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Abstract

Many non-human animals show exploratory behaviors. It remains unclear whether any possess 

human-like curiosity. We previously proposed three criteria for applying the term curiosity to 

animal behavior: (1) the subject is willing to sacrifice reward to obtain information, (2) the 

information provides no immediate instrumental or strategic benefit, and (3) the amount the 

subject is willing to pay depends systematically on the amount of information available. In 

previous work on information-seeking in animals, information generally predicts upcoming 

rewards, and animals’ decisions may therefore be a byproduct of reinforcement processes. Here 

we get around this potential confound by taking advantage of macaques’ ability to reason 

counterfactually (that is, about outcomes that could have occurred had the subject chosen 

differently). Specifically, macaques sacrificed fluid reward to obtain information about 

counterfactual outcomes. Moreover, their willingness-to-pay scaled with the information (Shannon 

entropy) offered by the counter-factual option. These results demonstrate the existence of human-

like curiosity in non-human primates according to our criteria, which circumvent several 

confounds associated with less stringent criteria.
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INTRODUCTION

Curiosity is a major driver of exploration and learning. The term curiosity does not have a 

universally agreed upon definition in psychology (Loewenstein, 1994; Kidd & Hayden, 

2015). However, it generally refers to information-seeking behavior that is intrinsically 

motivated (Golman & Loewenstein, 2016; Gottlieb, Oudeyer, Lopes, & Baranes, 2013; Kidd 

& Hayden, 2016; Loewenstein, 1994; Oudeyer, Kaplan, & Hafner, 2007). The intrinsic 

factor distinguishes curiosity from strategic forms of information seeking, such as 
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exploration in bandit tasks (Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006; Hayden & 

Platt, 2009). Thus, a stringent definition of curiosity refers to information-seeking that 

reduces a decision-maker’s information gap without producing immediate reward or 

strategic benefits (Golman & Loewenstein, 2015; 2016). By this definition humans are 

curious (Berlyne, 1966; Gottlieb et al., 2013; Gruber, Gelman, & Ranganath, 2014; Kang et 

al., 2009; Loewenstein, 1994). For example, many people will pay money for answers to 

trivia questions or to solve crossword puzzles even when those answers provide no material 

benefit.

These criteria, developed by human psychologists, offer an opportunity to formulate a 

working definition of human-like curiosity that can be used in non-human animals (Wang, 

Sweis, & Hayden, 2018). Specifically, we have proposed that human-like curiosity requires 

(1) a willingness to pay for information (2) that is strategically useless (at least up to a point, 

see Discussion), and (3) the information-seeking tendency varies systematically (and, more 

specifically, increases, at least within some range,) with the amount of information provided.

It is not clear whether any non-human animals possess human-like curiosity according to 

these criteria (Kidd & Hayden, 2015). Many animals do naturally explore their surroundings 

(e.g. Berlyne, 1966). For example, monkeys seek specific information while solving 

mechanical puzzles without immediate extrinsic motivations (Davis, Settlage, & Harlow, 

1950; Harlow, 1950; Harlow, Harlow, & Meyer, 1950). Rats also show spontaneous 

exploration of unfamiliar maze sections without explicit reward or task goals (Dember, 

1956; Hughes, 1968; Kivy, Earl, & Walker, 1956; Tolman, 1948). However, in these 

contexts, the animal may falsely give credit to actions that appear to lead to potential future 

reward (Menzel, 1991). One practical limitation of classical exploratory behavior studies is 

the difficulty of quantifying the information gap, meaning many of these past studies, while 

interesting, do not allow us to show that demand for information scales with information 

amount.

These problems have motivated scholars to focus on more controlled paradigms. Rigorous 

experiments have quantified information-seeking behavior under controlled conditions in 

species ranging from Caenorhabditis elegans worms (Calhoun, Chalasani, & Sharpee, 2014) 

to rhesus macaques (Averbeck, 2015; Costa, Monte, Lucas, Murray, & Averbeck, 2016; 

Noonan et al., 2010; Pearson, Hayden, Raghavachari, & Platt, 2009; Walton, Behrens, 

Buckley, Rudebeck, & Rushworth, 2010; Whittle, 1988). However, information in such tasks 

inevitably offers strategic benefits that could lead to greater immediate future rewards. 

