500,000 and 125,000 hourly prediction 

windows, respectively. A complete list of all the input features is provided in Appendix C of 

Supplementary Material.

The DeepAISE model reliably predicted tsepsis-3 four hours in advance with an AUC of 0.90 

(specificity of 0.80 at sensitivity of 0.85) on the Emory testing set. Slightly lower 

performances were observed for the UCSD and MIMIC testing sets, with the fine-tuned 

models achieving an AUC of 0.88 and 0.87 respectively for predicting tsepsis-3 four hours in 

advance (see Table 2 for more details). Additionally, the performance of DeepAISE on 

UCSD cohort under different levels of missingness of input features was evaluated. We 

observed that when the UCSD cohort was divided into three sub-groups according to 

percentiles of missingness (Group 1: [0–33] percentile; Group 2: [33–66] percentile; and 

Group 3: [66–100] percentile), Group 3 had the highest AUC and Group 1 had the highest 

Area Under the Precision Recall Curve (AUCpr) (see Appendix K, Table S10, Fig. S14 and 

Fig. S15 for more details); thus, establishing an inverse relationship between AUC and 

AUCpr for these groups.

To assess the impact of changes in institutional practices and patient populations over time 

(‘temporal validation’) we performed an experiment in which a model trained on Emory 

year-based training set (patients in Emory cohort from the year 2014 through 2017) was 

applied to a holdout test set collected from 2017 to 2018 (Emory year-based holdout set). 
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The DeepAISE model achieved an AUC of 0.88 (Specificity of 0.75 at sensitivity of 0.85) on 

the Emory year-based holdout set (see Fig. S4 for more details), which was comparable to 

the model performance on external evaluation cohorts.

3.2 DeepAISE performance against other baselines

We assessed the utility of DeepAISE’s model architecture by comparing its performance 

against four different baseline models: 1) a Logistic Regression (LR) model, 2) a Weibull-

Cox proportional hazards (WCPH) model, 3) a Feedforward Neural Network (FFNN) with 

two layers of 100 hidden units and a final WCPH layer for prediction of onset of sepsis, and 

4) GB-Vital: This is a replication of the sepsis detection model as proposed by Mao et al. 

[33,34]. The model corresponds to a gradient-boosted classifier of decision trees built using 

six vital signs measurements: systolic blood pressure, diastolic blood pressure, heart rate, 

respiratory rate, oxygen saturation and temperature. A more comprehensive comparison of 

DeepAISE with other baseline models can be found in Supplementary Material (See Fig. 

S3).

Across all prediction windows, DeepAISE consistently outperformed all other baseline 

classifiers (p<0.001; when AUC of DeepAISE was compared with AUC of other baseline 

methods) for prediction of tsepsis-3 (See Fig. 2, Fig. S3 and Table S3) and across all 

prediction windows, indicating that capturing temporal trends and interactions among the 

risk factors is important for accurate prediction of sepsis. Additionally, DeepAISE 

outperformed the GB-Vital baseline model which achieved AUCs of 0.711, 0.700 and 0.701 

on the Emory, UCSD and MIMIC-III cohorts, respectively for prediction of onset of sepsis 

four hours in advance. The performance of all the models decreased with the increase in 

prediction horizon. For DeepAISE, the AUC on the Emory testing set decreased from 0.90 at 

4-hour prediction horizon to 0.88 at 12-hour prediction horizon. We also observed that these 

findings were consistent with the performance of the fine-tuned model on the UCSD and 

MIMIC testing sets (Fig. S9 and Fig. S10).

In addition, a FFNN trained to predict tsepsis-3 with delta change in SOFA score as input 

achieved 0.54 AUC on Emory testing set, and a FFNN trained to predict tsepsis-3 with delta 

change in SOFA score and static covariates (such as age, gender, weight etc.) as inputs 

achieved 0.68 AUC on the Emory testing set. The above results show that DeepAISE scores 

were not simply recapitulations of the SOFA scores.

