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Abstract
Pathological processing of tau protein during the formation and maturation of neurofibril-
lary tangles (NFTs) includes abnormal phosphorylation, conformational changes and
truncation of the C-terminus at aspartic-acid421 (apoptotic product) and glutamic-acid391

residues. Abnormal phosphorylation and misfolding may serve as recognition signals for
ubiquitin-targeting and proteosomal processing. For this reason, we sought to determine
whether ubiquitin-targeting of tau is associated with particular tau modifications that herald
specific stages of NFTs maturation in the hippocampus of Alzheimer’s disease cases. Using
multiple tau antibodies, we found that 30% of the total load of NFTs is ubiquitin-associated.
As reported previously ubiquitin immunoreactivity was associated with markers of phos-
phorylated tau in certain NFTs; however, a strong association was also found between
ubiquitin and the earliest known truncation event at aspartic-acid421. These findings indicate
that tau protein in the NFTs may be dually subjected to both apoptotic and proteosomal
processing. By contrast ubiquitin immunoreactivity was poorly associated with truncation
of tau at glutamic-acid391, suggesting that this proteolytic event may be independent of
proteosomal activity. It would appear, therefore, that ubiquitin targeting of tau protein
occurs at NFTs in the early and intermediate stages of the maturation.
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INTRODUCTION
Alzheimer’s disease (AD) is a neuropathological condition charac-
terized by loss of memory and progressive decline of cognitive
functions. In AD, these alterations are the result of neuronal loss,
mainly produced by parenchymal accumulation of the b-amyloid
peptide (Ab) into plaques and the intracellular development of
neurofibrillary tangles (NFTs) in the hippocampus and cerebral
cortex (5, 18, 76). Abnormally processed tau protein becomes
assembled into paired helical filaments (PHFs) that accumulate in
large amount within the neuronal cytoplasm to coalesce into NFTs
(40, 41, 67). Abnormal phosphorylation of tau protein has been
considered one of the earliest events in AD neurodegeneration
mainly because it has been found in the form of early amorphous
nonfibrillar cytoplasmic aggregates preceding the formation of
NFTs (7, 10, 73, 84). Abnormal properties, such as the reduced
ability to bind and preserve microtubule structure in neuronal cells,
have been attributed to the hyperphosphorylated state of tau protein
(34, 47, 52). This alteration may affect axonal transport indirectly
and later lead to neuronal death in AD (13, 51).

Additionally, abnormally phosphorylated tau protein purified
from the brains of AD patients was able to self-polymerize into
abnormal filaments and also to nucleate the assembly of normal
nonphosphorylated tau (1, 38). These and other findings led some
groups to propose that abnormal phosphorylation of tau protein is a
key event that triggers the neurodegeneration process reported in
AD (1–3, 38).

In addition to abnormal phosphorylation, conformational
changes (37, 48, 49) as well as cleavage of tau protein have been
described as two accompanying pathological events that are also
involved in the self-aggregation of tau and microtubule disruption
(24, 25, 31, 83). Although tau protein under physiological condi-
tions has a random coil structure (17, 44), it has been proposed
that in AD, conformational changes could actually be driving its
nucleation and aggregation into insoluble structures that contain a
pathological b-sheet conformation (8, 70).

Recently, in a report in which we analyzed the time course of the
early modifications of tau protein accumulating in the brain of AD
patients, we found that abnormal phosphorylation of tau precedes
the conformational change recognized by the Alz-50 antibody and
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that recognized by Tau-C3 antibody, which recognizes a C-terminal
truncation site at aspartic acid421 (Asp421) (57).

In vitro, this truncated variant of tau aggregated at a higher rate
than that reported for the wild-type full-length tau; overexpressed
in cultured neuronal and non-neuronal cells, it induced apoptotic
changes (16, 26, 69). In the brains of AD patients, Asp421-truncated
tau localized with NFTs and other manifestations of the fibrillar
pathology (28, 33). This truncation is associated with Alz-50 con-
formation of tau and the formation of NFTs, appearing as the tau
filaments coalesce into the NFTs. Tau-C3 staining persists in the
NFTs as it matures, losing its Alz-50 signature, being replaced by a
new conformation involving the folding of the proline-rich region
over the third microtubule binding repeat (32). In late-stage NFTs
this conformation is preserved; however, the C-terminus of tau is
further truncated at the glutamic acid391 (Glu391) position by an, as
yet, unidentified proteolytic process. Another antibody, MN423,
that specifically recognizes this truncated tau variant replaces the
Tau-C3 staining. This appears to be the terminal event in NFTs
maturation (9, 31).

