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Abstract

Neurological dysfunction and motor neuron degeneration in amyotrophic lateral sclerosis
(ALS) is strongly associated with neuroinflammation reflected by activated microglia and
astrocytes in the CNS. In ALS endogenous triggers in the CNS such as aggregated protein
and misfolded proteins activate a pathogenic response by innate immune cells. However,
there is also strong evidence for a neuroprotective immune response in ALS. Emerging
evidence also reveals changes in the peripheral adaptive immune responses as well as
alterations in the blood brain barrier that may aid traffic of lymphocytes and antibodies into
the CNS. Understanding the triggers of neuroinflammation is key to controlling neuronal
loss. Here, we review the current knowledge regarding the roles of non-neuronal cells as
well as the innate and adaptive immune responses in ALS. Existing ALS animal models, in
particular genetic rodent models, are very useful to study the underlying pathogenic
mechanisms of motor neuron degeneration. We also discuss the approaches used to target
the pathogenic immune responses and boost the neuroprotective immune pathways as novel
immunotherapies for ALS.

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) belongs to the clinical and
pathological spectrum of motor neuron disorders and manifests
itself with an invariable progression to death from respiratory fail-
ure in an average of 3–5 years from onset of symptoms (92). ALS
pathology distinctively encompasses distant biological systems
including muscle/neuromuscular junction, as well as the spinal
cord and brain (72). The origin and propagation of this disorder are
still at the centre of extensive investigations and the involvement of
different districts may occur either simultaneously or sequentially
in the disease process. The main obstacle to gain full insight of the
pathogenesis of ALS is the remarkable clinical heterogeneity of the
condition and the lack of access to the pre-symptomatic stage of
the disease. Whilst the clinical presentation and the speed of pro-
gression have a clear impact in the diagnostic delay, most ALS
individuals would come to medical attention when the disease is
already advanced with regard to the involvement of motor cell pop-
ulation. It is now acknowledged that a shorter diagnostic latency is
a robust risk factor for faster disease progression in ALS (9, 93).
Clinical heterogeneity in ALS refers not only to manifestations like
motor and bulbar impairment with speech and respiratory involve-

ment either at the outset or later on in the disease progression, but
also to the appearance of features of cognitive impairment, with
behavioural and semantic changes typical of fronto-temporal
dementia (9). Whilst in rare cases bulbar impairment remains the
only clinical feature of the disease from the onset of symptoms
(progressive bulbar palsy), the pathological spread of the disease
conditions the frequent involvement of other muscle districts with a
more obvious clinical and pathological expression of upper and
lower motor neuron involvement. Another relevant aspect of the
clinical heterogeneity of ALS which is likely to affect the outcome
of clinical trials in the absence of biological tools for the clinical
stratification of the disease is the difference in rate of clinical pro-
gression observed among ALS individuals. Within the same pheno-
typic appearance, some patients may rapidly progress to end stage
in a matter of months, whilst the disease course in others is more
prolonged. The ability to define prognostically the disease trajec-
tory as a function of speed of progression in ALS would signifi-
cantly improve the design of more cost-effective clinical trials.
Recently, the development of assays to monitor the release into bio-
logical fluids of neurofilaments, important structural components of
neurons and axons, has been an important milestone in the clinical
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stratification of the disease and provides added value to any new
study into disease-modifying treatments (55).

PATHOGENIC AND PROTECTIVE ROLE
OF GLIA

Emerging evidence suggests that while disease progression in ALS
is a result of a slow and progressive dysfunction and loss of motor
neurons, other non-neuronal cells in the CNS also play a key role
in the disease (Table 1). This is supported by studies in mouse
models in which selective deficiency of mutant SOD1 from micro-
glia or astrocytes slows experimental disease progression. Micro-
glia have dual roles in the CNS and specifically in CNS disorders
where they not only support neurons but also have an immunologi-
cal role as innate resident macrophages in the CNS. In ALS the
onset of disease in SOD1 mice is associated with microglia activa-
tion and production of TNF-a, IL-6 and IL-1b, suggesting that
mutant protein triggers a pathogenic response in microglia (28).
Yet, microglia also play a protective role by secreting the anti-
inflammatory factors IL-4 and IL-10, as well as growth factors,