3.3 Clinical interpretation of DeepAISE predictions

While performance characteristics of machine learning algorithms are important, providing 

interpretable data to the bedside clinicians that can guide diagnosis and therapeutic 

interventions is a critical requirement of CDS systems. To date many sepsis models have 

failed to demonstrate which physiologic aberrations contributed to the model’s prediction, 

compelling many to refer to them as “black boxes”. DeepAISE allayed these concerns by 

continually revealing the top patient features contributing to its predicted risk scores. Unlike 

many other algorithms, DeepAISE is uniquely interpretable as evidenced in Fig. 3 in which 

the trajectory of a septic patient who developed ventilator associated pneumonia in the ICU 

is displayed. In this visualization, the sepsis risk score predicted by the model is shown 
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along with vital sign trends, and most notably, the most relevant features contributing to the 

risk score. In this example, early deterioration of the patient’s respiratory status was detected 

by the model. The model identified aberrations in PaO2, PaCO2, blood pH and Glasgow 

coma score (GCS) as some of the top features relevant to its prediction. The importance of 

each feature was calculated using the magnitude and sign of the associated relevance scores, 

in a fashion similar to saliency maps for convolutional neural networks [35]. To validate the 

clinical interpretability of the DeepAISE model, analysis of the most relevant features 

starting 10 hours prior to and ending at tsepsis-3 was conducted (see Fig. 5). This 

investigation revealed that DeepAISE ascribed importance to several features that have 

already been identified as risk factors for sepsis such as recent surgery, length of ICU stay, 

heart rate, GCS, white blood cell count, and temperature, and some less appreciated but 

known factors such as Phosphorus (or hypophosphatemia) [36]. This analysis provides a 

global view of model interpretability, whereas the individual relevance scores provide a local 

view of interpretability by listing the top features contributing to the risk scores for each 

hourly prediction window. Perturbation analysis revealed that the globally important features 

may not provide an accurate view of the top contributing factors to the individual risk scores. 

We observed that treating the top locally important features as missing values yielded a 

significantly lower AUC compared with a similar analysis replacing the globally most 

important features. (See Fig. 5; Additionally, refer to Appendix H of Supplementary 

Material for a more thorough analysis of global model interpretability vs local model 

interpretability).

Additionally, DeepAISE was implemented in a real-time setting and a decision support user 

interface (UI) was designed to communicate the risk scores to the clinical team. The 

resultant UI shown in Fig. 6 was designed to present a list of patients sorted by DeepAISE 

risk score for predicting tsepsis-3 four hours in advance (See Appendix K of Supplementary 

Material for more details). Square cards that include the sepsis risk score as well as the 

change in score over the past hour are used to represent a single patient. Individual cards can 

be flipped via a single mouse-click to reveal the top factors contributing to the presented 

score. To improve individual and unit situational awareness regarding patient interventions 

and assessments, users can drag-and-drop patient cards into columns representing different 

treatment categories.

3.4 Inferring significance of individual patient trajectories

Clinicians have long appreciated that trends in patient metrics are often more telling than 

discrete point values. The high dimensional nature of the data used to represent a patient is 

challenging to represent. Display of patient trajectories as they pass from states of sickness 

to health provides yet another opportunity to inform the clinician about a patient’s expected 

clinical course.

Each point on the manifold shown in Fig. 4 is a 3D representation (projection) of the 

patient’s 65 features, constructed via first learning a 100-dimensional representation (last 

layer of the DeepAISE model) followed by dimensionality reduction via Spectral clustering 

[37]. The individual axes in Fig. 4 denote a unique weighted combination of the learned 

100-dimensional representations, designed to construct a 3D space that preserves the 
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distance among the original data points as much as possible. Two exemplar 3D patient 

trajectories are presented in Fig. 4. Patient 2 was in a state of good health (specifically no 

suspicion for infection) prior to developing a subdural hemorrhage which prompted 

admission. This patient went on to be diagnosed with a ventilator associated pneumonia two 

days after an emergent craniectomy. In contrast Patient 1, who was several weeks status post 

craniectomy for stroke, was readmitted with a culture positive pneumonia present on 

admission. The manifold in Fig. 4 shows that trajectories for patient 1 and 2 follow similar 

terminal patterns; however, correctly assigns them different starting positions with patient 2 

starting from a comparatively higher risk cluster. The specific trajectory of an ICU patient 

may be useful in categorizing infectious phenotypes and detecting anomalous physiological 

dynamics.

4. Discussion

In this work, a deep learning model was used to automatically learn complex features, 

including temporal trends and higher-order interactions among the risk factors, to accurately 

predict the likelihood of sepsis in patients admitted to the ICU up to 12 hours in advance. 