In the disease, alteration of the normal process of protein turn-
over, proteolysis and elimination of misfolded products may be
necessitated. Hence, abnormally phosphorylated and misfolded tau
proteins may induce proteosomal, lysosomal and apoptotic activi-
ties to metabolize the same substrate. At present, only a few
instances suggesting multiple routes of degradation acting coordi-
nately during tau processing and aggregation in AD have been
reported (4, 23).

InAD, the role of the proteolytic processing of abnormal proteins
via the ubiquitin proteasome system (UPS) has long been investi-
gated, and several components of this system have been found to be
increased in the brain of AD patients (21, 46). Some studies indi-
cated that tau protein, in the form of fibrillar lesions, is labeled with
ubiquitin in AD brains (53, 59, 65), while others demonstrated
ubiquitin labeling of insoluble tau pools isolated from fresh AD
brain tissue (19, 78). Generally, however, these findings have been
interpreted as unsuccessful ubiquitin targeting of tau to be processed
by the proteasomal system. We have placed ubiquitin labeling of tau
in the context of NFTs maturation and determined that this attempt
to target tau to the proteasome occurs predominantly during the early
to intermediate stages of NFTs evolution. Ubiquitin labeling was
associated with the phosphorylation of tau protein, but also coin-
cided with the early truncation of tau atAsp421 by caspase.This result
is indicative of an attempt at dual processing of tau protein by
apoptotic and proteosomal pathways associated with its aggregation
in AD. Because later truncation of tau protein at Glu391 was seldom
associated with ubiquitin in the NFTs, we believe that different
proteolytic mechanisms other than apoptosis and proteosomal deg-
radation could be involved in the generation of this cleavage site.

MATERIALS AND METHODS

Brain tissue

Brain tissue sampling

All experiments are in accordance with the Declaration of Hels-
inki. The research was formally approved by the local ethics com-
mission of the Prague Psychiatric Center, Prague, Czech Republic,
and is in agreement with Laws 129-2003 and 130-2003. In total, 26

human brains recovered by autopsy of demented people (all
patients of the Psychiatric Hospital Bohnice and were in advanced
stages of dementia) were obtained from Patol s.r.o. laboratory
(Prague, Czech Republic). The post-mortem intervals were less
than 24 h. All brain regions analyzed were obtained from the
left hemisphere. After dissection, the samples were fixed in 10%
paraformaldehyde until assayed.

Basic histological analysis

Five brain areas (from the neocortex: gyrus frontalis medius, gyrus
temporalis superior et medius, and lobulus parietalis inferior; from
the hippocampus: gyrus parahippocampalis; and from the cerebel-
lum: lobulus semilunaris inferior) were histologically evaluated
using a silver-staining technique. The samples were divided into
two groups; AD [nine patients with clinically diagnosed dementia,
number of senile plaques in given areas of the cortex and hippoc-
ampus greater than would be expected for their age, with the crite-
ria used consistent with the work of Mirra et al (56)] and mixed
dementia cases (17 patients with the AD changes but also develop-
ing vascular alterations, eg, numbered minute focal impairments
or lacunae, attenuated brain weight 50–100 ¥ g). Forty-five-
micrometer thick sucrose-protected sections from the hippocam-
pus were obtained by cryotomy, postfixed in 4% paraformaldehyde
dissolved in phosphate-buffered saline (PBS), and kept at 4°C.
Additional post-mortem, fresh brain samples from the temporal
cortex of two AD patients were supplied by the Brain Bank of the
Center of Research and Advanced Studies of the National Poly-
technic Institute (CINVESTAV-IPN), Mexico City. These proce-
dures were also in accordance with the Declaration of Helsinki
and formally approved by the local ethics commission of the
CINVESTAV-IPN, Mexico City.

Immunohistochemistry

Hippocampal brain sections were processed for horseradish peroxi-
dase (HRP) immunohistochemistry, as described previously (9). In
the present study, brain sections were incubated by free floating in a
solution of 0.01% Triton (Sigma Chemical Co., St. Louis, MO,
USA) in tris buffered saline (TBS-t) containing a rabbit polyclonal
antibody to ubiquitin (Millipore Corp., Temecula, CA, USA) at a
dilution of 1:500. Sections were incubated overnight at 4°C and
washed the next day withTBS-t.Then a HRP-conjugated secondary
antibody to rabbit immunoglobulins (Ig) (DakoCytomation, Glos-
trup, Denmark) was incubated inTBS-t for 2 h at room temperature.
After developing the HRP enzymatic reaction, the sections were
dehydrated and preserved in a mixture of distyrene, tricresyl phos-
phate and xylene (DPX) (BDH Laboratory Supplies, Poole, UK).