indicating a balance in pathogenic and protective roles (2, 51).
Likewise, astrocytes play protective role by secreting growth fac-
tors and upregulating GLT1 thereby reducing glutamate. While
mutations in TDP-43, SOD1 and FUS are characteristically
described in motor neurons, pathological aggregates of these pro-
teins are also observed in oligodendrocytes that are critical for
maintaining axonal and neuronal integrity. The abundance of FUS
protein is linked with age of onset of ALS in humans. Such FUS-
containing oligodendrocytes also display myelin abnormalities and
myelin degradation (56). Indeed, changes associated with oligoden-
drocytes are observed prior to the onset of disease in SOD1 mice.
In addition, selective deficiency of mutant SOD1 in NG21 cells
also delayed the onset of disease (43), suggesting an additional role
for oligodendrocytes in the pathogenesis of ALS.

CONTRIBUTION OF INNATE IMMUNITY
IN ALS

Neuroinflammation that is, innate and adaptive immune responses
govern the balance between neuronal repair and neuronal damage

Table 1. Innate and adaptive immune systems in ALS. CNS 5 central nervous system; CSF 5 cerebrospinal fluid; NMJ 5 neuromuscular junction;

CD 5 cluster of differentiation; ROS 5 reactive oxygen species; Cox-2 5 cyclooxygenase-2; SR-A 5 scavenger receptor-A; TLR 5 toll-like receptor;

NOD 5 nucleotide-binding oligomerization domain; RIG 5 retinoic acid-inducible gene; AIM-2 5 absent in melanoma-2; RAGE 5 receptor for advanced

glycation end-products; P2X7 5 purinergic receptor; NLRP 5 (NOD)-like receptor protein; HMGB1 5 high-motility group box 1; LRP4 5 lipoprotein

receptor-related protein 4; NF 5 neurofilament proteins; MCP-1 5 monocyte chemotactic protein-1; M-CSF 5 macrophage-colony stimulating factor.

Tissue Innate immune system Adaptive immune system References

CNS Increase in ROS, Cox-2, HMGB1,

S100b,

Autoantibodies to HMGB1 (35, 39)

Receptors: Increase in TLR2,4,

NOD, RIG, AIM-2, RAGE, P2X7,

FasL/FasR, NLR inflammasome:

NLRP3

Cellular: Increase in CD4, CD8 T

cells

(8, 36)

(86)

Chemokines/Cytokines:

Increase in IL-1b, IL-18, IL-6,

TNF-a, IFN-c, MCP-1, M-CSF,

CCL2,

CD markers: CD1a, CD83 (6, 26, 30)

CD markers: CD11b, CD14,

CD18, CD68, SR-A

CSF CNS antigens: NF-L, S100b Autoantibodies to LRP4, GM1

ganglioside, NF

(18, 30, 65, 71, 94)

Chemokines/Cytokines: MCP-1,

IL-1b, IL-6, TNF-a,

Cellular: CD4 (89)

CD markers: CD14 Cytokines/chemokines:

Increase in l17, IL-23, IFN-c

(62, 78)

Periphery

Muscle and NMJ

Cellular: Microglia, Macrophages Autoantibodies to LRP4, P/Q-

type calcium channels.

(23, 94)

CD markers: CD11b, CD68.

CD169/CD68/Iba11

Cellular: Infiltration of activated

macrophages.

(10, 24)

Blood M1 macrophage: CCR2,

CD141CD162

Autoantibodies to: LRP4,

Voltage-gated calcium channels:

P/Q-type, N type, L-type, CD95/

Fas-receptor, GM1 ganglioside,

HMGB1, AChR, NF, foetal mus-

cular proteins.

(6)

(13, 18, 35, 55, 60, 65–69, 71, 74, 94, 103)

Cellular: NK, CD8, CD4, IL-13

TNF-a, IFN-c. Decrease in Th2,

Treg during disease

(2, 77, 84, 108)
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in ALS. The innate immune system in ALS can be triggered by
aggregated proteins or danger signals and pattern-recognition sig-
nals generated during infection as a result of tissue injury. In broad
terms, these are pathogen-associated molecular patterns (PAMPs)
and damage-associated molecular patterns (DAMPs), respectively.
Recent studies have revealed the importance of the transient recep-
tor potential (TRP) channels which recognize DAMPs from the
environment (11, 83). These channel ion receptors are activated by
high oxidative stress as observed in ALS (31), suggesting the
involvement of TRPs in the aetiology of the disease (70).