DeepAISE was developed to predict tsepsis-3 (Sepsis-3 criterion) in this study. We observed 

that the four hours ahead prediction AUC of DeepAISE (on Emory testing set) was 0.90 for 

tsepsis-3. Additionally, we have included varying prediction windows to illustrate how 

DeepAISE performs at various time frames to illustrate potential uses (Fig. 2, Fig. S3, S9 

and S10 in Supplementary Material). For a 12 hour ahead prediction horizon, specificity of 

0.73 was achieved (on the Emory cohort) at 0.85 sensitivity versus specificity of 0.80 for 4 

hours ahead prediction. A model with lower specificity would have a higher false positive 

rate, which could potentially lead to additional cognitive burden on the clinical team who are 

ultimately responsible for evaluating patients for initiation of SEP-1 bundle. All our findings 

were externally reproduced with the UCSD and MIMIC-III patient cohorts, providing 

supporting evidence that the DeepAISE algorithm can be tailored and applied to a 

geographically diverse patient population.

Another advantage of the proposed deep learning approach is in its ability to provide the top 

factors contributing to the risk score for every point in time for each patient (i.e., local 

interpretability). The distinction between global and local notions of interpretability (i.e., 

what features are contributing to the sepsis risk score for the cohort at large versus an 

individual patient’s hourly prediction window) is most notable when dealing with models 

capable of capturing higher order interactions and temporal trends in the data. As a result, 

the degree of risk associated with a factor (e.g., temperature) is a function of other factors in 

a multiplicative sense (e.g., hypothermia and old age are together a greater risk factor than 

either by itself). Similarly, the temporal context of a risk factor can alter its contribution to a 

given risk score calculation (e.g., leukocytosis immediately after surgery may not be 

unexpected and may contribute differently to the risk for sepsis). These multiplicative and 

temporal factors (which are captured by the DeepAISE model) result in variations in the 

importance of risk factors when viewed from a local, hourly prediction perspective for each 

patient. Note that traditional logistic regression models and decision trees are not capable of 

making such inferences unless the relevant features are hand-crafted by the experts and 

included in the model.
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A major barrier to wide adoption of modern machine learning based CDS tools in clinical 

practice has been their “black box” nature [38]. While it is important to design deep learning 

models with high performance, it is imperative to build models that provide interpretable 

data to bedside clinicians that can augment their understanding of the disease process and 

can contribute to the selection and initiation of appropriate treatments. DeepAISE was 

designed to be transparent by: 1) continually revealing the top causes contributing to the 

sepsis risk score (see Fig. 3), 2) providing a lower dimensional view of the patients’ 

trajectory (see Fig. 4), and 3) providing a prioritized list of patients at risk for sepsis (see 

Fig. 6). These three attributes allow the bedside clinician to identify pathologic deviations 

from expected physiology early and in real-time throughout the duration of patients’ hospital 

admission. Further longitudinal usability studies are required to validate the utility of this 

feature to improve situational awareness and assist clinicians with independent evaluation of 

patient’s risk for sepsis prior to initiation of interventions.

We have shown that the top causes can be broken down into two categories of positively and 

negatively contributing factors to the risk score (see Appendix H of supplementary material). 

Notably, this analysis shed insight on the input features contributing significantly to the 

sensitivity (positive contributors) and specificity (negative contributors) of DeepAISE (see 

Fig. 5). Since one of the key limitations of using EHR data is the intermittent nature of 

laboratory measurements, we hypothesize that one may use the knowledge of the top 

contributing factors to protocolize the ordering of laboratory tests, to ensure specific updated 

measurements of these factors are available to the algorithm, thus improving model 

sensitivity and specificity. Our results indicate that the degree of data missingness was 

inversely correlated with the prevalence of sepsis within a given subgroup of patients (see 

Appendix K, Table S10). DeepAISE had the highest AUC on the subgroup with the highest 

level of missingness and the lowest prevalence of sepsis; since data missingness pushes the 

risk score to lower values which translates to more specific predictions at the cost of reduced 

sensitivity and positive predictive value. The net effect was a higher AUC due to the higher 

prevalence of negative labels within this subgroup. Further work is required to assess the 

performance of DeepAISE under varying degrees of missingness of the top contributing 

factors to the risk score. This is particularly important as one extends such algorithms to 

non-ICU units where patients are not as frequently monitored.