Stained samples were visualized with both 20¥ [numerial aper-
ture (NA): 0.5] and 40¥ (NA: 0.75) Plan-Fluor Lens in a Nikon
Eclipse-80i Microscope (Nikon Corp., Tokyo, Japan). Images were
obtained and recorded by using a Nikon digital sight-DG-Ri1
camera controlled with the Nikon NIS-Elements AR-3.0- SP7 soft-
ware included in the system (Nikon).

Double- and triple-labeling immunofluorescence

Sections of the hippocampus of demented individuals were pro-
cessed for double and triple immunolabeling as we reported
previously (9, 30). In separated incubations, the rabbit polyclonal
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antibody to ubiquitin (Millipore) was combined with one of differ-
ent mouse monoclonal antibodies directed to specific epitopes in the
molecule of tau (Table 1). From frozen stocks prepared at 1 mg/mL,
the tau antibodies were diluted as follows: PHF1 (1:5000), Tau-C3
(1:2000), MN423 (1:500) and Tau-46.1 (1:8000). Primary antibod-
ies were incubated at 4°C overnight, and the next day, sections
were incubated with the corresponding secondary antibodies:
fluorescein-isothiocyanate (FITC)-tagged anti-rabbit (Jackson
Immuno-Research Laboratories, Inc. West Grove, PA, USA) and
tetramethylrhodamine-isothiocyanate (TRITC)-tagged anti-mouse
“g”-specific chain (Jackson Immuno-Research Laboratories).
Samples were washed in TBS-t and then incubated in 2% Sudan
black-B in 70% ethanol (ICN Biomedicals Inc., Aurora, OH, USA)
(36).

In some experiments sections were incubated with the primary
rabbit polyclonal antibody to ubiquitin and counterstained with
either 0.001% thiazin red (TR) (Sigma) or 0.1% thioflavin-S (ThS)
(ICN Biomedicals) to visualize fibrillary aggregates showing a
b-pleated sheet structure (55).

For triple labeling, Alz-50 antibody was also included in some
experiments (1:5000) in combination with the polyclonal antiubiq-
uitin and monoclonal antibodies to truncated tau (Tau-C3 or
MN423) (Table 1).

In this case, the secondary antibodies were selected as follows:
FITC-tagged anti-rabbit IgG, Cy5-tagged anti-mouse “g”-specific
and TRITC-tagged anti-mouse “m”-specific (Jackson Immuno-
Research Laboratories). At the end of all the incubations, the brain
sections were mounted in the antiquenching media Vecta-Shield
(Vector Laboratories, Inc., Burlingame, CA, USA).

Confocal microscopy

The immunolabeled sections from the hippocampus were
viewed and analyzed in a TCP-SP2 confocal laser scanning micro-
scope (Leica Microsytems, Heidelberg, Germany). Samples were
observed through a 63¥ Plan-apochromat oil immersion lens
(NA: 1.32) to evaluate colocalization in single optical sections.
The double- and triple-labeled images were obtained by scanning
from the top of the sample to 15-mm depth through the z-axis.
Horizontal z-sections were collected and analyzed individually for
colocalization patterns and projected as superimposed stacks of
two-dimensional images. The resulting images were obtained and
analyzed by using the Leica Confocal Software-LiteV. 2.61 included
in the confocal system.

Quantitative analysis

By following our previous criteria to quantify single-labeled and
double-labeled immunoattached NFTs under epifluorescence (33,

58), we evaluated the number of labeled NFTs in a sampling area
covering 1.46 mm2 in the hippocampus. The number of labeled
NFTs was expressed as the average of at least eight randomly
selected sampling-areas.

Fluorescence images were captured by using a digital camera
AxioCam MRc5 coupled to a Zeiss Axio Imager.z1 upright micro-
scope (Carl Zeiss Imaging Solution, GmgH, Jena, Thuringen,
Germany). A 20¥ Plan-Neofluar lens (NA: 0.5) was used to record
representative fields and a 40¥ Plan-Neofluar lens (NA: 0.75) was
used for more critical observations. Thus, single-labeled fluores-
cent images were sequentially collected by using the AxioVision 40
V.4.5 software included with the system (Carl Zeiss Imaging Solu-
tion) and the colocalization patterns were later obtained and ana-
lyzed by using the merging program STG Picture Merge V.1.0
(downloaded from http://www.stgsys.com).