Endogenous danger signals derived from molecules released by
damaged cells, stress-induced proteins and abnormal protein accu-
mulation, and pathogen-derived molecules like toxins, complement
factors and allergens are well known to activate innate immunity
mechanisms. Microglia in the CNS express receptors that sense
PAMPs and DAMPs such as Toll-like receptors (TLRs), NOD,
RIG, AIM2-like receptors, and the receptor for advanced glycation
end products (RAGE) to promote autophagy (90) (Table 1).

Importantly, evidence for reactive microglia/macrophages and
astrocytes, the main components of the innate immune system in
the CNS, is observed in motor regions of the CNS in sporadic and
familial ALS (45). One of the important molecules that signal cell
damage is the high-mobility group box 1 (HMGB1) which is acti-
vated in response to injury, and triggers a series of events that lead
to inflammation. This molecule is upregulated in spinal cords of
ALS patients and its binding and signalling through TLR4,
expressed by activated microglia and astrocytes, contribute to end-
stage ALS pathology (8, 49). Notably, activated glia in ALS
patients, are generally in close interaction to motor neurons.

On the other hand, intracellular inflammasome complexes,
mainly expressed in spinal cord astrocytes, mediate inflammatory
responses. Increased activation of the nucleotide-binding domain
and leucine-rich repeat protein-3 (NLRP3) inflammasome is
involved in neuroinflammation in ALS. The NLRP3 inflammasome
is key for the activation of caspase-1 and secretion of IL-1b and
IL-18 in ALS (39).

As shown in Figure 1, reactive microglia and astrocytes express
inflammatory markers including iNOS, ROS and Cox-2 and pro-
duce pro-inflammatory molecules like prostaglandins, IL-1b, IL-6
and TNF-a. Fibroblast growth factor-1 (FGF-1) released by motor
neurons during oxidative stress induces activation of astrocytes,
which in turn initiate motor neuron apoptosis. Factors that mediate
microglia/motor neuron interactions include neurotrophic factors
(NT) (e.g., plasminogen, TGF-b, bFGF, brain-derived growth fac-
tor (BDNF), vascular endothelial growth factor (VEGF), nerve
growth factor (NGF), NT-3 and NT-4) (61). On the other hand,
high levels of neurotrophins, such as insulin-like growth factor I
(IGF-1), progranulin, and other neurotrophic factors (NTFs) that
are released from astrocytes control inflammation. Excitatory ami-
noacid transporter in astroglial cells (EAAT2) plays a major role in
keeping extracellular glutamate concentration below neurotoxic
levels. Neuronal excitotoxicity in ALS has been associated with
loss of EAAT2 protein and function (82).

A number of studies indicate that microglial activation occurs
previously or concomitantly with the onset of clinical disease, and
increases during the disease course (61). Therefore, as the disease
progresses, microglia and astrocytes acquire a cytotoxic phenotype.
For example, the change to a neurotoxic phenotype is associated

Figure 1. Innate and Adaptive Immunity in ALS. Glia cells are key components modulating the neuroinflammatory response in ALS. During

innate activation microglia have a phagocytic role and become antigen-presenting cells able to actively drive an adaptive immune response. Mg,

microglia; Ast, astrocytes; NMJ, neuromuscular junction.
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with an impairment of the astroglial glutamate-transporter in ALS
that probably contributes to persistent glial activation (19). Contin-
uous inflammation leads to the establishment of adaptive immune
responses (Figure 1).

ADAPTIVE IMMUNITY IN ALS

While the triggers of adaptive immunity in ALS are unclear, it is
well known that PAMPs and DAMPs modulate adaptive immune
responses. Apart from glial cell activation, also the infiltration of
the CNS by immune cells is a hallmark of ALS and an important
role of T cells in the disease process in ALS has been firmly estab-
lished. T cells are associated with motor neuron death and numbers
of cytotoxic CD81 T cells and natural killer cells are increased in
patients with fast progressing disease (29, 77). A first indication
that T cells may also play a protective role, however, was reported
in 2008 when it was found that CD41 T cells support glia-
mediated neuroprotection and slow disease progression in experi-
mental ALS (1). Data subsequently collected in ALS patients
strengthen the notion that especially CD41 regulatory T cells
(Tregs) are likely to play a crucial protective role in disease, since
the numbers of peripheral T cells bearing the typical Treg signature
markers CD4, CD25, Gata3 and FoxP3 are reduced in fast pro-
gressing of ALS patients.