Likewise, in some uncertain contexts, animals prefer risky options; these options may be 

favored because they provide more information (Heilbronner & Hayden, 2013). Again, 

however, other non-curiosity-related factors may explain risky choice in these contexts, such 

as erroneous belief that stochastic processes are actually patterned (Blanchard, Wolfe, Vlaev, 

Winston, & Hayden, 2014; Hayden & Platt, 2007).

Another paradigm used to demonstrate curiosity has been the temporal resolution of 
uncertainty paradigm, sometimes known as the observing behavior paradigm (Blanchard, 

Hayden, & Bromberg-Martin, 2015; Bromberg-Martin & Hikosaka, 2009; Kidd, Palmeri, & 

Aslin, 2013). In this paradigm, animals are offered a choice between two gambles. One 
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gamble is accompanied by an informative cue indicating that, if chosen, its outcome will be 

revealed before the delay separating the choice from the outcome. The other gamble offers 

no cue or an uninformative cue. Many animals will sacrifice small amounts of reward to 

choose this option, thereby obtaining useless information. However, observing behavior does 

not unambiguously demonstrate curiosity. First, Pavlovian learning may bias instrumental 

choice actions (Beierholm & Dayan, 2010). From a reinforcement learning perspective, the 

cue before delay and reward is considered a conditioned stimulus. Animals may sometimes 

stop paying attention to the reward and reduce learning about the cue during the delay (that 

is, they show disengagement). Disengagement rarely occurs when the informative cue 

perfectly predicts reward but happens often for uninformative cues. As such, conditioned 

reinforcement value for uninformative cues is low and for informative cues is high, and thus 

leading to the preference for informative cues. This model cannot account for when animals 

sometimes prefer a suboptimal gambles when both options are un-informative (McDevitt et 

al., 2016). However, in these cases, it is hard to determine whether the suboptimal choices 

were curiosity, risk seeking. Relatedly, animals may superstitiously believe that their choices 

could affect upcoming rewards (Vasconcelos, Monteiro, & Kacelnik, 2015).

These problems stem from the direct association between information and upcoming 

rewards. One way to avoid these confounds is to focus on curiosity about counterfactual 
outcomes. The term counterfactual refers to outcomes associated with options that were not 

chosen; the terms hypothetical and fictive are also sometimes used (Abe & Lee, 2011; 

Hayden, Pearson, & Platt, 2009; Rosati & Hare, 2013). Monkeys can recognize 

counterfactual outcomes: their responses to counterfactual information indicate that they 

understand its meaning and do not simply respond as they would to conditioned reinforcers. 

Therefore, counterfactual outcomes can potentially help avoid some problems associated 

with observing paradigms.

We devised a counterfactual information task for rhesus macaques. On each trial, subjects 

chose between two gambles with independently generated stakes, probabilities, and 

counterfactual information status. That is, some options offered, if chosen, information 

about the result of the unchosen gamble. Other options did not offer that information. Both 

monkeys tested preferred the option that provided information of counterfactual outcome, 

despite the lack of its instrumental benefits for current or future reward. Their willingness to 

pay for the informative options scaled with the amount of information (i.e. Shannon 

entropy).

We are not advocating that only our definition can be used for studies of curiosity in 

animals. Indeed, we have argued that a definitive definition cannot be formulated until the 

phenomenon of curiosity is better understood (Kidd and Hayden, 2016). Our major goal in 

proposing our definition is to help segregate strategic from non-strategic information-

seeking (Daw et al., 2006; Hayden et al., 2009; Hayden, Pearson, & Platt, 2011; Noonan et 

al., 2010; Walton et al., 2010; Calhoun and Hayden, 2015). This definition comes, 

ultimately, from pioneering work going back to Berylne and others, and more recently, in the 

important work of Loewenstein and colleagues (Berlyne, 1960; 1966; Golman & 

Loewenstein, 2015). Information in our task is not strategically beneficial: (1) previous 

outcomes cannot inform subsequent choice – on each trial and for each offer, both the offer’s 
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probability and reward size were independently and randomly drawn; (2) behavioral 

adjustments biased on counterfactual outcomes will move the monkeys to a worse strategy 

(i.e. will yield less reward); (3) subjects had ample time to learn the payoffs associated with 

cues. Note also that our third criterion states that curiosity covaries with the amount of 

information provided. This criterion is validated by previous studies of human infants (Kidd 

& Hayden, 2016; Kidd, Piantadosi, & Aslin, 2012; Téglás et al., 2011; Xu & Garcia, 2008). 