For statistical analysis, a Student’s t-test was used to compare
two groups, whereas for multiple-group comparisons a one-way
analysis of variance (ANOVA) was used, followed by Tukey’s
multiple comparison test. The statistical analysis was done with
GraphPad Prism statistics software, version 3.0 (GraphPad
software, Inc., San Diego, CA, USA).

Purification of insoluble tau from the brains of
AD patients

Insoluble tau protein (A68) fraction was isolated from the brains of
AD patients in accordance to previous protocols (11, 45, 82) and
subjected to dot-blot analysis with the polyclonal antibody to ubiq-
uitin and the monoclonal antibodies to tau, Tau-46.1 (Table 1) and
Tau-5, an IgG monoclonal antibody that recognizes amino acids
210–230 in all tau variants (14).

Samples of the A68 fraction were processed for dot-blot analysis
by using a Bio-Dot SF microfiltration apparatus (Bio-Rad Laborato-
ries Inc., Hercules, CA, USA). The samples were absorbed on
nitrocellulose membranes after vacuum pumping and then blocked
in a solution of 5% nonfat dry milk in TBS-1% Tween (Sigma) for
1 h at room temperature and gentle shaking. After washing in
TBS-1% Tween, membranes were incubated with either the rabbit
polyclonal antibody to ubiquitin (1:1000), Tau-46.1(1:1500) or
Tau-5 (1:2000) antibodies to tau protein for 1 h at room temperature.

The corresponding HRP-tagged secondary antibodies to rabbit
and mouse IgG (DakoCytomation) were incubated in TBS-1%
Tween for 1 h. After washing with TBS-1% Tween, membranes
were incubated with ECL-Plus Western Lightning detection
reagent 1 (Perkin Elmer Inc., San Jose, CA, USA) for 30 s. The
membranes were then exposed to an X-ray film (Kodak Medical
X-ray, general-purpose-blue, Eastman Kodak Company, Roches-
ter, NY, USA) for 10 s in the dark room.

Table 1. Characteristics of the antibodies used in this study.

Antibody Epitope Host/class Source of reference

Anti-ubiquitin Ubiquitin-protein conjugates Rabbit polyclonal/IgG Millipore Corp.
PHF-1 Phospho-tau (Ser396,404) Mouse/IgG Otvos et al 1994 (64)
Tau-C3 Truncated tau at Asp421 Mouse/IgG Gamblin et al (28)
Tau-46.1 C-terminus of tau (428–441) Mouse/IgG Kosik et al, 1988 (42); Carmel et al (14)
MN423 Truncated tau at Glu391 Mouse/IgG Novak et al, 1991 (62)
Alz50 Tau conformational change (5–15, 312–322) Mouse/IgM Carmel et al (14)
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RESULTS

Ubiquitin is associated with the neurofibrillary
pathology in the brain of demented patients

The brains of a group of demented patients, composed of AD
and cases with mixed dementia, were analyzed to determine the
presence of ubiquitin in the neurofibrillary pathology. As previ-
ously described (39) in the hippocampus of AD subjects, ubiquitin
is usually associated with NFTs (Figure 1). These structures,
immunoreactive to a polyclonal antibody to ubiquitin, displayed
both the intracellular and extracellular profiles, with the former
having the most common presentation of ubiquitin-targeted NFTs
(arrows in Figure 1A). The fibrillary feature of these structures
was confirmed by using immunofluorescence in combination with
either TR or ThS (48, 50). Some amounts of NFTs were stained
with TR of which many examples were also immunoreactive to
the ubiquitin antibody (arrows in Figure 1B). However, many
examples of NFTs only stained by TR were also seen (asterisk in
Figure 1B).

To confirm that ubiquitin is in close association with tau fibril-
lary structures, we used the A68 fraction (composed of aggregated
tau protein) purified from the brains of some AD patients (11, 43).
By using dot-blot analysis with the same polyclonal antibody to
ubiquitin, it was confirmed that ubiquitin is a constituent of the
A68 fraction (Figure 1C). Some samples were also processed for
tau antibodies, such as Tau-46.1 and Tau-5, to confirm the presence
of tau in this insoluble fraction (Figure 1C).