As illustrated in Figure 1, increased levels of classical comple-
ment (C0) C1q, C3, C4 and C5b-9, and higher numbers of activated
microglia, astrocytes, dendritic cells and T cells may all play a role
in initiating an adaptive response in ALS (86). CD40 expression on
glia cells seems to be key for antigen presentation to T cells. Acti-
vated M1 microglia can further enhance pro-inflammatory
responses, including the release of TNF-a, IL-6 and IL-1b, and
down-regulate Treg suppressive functions. Monocyte chemotactic
protein-1 (MCP-1) released by astrocytes promotes infiltration of
macrophages/microglia into affected tissues. A protective role of

astrocytes on the other hand, can be mediated by increased glutathi-
one secretion that protects motor neurons against oxidative stress
(98), and enhanced expression of glumatate transporters that coun-
teract glutamate excitotoxicity. Tregs and protective M2 microglia
also suppress proliferation and cytotoxic functions of Th1 cells
(105). Increased levels of FoxP31 regulatory T cells and produc-
tion of TGF-b and IL-4 are associated with neuroprotection and
involved in slowing disease progression of ALS (29).

The role of B cells in ALS is likely limited (63) although immu-
noglobulin and complement deposition is observed in the CNS of
ALS patients (15, 16). In addition auto-antibodies against proteins
of the CNS cells are frequently found in ALS patients and correlate
with severity of disease course. Autoantibodies recognise actin,
desmin and neurofilament light (64, 74). Likewise, autoantibodies
to P/Q-type voltage-gated calcium channel and AChR in presynap-
tic motor nerve terminals and at NMJs have been found to partici-
pate in muscle denervation (23, 60, 67). Also, autoantibodies
against HMGB1 are elevated in serum of patients with ALS, sug-
gesting they may serve as biomarkers for the diagnosis of the dis-
ease and to monitor disease progression (35) (Table 1).

BLOOD CNS BARRIERS

The potential contribution of an altered blood-CNS and cerebrospi-
nal fluid (CSF) barrier (BCBs) to ALS initiation and propagation
(Figure 2) has emerged from human pathology and a variety of
experimental observations in animal models of the disease (58,
100). This body of work has revealed changes in post-mortem tis-
sues and systemic effects that a malfunctioning biological interface
between nervous tissue and biological fluids is likely to create (20).
Structural and functional impairment in post-mortem gray and
white matter microvessels of medulla and spinal cord from sALS
patients and from SOD1 animal models of the disease are strongly
suggestive of pervasive barrier damage. Yet, these findings pertain

Figure 2. The Blood-CNS barriers in ALS. The blood-brain barrier

(BBB), blood-spinal cord barrier (BSCB) limits potential pathogenic anti-

bodies and T cells entering the CNS in health. Evidence suggests that

also pathogenic antibodies directed to neuronal structures and patho-

genic T cells also enter the brain via the choroid plexus. However, as

well as pathogenic immunity, regulatory T cells entering the brain may

also play a protective role in ALS (see text for details).
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mostly to commonly recognised alterations in barrier damage
including endothelial cell degeneration, capillary leakage, perivas-
cular oedema, down regulation of tight junction proteins and micro-
hemorrhages, while ALS-specific changes have yet to emerge (17,
100). Among the systemic features of an altered BCB in ALS are
reduced numbers of circulating endothelial cells in peripheral blood
of ALS patients. This indicates the occurrence of endothelial dam-
age and/or impaired endothelium repair in ALS, leading to BCB
dysfunction (21).