For example, the time maintaining visual attention on a visual display (a proxy for curiosity) 

in human infants depends systematically on informational content: curiosity first increases 

and then declines (Kidd et al., 2012). In other words, curiosity peaks when the information 

content is neither too low (too simple) nor too high (too complex). In our task, 

counterfactual information offered a small amount of information; we predicted therefore 

that curiosity would be limited to the positive side of this diatonic curve. Regardless, the 

critical prediction is that curiosity will depend lawfully on information content and, with a 

theoretical full range of values, will have an inverse-U shape.

Our study differs from some other animal studies in that we have only two subjects. Treated 

as individual observations, two subjects are not enough to perform comparative statistics, 

even in a rudimentary sense. Our result is, in that regard, a case study. That is, we cannot 

conclude that curiosity (as we define it) is observed widely in the macaque species, or what 

its incidence is. Nor can we relate curiosity to other features such as dominance rank or age. 

However, what we can conclude is that in at least two individuals, behavior that satisfies our 

proposed definition of curiosity is observed. That is, we provide a ‘proof of existence’ rather 

than a broad survey.

METHODS

General Methods

All animal procedures were performed at the University of Rochester (Rochester, NY, USA) 

and were approved by the University of Rochester Animal Care and Use Committee. All 

experiments were conducted in compliance with the Public Health Service’s Guide for the 

Care and Use of Animals. Two male rhesus macaques (Macaca mulatta), aged 9–10 years 

and weighting 8.0–9.9 kg served as subjects. Both subjects had extensive previous 

experience in risky decision-making tasks. Subjects had full access to food (LabDiet 5045, 

ad libitum) while in their home cages. Subjects received at minimum 20 mL per kg of water 

per day, although in practice they received close to double this amount in the lab as a result 

of our experiments. No subjects were sacrificed or harmed in the course of these 

experiments.

Visual stimuli were colored rectangles on a computer monitor (see Figure 1). Stimuli were 

controlled by Matlab with Psychtoolbox. Eye positions were measured with Eyelink 

Toolbox (Cornelissen, Peters, & Palmer, 2002). A solenoid valve controlled the delivery 

duration of fluid rewards. Eye positions were sampled at 1,000 Hz by an infrared eye-

monitoring camera system (SR Research, Osgoode, ON, Canada). A small mount was used 

to facilitate maintenance of head position during performance.
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Subjects had never previously been exposed to decision-making tasks in which counter-

factual information was available. Previous training history for these subjects included two 

types of foraging tasks (Blanchard & Hayden, 2015; Blanchard, Strait, & Hayden, 2015; see 

Hayden, 2018), intertemporal choice tasks (see Hayden, 2016), two types of gambling tasks 

(Azab & Hayden, 2017; Strait et al. 2016), attentional tasks (similar to those in Hayden and 

Gallant, 2013), and two types of reward-based decision tasks (Sleezer, Castagno, & Hayden, 

2016; Wang & Hayden, 2017).

The Counterfactual Information Task

The task structure was a close variant of a general one that we have used many times in the 

past (e.g. Strait et al., 2014; Wang and Hayden, 2017). Subjects fixated, in sequence, on two 

options, located on the two sides of the computer monitor. They had been extensively trained 

(5+ years in both cases) on tasks like this in the past and were adept at making effective 

choices in those.

Two subjects (B and J) performed a novel task designed to measure preference for 

counterfactual information (Fig. 1a). Due to the extensive exposure to similar tasks and the 

simplicity of the current task, no pre-training was used. Both subjects were trained directly 

on the current task and achieved above 80% accuracy within the first three days of training. 

Following completion of additional training, we collected 8142 trials of behavior from both 

subjects (5086 trials from subject B and 3056 trials from subject J). On each trial, subjects 

chose between two randomly selected gambles presented asynchronously on the left and the 

right side of the screen. Gambles were represented by rectangular visual stimuli and differed 

in three dimensions: payoff, probability, and informativeness. Payoff came in three sizes, 

small (125 microliters), medium (165 microliters), and large (250 microliters), each 

corresponding to a yellow, blue, and green portion of the rectangle, respectively. 