Quantitative analysis of the load of NFTs
composed of ubiquitin

To obtain clear evidence of the contribution of ubiquitin in
the development of NFTs in the hippocampus, we quantified the

number of ubiquitin-targeted NFTs and compared with the total
load of NFTs. In the whole population of demented individuals,
the number of NFTs (mean � standard error) detected with
ThS (14.7 � 2.8) was significantly greater than the number of
ubiquitin-targeted NFTs (4.8 � 0.9) (P = 0.0017). No significant
differences were found for both the total load of NFTs (ThS posi-
tive) and the number of ubiquitin-targeted NFTs when they were
compared between AD and mixed dementia cases.

In the whole group of cases, the proportion of NFTs detected
with ThS that were composed of ubiquitin (colocalization between
both markers) was approximately 30% (28.1 � 2.9). This propor-
tion was not significantly modified when the samples were subdi-
vided into AD (33.2 � 5.2) and mixed dementia (26.9 � 3.3)
subgroups (P = 0.5632, by one-way ANOVA).

Ubiquitin is associated with Asp421-truncated
tau protein in NFTs

To evaluate the possibility that ubiquitin-targeting may contribute
to the development of NFTs, we analyzed the association of
ubiquitin with tau protein undergoing several post-translational
modifications, such as phosphorylation at Ser396,404 and two major
truncations at the C-terminus of tau protein occurring at Asp421 and
Glu391 (57).

As shown in Figure 2, there is a close association between
ubiquitin and tau protein in the NFTs. Colocalization was found
between ubiquitin and Asp421-truncated tau (Figure 2A), Ser396,404-
phosphorylated tau (Figure 2B), and the C-terminus intact tau
protein (Figure 2C). However, remarkably almost no colocalization
was found between ubiquitin and Glu391-truncated tau in the NFTs
(Figure 2D). Quantitative analysis of distinctive tau-NFTs colocal-
izing with ubiquitin is shown in Figure 3. When the populations of
distinct tau NFTs were compared with each other, the only signifi-
cant difference was found between the number of PHF1 and Tau-

Figure 1. Ubiquitin is associated with tau protein
in neurofibrillary tangles (NFTs). Ubiquitin-positive
NFTs (arrows) and clusters of neuropil threads
are observed by immunoperoxidase in the
hippocampus of Alzheimer’s disease (AD)
patients (A). Confocal microscopy images of
ubiquitin immunoreactivity and thiazin red (TR)
staining (B). Note in the merge channel, the
colocalization displayed in some NFTs (arrows).
However ubiquitin (Ubi) is not present in all the
NFTs detected by TR (asterisk). Dot-blot analysis
of the A68 fraction, purified from the brain of two
AD patients, also confirms that ubiquitin is a
constituent of fibrillary aggregates of tau protein
(C). Positive spots correspond to the use of a
polyclonal antibody to ubiquitin, and two
monoclonal antibodies to tau protein (Tau-46.1
and Tau-5). Scale bars 35 mm in (A), and 6 mm in
panel (B).
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46.1-positive NFTs (P < 0.05, in Figure 3A). When colocalization
was analyzed for all the combinations between tau and ubiquitin in
the NFTs, the most common association was found between ubiq-
uitin and phosphorylated tau at Ser396,404 (Figure 3B). Ubiquitin
and Asp421-truncated tau were also associated in a population of
NFTs showing a significantly higher rate of colocalization than that
observed for NFTs composed of ubiquitin and C-terminus intact
tau protein (Figure 3B). By contrast, significantly less number
of NFTs displayed colocalization between ubiquitin and Glu391-
truncated tau (Figure 3B).

The whole group of demented patients was subdivided into AD
and mixed dementia cases, and the samples then analyzed indepen-
dently for ubiquitin-tau colocalization as above (Figure 3C,D). The
same pattern of colocalization was measured for both groups,
with the ubiquitin-Ser396,404-phosphorylated tau (Ub–PHF1) and
ubiquitin–Asp421-truncated tau (Ub–Tau-C3) having the higher
rate of colocalization in the NFTs (Figure 3C,D). In both groups
of cases, again colocalization between ubiquitin and Glu391-

truncated tau in NFTs (Ub–MN423) was significantly reduced
(Figure 3C,D). All these results indicate that ubiquitin targeting of
tau in the NFTs is more associated with both phosphoryation and
the early truncation of the C-terminus (Asp421).

Because truncation of the C-terminus of tau protein has been
considered a key mechanism that predicts the state of maturation of
the NFTs, and because in this study ubiquitin targeting seems to be
more associated with the minimum truncation of tau protein, we
sought more detail of the proteolytic state of the C-terminus of tau
in ubiquitin-attached NFTs.