Prospective lines of investigations on BCB dysfunction in ALS
would require detailed study of the immunopathological signature
of this condition, including the widespread activation of dendritic
cells and microglia/macrophages in affected tissues and the up-
regulation of a number of inflammatory phase reactants including
circulating cytokines, MCP-1 and ferritine (58, 87). For example,
perivascular iron deposition has long been recognised in neurologi-
cal disorders including multiple sclerosis and may play a part also
in ALS, where ferritine regulation in blood could result from
altered storage or from an anti-oxidant protective effect (87).

Recent studies indicate that apart from the BBB, the choroid
plexus, i.e. the CSF-blood barrier plays a protective role in experi-
mental models of ALS. In the SOD1 mouse model, the influx of
anti-inflammatory macrophages and Tregs into the CNS was mark-
edly enhanced following immunization with a myelin peptide.
Thus, the choroid plexus may actively recruit Tregs to attenuate
disease progression and improved survival during experimental
ALS (47).

THERAPIES TARGETING GLIA

As key effector cells of innate immune responses in the CNS and
critical players in ALS (3, 4, 75, 79), microglia and astrocytes are
attractive therapeutic targets. Rather than only mounting a second-
ary response to degeneration of motor neurons, glial cells play an
active role in controlling disease progression, and may even play a
primary driving role in ALS (85). Such a primary pathogenic role
for glia cells would be well in line with the observation that trans-
genic expression of mutant SOD1 only in motor neurons does not
trigger experimental ALS in mice (53, 73). Several mechanisms
have been identified that drive important, and potentially even pri-
mary pathogenic functions of microglia and astrocytes in ALS (79,
105). Interference especially with the soluble factors that control
innate glial responses during ALS offers several therapeutic possi-
bilities. Apart from a number of obvious but more general immune-
modulatory approaches that are based on interfering with cellular
migration or cytokine-mediated signalling of glial cells that are also
relevant to other neurodegenerative conditions, more selective
approaches based on soluble factors that are ALS specific may be
envisaged as well, as explained below.

While the appearance of intracellular protein inclusions of TDP-
43, SOD1 or FUS in motor neurons and astrocytes are the well-
known pathological hallmarks of ALS, these proteins are also
secreted into the extracellular space (33, 44, 95, 104). As soluble
extracellular proteins in the CNS, they may be equally relevant to
the disease process in ALS as the extracellular aggregates of tau
protein that drive proteopathic spreading of neurodegeneration dur-
ing disorders such as Alzheimer’s disease. Evidence has recently
started to accumulate that like extracellular tau, extracellular forms

of abnormal TDP-43 and SOD1 can trigger prion-like spreading of
pathogenic protein aggregation during ALS (25, 50, 88). Such
spreading is likely aggravated by the fact that extracellular SOD1
or TDP-43 additionally activates microglia. They do so through a
CD14-restricted receptor-mediated pathway, involving one or more
family members of the Toll-like receptor family and/or scavenger
receptors (8, 49, 54). Microglia activation by altered forms of
SOD1 or TDP-43 triggers the release of neurotoxic pro-
inflammatory factors including IL-1b, TNF-a, and reactive nitro-
gen and oxygen species (80, 106, 107). These, in turn promote
aberrant localization and aggregation of proteins in other glial cells
as well as in motor neurons (12), thus aggravating spreading of pro-
tein abnormalities within the CNS. When astrocytes are targeted by
the above pro-inflammatory microglial factors, accumulation of
abnormal forms of SOD1 or TDP-43 changes them to become pro-
inflammatory themselves as well (39). They lose their normal neu-
rotrophic capacity (34), and release factors that are directly toxic to
motor neurons (27, 76, 81, 91). At multiple levels, therefore, the
presence of extracellular ALS-associated abnormal forms of SOD1
or TDP-43 can play a pivotal role in the rapid progression of ALS.