In recent years, several machine learning (ML) based models for early prediction of sepsis 

and septic shock have been proposed and have been summarized in detail by Moor et al. [16] 

and Fleuren et al. [17]; although variations in experimental design and definitions of sepsis 

make a direct comparison of these methods impractical. Desautels et al. [9] proposed a 

proprietary machine learning model called InSight to predict sepsis in ICU patients. Their 

model used a combination of vital signs, pulse oximetry, GCS, and age as input features. An 

earlier version of this algorithm relied on the Sepsis-3 definition (specifically tSOFA) to train 

its model and was able to reliably identify (detect) patients at the time they had met the 

Sepsis-3 criteria, with a 4-hours ahead prediction AUC of 0.74, which is comparable to 

performance reported by Amland et al.[39]. Following the Sepsis-3 definition, Nemati et al. 

[14] achieved an AUC of 0.85 for 4 hours ahead prediction of sepsis, by combining 65 data 

points including low-resolution data from the EHR and high-resolution vital sign time series 

features from the bedside monitors. In comparison to existing works, some of the novel 
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contributions of this study are as follows. First, this study is the amongst the first that has 

been validated on data from three different healthcare systems. Second, majority of the 

existing works have approached prediction of sepsis as a classification problem while we 

have approached it as a survival analysis problem (within a Weibull-Cox survival analysis 

framework), which enables us to model right-censored outcomes (e.g., patients who were 

transferred or died prior to observation of severe sepsis). Third, while other works have 

explored interpretability methods, this is the first work that has utilized sensitivity analysis 

(see section 3.3; Fig. 5) to validate relevance score as a metric for identifying the top 

features contributing to the predicted risk score. Finally, this work is among the very few 

that has explored clinical implementation of a deep-learning based sepsis prediction 

algorithm (Fig. 6). In particular, the DeepAISE User interface has been designed to 

communicate both the predicted risk score and the most relevant features contributing to risk 

score to the clinical care team.

Experimental design can have a pronounced effect on the reported AUC of machine learning 

algorithms. A commonly utilized method known as the ‘case-control’ design (which 

includes the majority of studies involving biomarkers) significantly overestimates the true 

prevalence of positive labels and can result in highly optimistic reported performances in the 

literature when compared to a ‘sequential prediction’ design [14]. Assuming a sepsis 

prevalence of 8% in the ICU population (after excluding all cases of sepsis developed before 

ICU admission), a median time-to-sepsis of 23 hours, and a 6-hours ahead prediction 

window, typically only 1–2% of the observed windows include a positive label for sepsis. 

The case-control study design assumes the timing of sepsis is known a priori and seeks to 

show that certain physiological or biomarker signatures preceding this time are significantly 

different than that of the non-septic control patients. The resulting algorithms, which are 

tuned to a 50% prevalence of positive labels, tend to produce high rates of false alarms when 

deployed prospectively.

In general, statistical evaluation methods (such as the AUC) have a limited applicability 

when evaluating the clinical utility of such algorithms, although they can provide 

quantitative metrics for the comparison of various algorithms. In practice, performance 

metrics are only meaningful when coupled with appropriate clinical protocols that describe 

the course of action in response to the associated risk alerts. Simple clinical actions (such as 

‘snoozing’ the alarm for X hours if the patient did not meet the clinical threshold to initiate 

therapy) can significantly alter the false-alarm rate (defined as 1-Specificity) and the 

associated AUC of an algorithm in practice.

While we have strictly adhered to the Sepsis-3 criteria for defining septic labels in our study, 

it has been noted that this criterion is too stringent and the sensitivity of early detection is 

lost to an increased specificity [40,41]. The Sepsis-3 criterion utilized in this study is an 

acausal clinical construct for demarcating the onset time of sepsis, and as such cannot be 

used in a clinical setting for early detection of sepsis; however, a predictive analytic risk 

score when trained to predict the associated onset-time can combine the specificity 

advantages of Sepsis-3 with the benefits of early recognition. Moreover, it is critical to 

appreciate that making a clinical diagnosis of sepsis carries much greater value than simply 

identifying ‘poor health’ or general decompensation. True cases of sepsis can be positively 

Shashikumar et al. Page 12

Artif Intell Med. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



impacted by the rapid administration of broad-spectrum antibiotics, IV fluids, and 

vasopressors if indicated [42,43] where as “decompensated” patients still need further 

assessment to ascertain the etiology of the deterioration and to determine appropriate 

intervention.