For this purpose, we performed triple-labeling experiments
by including the Alz-50 antibody, which has been demonstrated
to recognize early and intermediate NFTs (30). As shown in
Figure 4A,B, triple colocalization was found in Alz-50-positive
NFTs also composed of ubiquitin and Asp421-truncated tau
(positive to Tau-C3). In contrast, in Alz-50-negative NFTs (more
advanced stage of maturation), which are commonly composed of
truncated tau at the Glu391 (recognized with the MN423 antibody),

Figure 2. Colocalization between ubiquitin and
tau protein in the neurofibrillary tangles (NFTs)
of demented patients. Double-labeling
immunofluorescence and confocal microscopy
illustrate the patterns of colocalization between
ubiquitin (ub: polyclonal antibody to ubiquitin)
and different presentations of tau protein (red
channel) in the NFTs. Those structures
composed of Asp421-truncated tau (Tau-C3
antibody), Ser396,404-phosphorylated tau [paired
helical filaments (PHF)1 antibody] and C-terminus
intact tau protein (Tau-46.1 antibody) were
constantly attached by ubiquitin [see arrows in
the merge channels of (A–C)]. However, almost
no colocalization was found between ubiquitin
and the Glu391-truncated tau protein (MN423
antibody) in most of the NFTs analyzed (D). Note
in (D) that the NFTs recognized by either ubiquitin
or MN423 have a different morphology.
Moreover ubiquitin was commonly detected in
neuropil threads and dystrophic neurites in
addition to the NFTs. In (D), lpfc: lipofucsin. Scale
bars 27 mm in (A), 10 mm in (B), 6 mm in (C) and
14 mm in (D).
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no attachment of ubiquitin was found (Figure 4C,D). These results
indicate that ubiquitin-targeting of tau protein could be more asso-
ciated with the early stages of tau degradation (Asp421) than the
proteolytic processes involved in the generation of the Glu391-
cleavage at the C-terminus of tau.

DISCUSSION

Ubiquitin-targeting of tau protein in NFTs

In this study we investigated the possible association of ubiquitin
with particular tau modifications that herald specific stages of
NFTs maturation within the brains of AD patients. Using immuno-
logical probes that recognize different post-translational modifica-
tions of tau has allowed us to determine the timeline of NFTs
formation and its association with ubiquitin.

In previous reports, we proposed a chronological model of the
pathological processing of tau during the evolution of AD using
antibodies that recognize specific modifications within the tau
molecule (9, 30, 31, 33). The sequence of events that promotes the
assembly of soluble tau into PHFs and NFTs has been character-
ized by sequential phosphorylation events at different amino acids
with the consequential development of conformational changes
(25, 49, 57). Conformational changes within a protein may be
subjected to degradation by different proteolytic systems, includ-
ing proteosomal, lysosomal and apoptotic components in an
attempt to eliminate these abnormal or toxic molecules from the
cytoplasm (35, 54, 71, 79). We proposed in our model that trunca-
tion of tau at Asp421 occurs after the conformational changes of the

tau molecule induced by abnormal phosphorylation events (57). As
mentioned above, truncation of tau at Asp421 appears to be an early
event during the disease process and attributed to caspase activity.
However the protease responsible for sequential cleavage of tau
at Glu391 has yet to be elucidated. The contribution of the UPS in
neurodegenerative diseases, including AD, has been extensively
studied (15, 63, 75, 77). For instance, one of the earliest evidence
implicating a link between the UPS and tau pathology arose when
ubiquitin was localized in PHFs (59, 60, 66) and NFTs (6, 65, 74)
within the brains of AD patients. More recently, ubiquitin was
found to be associated with a fraction of purified PHF-tau isolated
from the brains of AD patients by immunoaffinity with the MC1
antibody (19). In this study, by using tandem mass spectrometry,
Cripps and colleagues elegantly showed that PHF-tau is a target for
ubiquitin and that it selectively binds to residues Lys254, Lys311 and
Lys353 located within the microtubule binding domain (19).

Within this body of work, we corroborate the presence of
ubiquitin within the NFTs (Figure 1) and found that the density
of ubiquitin-attached NFTs is significantly less than the total load
of NFTs. Only 30% of these structures contained ubiquitin as a
component. However, controversy has risen regarding the timing of
ubiquitin targeting during NFTs maturation. For instance, some
evidence indicates that late NFTs are highly targeted with ubiquitin
(6, 20), whereas other groups reported that ubiquitin is not associ-
ated with extracellular NFTs (59).