A possible therapeutic strategy to counteract this role of extracel-
lular SOD1 or TDP-43 aggregates in ALS is to sequester them by
molecular chaperones. Potentially therapeutic chaperones targeting
misfolded SOD1 and/or TDP-43 may include macrophage migration
inhibitory factor (37), or chemically synthesized compounds
designed to selectively bind to misfolded versions of certain proteins
(22). Some therapeutic compounds such as arimoclomol may help
augment the natural induction of chaperones (40). Yet, the stress-
inducible natural chaperones of the human CNS may also be used as
therapeutic agents themselves. As ATP-independent molecular chap-
erones, members of the family of small heat shock proteins such as
HSP27 (HspB1) or alpha B-crystallin (HspB5) appear to be best
suited to counteract the detrimental effects of extracellular proteins
during ALS. HspB1 and HspB5 are able bind to a wide range of
abnormally folded proteins and protein aggregates in vivo as well as
in vitro, including mutant or chemically altered SOD1 and TDP-43
(52, 99, 101). Indeed, endogenous HspB5 acts as a protective factor
during experimental ALS in mice (59), and recombinant human
HspB5 has recently been successfully tested as a therapeutic protein
in multiple sclerosis (97). When supplied as extracellular proteins,
HspB5 and HspB1 will bind to abnormal extracellular proteins, elim-
inate their neurotoxicity, prevent continued protein aggregation and
proteopathic spreading, and promote their phagocytic clearance by
microglia (32, 57, 101). Furthermore, HspB5 acts as a ligand for
CD14 and TLR2 expressed by microglia and macrophages. While
being taken up via these receptors, HspB5 activates a broad neuro-
protective and anti-inflammatory TLR2-mediated response in micro-
glia as well as in any infiltrated macrophages, and promotes their
reversal from a pro-inflammatory M1 to an anti-inflammatory and
protective M2 state of activation (5, 96). Extracellular HspB5 also
activates astrocytes, and promote increased production of neuropro-
tective factors as well as strongly enhanced expression of the gluta-
mate transporter EAAT2 that can help normalize levels of
extracellular glutamate (van Noort et al, unpublished data). Such
comprehensive actions by small heat-shock proteins like HspB5 may
well help counteract the detrimental effects of extracellular SOD1
and TDP-43 on glial cells at various levels, and selectively target
what is likely a critical pathogenic pathway during ALS.
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THERAPIES TARGETING THE IMMUNE
SYSTEM

Largely based on a significant body of animal model data on the
role of Tregs in experimental ALS, it now seems likely that Tregs
infiltrating the CNS engage in intimate cross-talk with local glial
cells. By releasing regulatory cytokines such as IL-4, Tregs help
microglia to maintain their protective M2 phenotype. In turn, M2
microglia help Tregs to maintain their suppressive functions. At the
early stages of disease, their mutually supported functions counter-
act pathogenic mechanisms (reviewed by Zhao et al [105]). As dis-
ease progresses, however, the protective balance between microglia
and Tregs appears to become increasingly difficult to maintain. As
local glial cells gradually acquire a more proinflammatory state of
activation due to chronic activation, also Tregs gradually lose their
capacity to locally control damage. When supplied at the rapidly
progressive stage of experimental ALS in mice, Tregs no longer
suppress disease (2). This erosion of Treg functions during ALS
suggests that therapeutically augmenting the activity or numbers of
Tregs may well produce benefit at the earlier stages of ALS, but
may fail to do so in advanced disease. After all, being apparently
dependent on productive cross-talk with early-stage M2-like micro-
glia, Tregs might well fail to protect when confronted with primar-
ily M1-like microglia at later stages of disease.

A large body of encouraging data suggest that cell-based thera-
pies may be exploited to replace not only corrupted glia cells or
dying motor neurons during ALS, but also to augment Treg func-
tions at early stages of disease (46, 79). Via soluble mediators
including for example prostaglandin E2 and transforming growth
factor b, mesenchymal stem cells for example promote the devel-
opment and function of Tregs. As a result, intrathecal mesenchymal
stem cells stimulate CNS entry by CD41CD251Foxp31 Tregs and
their local production of anti-inflammatory cytokines such as IL-4,
IL-10 and TGF-b (48). A fundamentally different route to stimulate
the entry of beneficial Tregs into the CNS during experimental
ALS was recently illustrated by Michal Schwartz and colleagues.
By immunizing mice with a myelin peptide, the influx of IL-10-
producing anti-inflammatory macrophages and Tregs into the CNS
was markedly enhanced. By their anti-inflammatory actions, and
while promoting the local production of neuroprotective factors,
Tregs recruited into the CNS by myelin peptide immunization led
to attenuation of disease progression and improved survival during
experimental ALS (47). These findings illustrate that therapeutic
approaches aimed at strengthening Treg functions during ALS hold
promise for the future.