A potential use case of DeepAISE is to facilitate compliance with standardized care bundles 

such as SEP-1 [5], which advocates for obtaining blood cultures, administering broad 

spectrum antibiotics, measuring lactate, and starting appropriate fluid resuscitation if 

clinically indicated, all within 3 hours of clinical recognition of sepsis. We anticipate that a 

likely clinical workflow may include 1) flagging of a patient by the DeepAISE risk score 

with a prediction horizon of 4 hours, 2) independent evaluation of the patient by a bedside 

caregiver (this may include ordering of additional labs such as lactate), 3) followed by 

ordering of cultures prior to ordering of antibiotics, and 4) completion of the SEP-1 bundle 

components. The predictive ability of DeepAISE and enumeration of top causes contributing 

to the risk score is remarkable because clinicians will be able to independently evaluate the 

algorithm’s rationale for flagging a patient, and when clinically appropriate begin 

implementing components of the sepsis bundle much earlier. In fact, a recent study provided 

critical evidence [44] that longer intervals from antibiotic order to infusion are associated 

with higher mortality rates in septic and septic shock patients, thus emphasizing the 

importance of improving workflow related factors to the care of this patient population.

Sepsis survivors often suffer from high rates of readmission [45] and many survivors of 

sepsis face life-long, debilitating sequelae as a result of the disease [46]. Future extensions 

of this work will involve performing prospective clinical trials to validate DeepAISE’s real-

time predictions in a clinical setting; however, our findings provide significant clinical 

evidence for a radical change to the sepsis treatment paradigm that has real-time high-

dimensional data analysis and model transparency at its center.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Sepsis is among the leading causes of morbidity, mortality, and cost overruns 

in the Intensive Care Unit (ICU).

• Early prediction of sepsis can improve situational awareness amongst 

clinicians and facilitate timely, protective interventions.

• DeepAISE (Deep Artificial Intelligence Sepsis Expert), a recurrent neural 

survival model for the early prediction of sepsis.

• DeepAISE maintains interpretability by tracking the top relevant features 

contributing to the sepsis score as a function of time, providing clinicians with 

rationale for alerts.
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Fig. 1: Schematic diagram of the Deep Artificial Intelligence Sepsis Expert (DeepAISE) model.
The 65 features that are measure/computed every hour are fed sequentially into a 2 layer 

stacked GRU framework, the output from the stacked GRU layer is then fed into a fully 

connected layer, and a modified Weibull Cox Proportional Hazards Model (WCPH) is 

employed to compute the probability of occurrence of sepsis within the proceeding 4 hours.
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Fig. 2: Comparison of DeepAISE performance on Emory testing set for prediction horizons of 2, 
4, 6, 8, 10 and 12 hours.
The Area Under the Curve (AUC) and Specificity (at 85% Sensitivity) are shown in Panels 

(A) and (B), respectively.

DeepAISE = Deep Artificial Intelligence Sepsis Expert

LR = Logistic Regression

FFNN = Feedforward Neural Network

WCPH = Weibull Cox Proportional Hazard layer
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Fig. 3: A clinically interpretable example of DeepAISE.
The DeepAISE score is shown for a septic patient according to the Third International 

Consensus Definitions for Sepsis (Sepsis-3). Commonly recorded hourly vital signs of the 

patient, including heart rate (HR), mean arterial blood pressure (MAP), respiratory rate 

(RESP), temperature (TEMP), oxygen saturation (O2Sat) are shown. The most significant 

features contributing to the DeepAISE score are listed immediately below the DeepAISE 

Scores (for clarity of presentation, only selected time points are shown). The horizontal 

dashed line indicates the prediction threshold corresponding to a sensitivity of 0.85. Refer to 

Appendix C of Supplementary Material for more details on the abbreviated features.
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Fig. 4: Visualization of DeepAISE time series representations.
The trajectory of the DeepAISE score for two septic patients (Patient #1 and Patient #2) 

from ICU admission until sepsis diagnosis is displayed below a larger manifold that makes 

use of spectral clustering to visually display a patient’s physiologic journey through their 

illness (each point on the graph represents one hour of data from one patient). The colors for 

both patients in the plots were chosen based on the predicted sepsis risk score (green 

represents the lowest predicted sepsis risk score, and red represents the highest predicted 

sepsis risk score). A similar figure with septic patients highlighted is shown in Fig. S6 of 

Supplementary Material. (a) Patient #1 (P1) was a 63-year-old female admitted for a left 

sided subdural hemorrhage who underwent a craniectomy on hospital day zero. This patient 

remained intubated after surgery and began receiving treatment for a culture proven 

ventilator associated pneumonia the afternoon of hospital day number three. DeepAISE 

identified this patient as being septic nearly 24hrs before clinical treatment was implemented 