All together, these results indicate that ubiquitin is a conspicuous
component of the neurofibrillary pathology in AD, and this, there-
fore, suggests a more significant role for ubiquitin during the
maturation of the NFTs in AD.

Figure 3. Quantitative colocalization of ubiquitin
and tau proteins in neurofibrillary tangles (NFTs).
A. NFTs immunoreactive to distinct antibodies to
tau protein. A significant difference was found by
using a one-way analysis of variance (ANOVA)
(P = 0.009) followed by Tukey’s multiple
comparison test to determine specific
differences between all the tau antibodies. Only
the number of NFTs immunoreactive to paired
helical filaments (PHF)1 was significantly greater
than that of the NFTs recognized by the Tau-46.1
antibody. B. In the whole group of demented
patients, colocalization was expressed as the
percentage of NFTs composed of ubiquitin (Ub:
polyclonal antibody to ubiquitin) and tau protein
(recognized independently by Tau-C3, MN423,
PHF1 and Tau-46.1). Colocalization was found in
most of the combinations; however, almost
undetected numbers of NFTs were composed
of ubiquitin and tau truncated at the Glu391

(Ub -MN423), which was also consistent when
the group was separated as AD (C) and mixed
dementia patients (D). The same statistical
analysis as in (A) was done in (B–D) (see the text
for details). *P < 0.05; **P < 0.001.
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Phosphorylation, truncation and
ubiquitin-targeting of tau protein during
the maturation of the NFTs

Phosphorylation of tau is thought to be an early event that, besides
promoting a misfolding state of the molecule, serves as recognition

signal to be targeted with ubiquitin and degraded by the UPS
through the action of the carboxy terminus of the hsc70-interacting
protein (CHIP hsc70) complex (68, 72). Because some studies
reported that tau is not a proteasome substrate (22, 27), the central
role of tau degradation by proteosomal activity is still under debate.
It is not clear if partial proteolysis of tau protein eliciting some

Figure 4. In neurofibrillary tangles (NFTs), ubiquitin colocalizes with
Asp421-truncated tau but not with tau cleaved at the Glu391. Triple labeling
by including the Alz-50 antibody confirms that early NFTs detected by the
Tau-C3 antibody (for Asp421-truncated tau) are also composed of ubiquitin
(ub) (A) and (B). In contrast, mature NFTs immunoreactive to MN423 (to
tau cleaved at the Glu391) were little composed of ubiquitin (C–D). Note in
(B) the coexistence for the three markers in the same NFT, whereas in

(C) only the double-labeled NFTs are composed of ubiquitin and stained
with Alz-50 antibody. In panels (C–D), the NFTs recognized by MN423
remain unassociated with other markers and have an unmerged blue
color (see the merge channel). These MN423-positive NFTs sometimes
were surrounded by a crown of neuropil treads composed of ubiquitin
[see merge channel in (D)]. Scale bars 9 mm in (A), 10 mm in (B), 22 mm in
(C) and 24 mm in (D).
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domains may accelerate its self-aggregation and cause more toxic-
ity. If this is the case, ubiquitin targeting of tau and proteasome
degradation may contribute to the formation of tau aggregates in
the brain of AD cases. In this regard, it has been proposed that
polyubiquitin-targeting of tau by CHIP may facilitate the formation
of insoluble tau filaments. This event coincidentally, was preceded
by phosphorylation and caspase-3-cleavage of tau (23).

The regulatory activity of tau processing by several of the UPS
complexes has been investigated in cell and animal models (4, 23),
but information about the final contribution of this system in AD
patients is based on the analysis of lesions composed of tau and
other associated proteins.

Our results obtained from AD brain tissue corroborate that
ubiquitin is closely associated with phosphorylated tau in the
early neurofibrillary pathology (Figures 2B and 3B–D), but more
intriguing is that in a considerable number of the NFTs, ubiquitin
was also associated with truncated tau at the Asp421 (Figures 2A
and 3B–D). This result may provide evidence to suggest that a
single substrate can be subjected to dual processing involving apo-
ptotic and proteosomal degradation. In a recent report, sequential
proteosomal, apoptotic and lysosomal processing of tau was pro-
duced in prostaglandin-J2-treated neuroblastoma SK-N-SH cells
(12, 22, 27). Because of the specific truncation of tau by caspase
at Asp421 (4), it is difficult to predict that this cleavage can also
be generated by proteosomal activity. As shown in Figure 3, the
number of NFTs composed of C-terminus intact-tau protein and
ubiquitin is reduced, which suggests that ubiquitin targeting of tau
occurs in a molecule that is truncated early as was occurring at
the Asp421 (Figure 3B–D). These observations also reinforce the
concept of two synchronized proteolytic activities within tau
protein, namely apoptosis and proteosome activity. These results
are also in agreement with those studies that proposed that poly-
ubiquitin targeting follows phosphorylation and truncation (28).