THERAPIES TARGETING THE BBB

The blood-brain and -spinal cord barriers are critical factors for any
effort to develop effective treatments for neurological diseases like
ALS, due to their ability to protect the CNS from potentially harm-
ful substances. It is speculated that when penetration through these
barriers increases as a result of neurological as well as systemic
conditions, drugs may be in a better position to reach those areas
involved in the pathological process (14). However, studies have
shown that during ALS levels of ABC transporters P-glycoprotein
(P-gp) and breast cancer resistance protein (BCRP) increase in the
CNS. Their inability to penetrate in the CNS may well be one rea-

son why many drugs have failed in ALS. Selective increase of two
ABC drug efflux transporters at the blood-spinal cord barrier sug-
gests induced pharmacoresistance in ALS (38). Nevertheless, com-
pounds with a potential immunomodulatory effect have been
considered for disease modification. The rationale for testing non-
steroidal anti-inflammatory drugs like cyclooxygenase-2 inhibitors
and prostaglandins for example, draws on their CNS penetrability,
on their anti-inflammatory effect but also on the observation that
these molecules are already endogenously expressed in neurons
and glia cells under normal conditions (102). Nevertheless, treating
ALS with the wide range of immune-regulating drugs so far con-
templated in the field of neurodegeneration may not be that simple.

ALS lags behind disorders like multiple sclerosis in the under-
standing of the role played by BBB integrity in disease progression,
of the cross-talk between a systemic inflammatory state and brain
homeostasis, and in the role of immune responses in disease initia-
tion and progression. In MS, ways to restore BBB function and
promote its immune quiescence have been tested as novel therapeu-
tic regimes that specifically reduce leukocyte entry into the central
nervous system but also restore brain homeostasis with regard to
CNS penetration of T cells, B cells and macrophages (42). How-
ever, whilst this strategy remains pivotal in those conditions where
exchange of immunological factors between the CNS and systemic
biological systems may be the main driving force in the establish-
ment and development of the disease, it is not clear whether the
same therapeutic approach may be effective in ALS. Novel drug-
gable targets which partake in the complex network of molecular
players that leads to BBB dysfunction are being investigated,
including the role of microRNAs (miRNAs) in controlling the func-
tion of the barrier endothelium (41). Whilst this biological frame-
work is being investigated in MS, any relevant finding may be
translated to other neurodegenerative conditions like ALS, where
the pathobiology of miRNAs is progressively uncovered (7). The
recent report of a significantly lower level of circulating Tregs
patients with ALS displaying a faster disease progression rate has
opened new treatment avenues but also raised questions on the bio-
logical significance of this observation (2). Reduced Tregs levels
may effectively imply altered immune-tolerance and an overall
change of the way the brain deals with autoimmunity. It is also not
clear how and whether the systemic change in this subset of T cells
is mirrored by a similar development in the brain. It is not clear
how the decline of Tregs takes place in ALS and whether this bio-
logical alteration occurs simultaneously or in sequence in the CNS
and in the peripheral circulation. Any potential repurposing or use
of new drugs for the correction of this imbalance in ALS will have
to take into account the role of the BBB in allowing or preventing
the flow of T cells across compartments.

CONCLUSIONS

Increasing evidence supports the role of pathogenic immune
responses in ALS pathology. Here, we highlight the key roles of
immune responses and the role of non-neuronal cells in the devel-
opment of ALS. Microglia and astrocytes as the major glial cell
types represent the first line of defence that maintains homeostasis
in the healthy CNS. Glia-neuron and glia-T lymphocytes interac-
tions control signalling pathways and the differentiation of micro-
glia and astrocytes and hence, the balance between neuroprotection
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and neuronal death. During ALS emerging data suggests the switch
from neuroprotective Tregs/M2 to neurotoxic Th1/M1 cells defines
progression and the final outcome of the disease. Also, compelling
data underscores the importance of impairment of the blood-CNS
barrier as a key factor in promoting motor neuron damage. Restor-
ing the balance between pathogenic responses and protective
immune responses, as well as the understanding the role of non-
neuronal cells i.e. oligodendrocytes and blood-CNS barriers offers
novel targets for therapeutic approaches in ALS.
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