(See Fig. S7). (b) Patient #2 (P2) was a 70-year-old male who was admitted for altered 

mental status and seizures after vascular coiling of a middle cerebral artery (MCA) 

aneurysm. P2 was intubated on admission and began treatment for a culture proven 

ventilator associated pneumonia on hospital day five however DeepAISE made its sepsis 

prediction nearly 36 hours prior to this time, after demonstrating a steadily worsening score 

since admission (See Fig. S8).
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Fig. 5: Most common features contributing to an elevated risk score.
(a) Every hour DeepAISE identifies the top features contributing to an individual septic 

patient’s risk score. The left subfigure demonstrates the frequency of the top ten dynamic 

features (ordered according to the magnitude of the relevance score) across the septic patient 

population (in the Emory cohort) preceding tsepsis-3 and the right subfigure demonstrates the 

frequency of the top five static features that are seen preceding tsepsis-3. Features with 

positive gradient with respect to the sepsis risk score are identified by ‘(+)’. Features with 

negative gradient with respect to the sepsis risk score are identified by ‘(−)’. (b) Summary of 
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performance of DeepAISE (on the Emory testing set) when global feature replacement 
analysis and local feature replacement analysis were performed for features with positive 

relevance score (left subfigure; see Table S7) and negative relavance score (right subfigure; 

see Table S8). Note that the performance (AUC) of DeepAISE when a random set of 10 

features at each point in time were masked (repeated 100 times) was 0.899 [0.886, 0.901]. 

The sensitivity and specificity values reported for global feature replacement analysis and 

local feature replacement analysis were measured at threshold corresponding to 0.85 

sensitivity for the original model.
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Fig. 6: Block diagram of the DeepAISE software platform.
EHR is queried for the required data elements (1). EHR data is then prepared by the Data 

Orchestrator Service and passed to the DeepAISE Model Service for DeepAISE score 

computation (2). The resulting scores are computed and returned to the Data Orchestrator 

Service using a predefined set of API calls (3). The scores are then managed by a time series 

database in the Results Database Service (4), which provides the required data for the UI 

implemented using client-side Javascript. The figure inset shows a live integration of 

DeepAISE UI in a tele-ICU workflow.
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Table 1:

Description of defined time points utilized in the study.

Time 
Point Criteria

tsuspicion

Clinical suspicion of infection identified as the earlier timestamp of antibiotics and blood cultures within a specified duration. (If 
antibiotics were given first, the cultures must have been obtained within 24 hours. If cultures were obtained first, then antibiotic 
must have been subsequently ordered within 72 hours). Only those IV antibiotics that are commonly used for treatment of sepsis 
[24] which were administered for at least 72 hours were considered.

tSOFA The occurrence of end organ damage as identified by a two-point deterioration in SOFA score within a 6-hour period

tsepsis-3

The onset time of sepsis-3 is marked when both tsuspicion and tSOFA have happened within close proximity to each other. 
Specifically, tSOFA must occur 24 hours before tsuspicion or up to 12 hours after the tsuspicion (tSOFA + 24 hours > tsuspicion > tSOFA - 
12 hours). The earlier of the tSOFA or tsuspicion was assigned to tsepsis-3.
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Table 2:
Summary of DeepAISE performance.

The Area Under the Curve (AUC) and Specificity achieved by DeepAISE on the testing (and training) sets 

across the three centers for various prediction horizons have been tabulated.

Performance Metric: testing set (training set) 4 hours 6 hours 12 hours

Emory cohort

AUC* 0.90 (0.94) 0.89 (0.90) 0.88 (0.89)

Specificity 0.80 (0.89) 0.78 (0.84) 0.73 (0.78)

UCSD cohort
+

AUC* 0.88 (0.90) 0.87 (0.89) 0.85 (0.86)

Specificity 0.77 (0.78) 0.74 (0.77) 0.68 (0.70)

MIMIC-III cohort
#

AUC* 0.87 (0.90) 0.86 (0.87) 0.83 (0.86)

Specificity 0.75 (0.78) 0.72 (0.75) 0.69 (0.73)

*
AUC = Area under the Curve; Sensitivity was fixed at 0.85

+
DeepAISE model (trained on the Emory cohort) fine-tuned to the UCSD cohort

#
DeepAISE model (trained on the Emory cohort) fine-tuned to the MIMIC-III cohort
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