By timing the event of ubiquitin targeting of tau protein accord-
ing to the patterns of colocalization within this study, we further
demonstrated that this event is more related to the early and
intermediate stages of the maturation of the NFTs. As shown in
Figure 4A,B, close association at a different degree was found
between ubiquitin, truncation of tau at Asp421 and N-terminus
folding of tau recognized by Alz-50 antibody (23). This is the first

finding in situ that demonstrates that ubiquitin targeting of tau
protein is associated with a specific truncation site (Asp421) at the
C-terminus, but also preserving intact the N-terminus in a folded
conformation. All these events taking place at the early and inter-
mediate stages of the maturation of the NFTs depicts a temporal
course of incidence at any single NFT, which is also in agreement
with the concept of chimeric NFTs having different degrees of
colocalization (14, 30).

In previous studies, we also identified an advanced stage of tau
processing during the maturation of the NFTs, namely truncation
of tau at Glu391 (9). In these NFTs, distinct tau molecules were also
associated with Glu391-truncated tau; however, they were no longer
than the Ser396 residue (9, 30, 33). The origin of this truncation is
still debated and a putative intracellular enzyme responsible for the
cleavage at Glu391 is still unknown (30). Hence a potential role
for proteosomal degradation emerges as a possible explanation.
Nevertheless, in the present study we found a scant colocalization
between ubiquitin and the Glu391-truncated tau (Figure 3B–D)
with almost total segregation of these proteins in two different
populations of the NFTs. These structures composed mostly of
Glu391-truncated tau were also negative to Alz-50 and ubiquitin,
confirming that all these events are mutually exclusive when they
occur within NFTs in AD (Figure 4C,D).

The lack of this association may indicate that truncation of this
protein at Glu391 is not related to ubiquitin targeting and therefore,
to the consecutive degradation through proteosomal components.

One explanation may be that previous to the Glu391-truncation,
ubiquitin is removed from the C- terminus of tau protein, though
if this were true, the transitional stages of partial colocalization
would be identified in the NFTs. In addition, it was reported that
several ubiquitin-targeting sites of tau protein lay over the flanking
region of the repeated domains (9, 29), which are known to be
conserved in the minimum PHF-core composed of Glu391-
truncated tau (72).

At present, the generation of the Glu391-cleavage of tau is not
clear, and more cytoplasmic enzymes need to be analyzed. The
lysosomal system emerges as another possibility, and previous
reports indicate that tau can be fragmented by this complex (61, 80,
81). However, whether this proteolysis eliminates pathologic
phosphorylated tau or that this fragmentation produces more toxic

Figure 5. Ubiquitin targeting is associated with
Asp421-truncation but not with Glu391-cleavage of
tau during the maturation of the NFTs in AD. At
early stages of the maturation of the NFTs, the
major modification in tau is the abnormal
phosphorylation of several residues (A–B).
Truncation of tau at Asp421 may also occur at
early stages, but it is more predominant at
intermediate stages (C–D). In late-stage NFTs (E),
Glu391-truncated tau remains as the major
component. Ubiquitin targeting of tau seems to
occur at early and mostly at intermediate stages
of the maturation of the NFTs (B–D), in close
association with abnormal phosphorylation and
Asp421-truncation (B–D). Scant association is
found between ubiquitin and Glu391-truncated tau
(E).
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entities with aggregation properties is still unknown and needs to
be further investigated. In this study we showed evidence that ubiq-
uitin targeting of tau occurs during the early and mostly at interme-
diate stages of the maturation of the NFTs (Figure 5), following the
sequence: phosphorylation →Asp421-truncation →, = ubiquitin tar-
geting. At this stage, proteosomal degradation of tau may eliminate
several domains of the molecule, mainly at the extreme N- and
C- termini.

The advanced stages of the maturation of the NFTs are still
characterized by the occurrence of truncation of tau at Glu391,
but not associated with ubiquitin-targeting (Asp421-truncation →,
= ubiquitin targeting → . . . ? . . . →Glu391-truncation). Thus, we
can conclude that ubiquitin targeting and proteosomal activity may
contribute to the proteolytic processing of tau protein during the
formation and maturation of NFTs in AD.
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