Probabilities were randomly drawn from a uniform distribution between 0 and 1 (101 steps; 

step size 0.01). The height of the yellow/blue/green portion of the rectangle indicated the 

probability of winning the gamble and the height of the red portion indicated the probability 

of losing (that is receiving no reward for that trial). Informativeness of a gamble was 

indicated by a cyan dot on the center of the rectangle for an informative option and the lack 

of a cyan dot for a non-informative one. The informative option promised valid information 

about the payoff that would have occurred had the alternative option been chosen. 

Probability, payoff, and informativeness were independently randomized on each trial. On 

50% of the trials, only one option was informative (info choice trials). On 25% of the trials, 

both options were informative (forced info trials). The forced info trials were equivalent to 

what would be called full-feedback trials in human judgment and decision-making literature 

(Camilleri & Newell, 2011). On the remaining 25%, neither option was informative (no info 
trials). These are equivalent to what are called partial-feedback trials (Camilleri & Newell, 

2011).

We have previously used this general structure (without the informativeness manipulation) to 

probe macaques’ preferences for uncertainty. Critically, via controls, we have demonstrated 

that macaques treat these stimuli as if they provide explicit information about the structures 

of gambles (Hayden, Heilbronner, & Platt, 2010; Heilbronner & Hayden, 2016a).
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Each trial started with the appearance of offer 1 (500 ms) followed by a blank 500 ms delay. 

Offer 1 position was randomized for each trial. Then offer 2 appeared on the other side of 

the screen (500 ms) followed by another 500 ms delay. After a 200 ms fixation, both 

gambles appeared on the screen and subjects chose the preferred option by shifting gaze to it 

and maintaining that gaze for 200 msec. Subsequently, if an informative option was chosen, 

gamble outcomes for both offers were resolved. If a non-informative option was chosen, the 

gamble outcome for only the chosen offer was resolved. Resolution of a gamble involved 

filling the gamble rectangle with the payoff color while delivering a water reward (if the 

gamble result was win), or filling the gamble rectangle with red color and delivering no 

reward, (if the gamble result was a loss). The outcome epoch lasted for 800 ms and was 

followed by a 1000 ms inter-trial interval (ITI) and then the start of next trial.

Consider, for example, a subject performing the following trial (Fig. 1a, top row). First, offer 

1 appears on the left side of the computer monitor. It is a non-informative option (it has no 

cyan dot) with 80% probability (indicated by the height of the blue section) of yielding a 

medium reward (165 uL, indicated by blue color) and 20% probability of yielding no reward 

(indicated by red color). After a second, offer 2 appears. Offer 2 is an informative option (it 

has a cyan dot) that corresponds to a 45% probability (indicated by height of green segment) 

of yielding 250 uL (indicated by green color), and 55% probability of getting no reward 

(indicated by red color). After a brief pre-choice eye fixation, the subject chooses offer 2. 

This choice resulted in a win with water reward delivery and the presentation of 

counterfactual outcome information.

Statistical Methods

All choices were counted as correct when subjects selected an option with expected value 

greater than or equal to the non-chosen alternative. Subjects’ choice behavior was fit using a 

multiple logistic regression model.

Expected value of an offer is defined as the product of reward magnitude and probability of 

receiving the reward:

Expectedvalue =  reward magnitude × rewardprobability . (1)

A logistic regression was fit to choice to assess whether subjects preferred informative 

option, above and beyond the effect of expected value:

log p cℎoice
1 − p cℎoice = B0 + B1 ⋅ ExpectedV alue1 + B2 ⋅ ExpectedV alue2 + B3

⋅ Informativeness1 + B4 ⋅ Informativeness2 .
(2)

Bn refer to regression parameter estimates of each predictor variables. B0 is the intercept. 

The expected value of each offer was calculated according to Equation 1. Informativeness 

was defined as 1 when choice led to resolution of both chosen and unchosen gambles and 0 

when it led to the resolution of only the chosen gamble. This equation was fitted to each 

individual subject’s data. A similar multiple logistic regression was also fit to an additional 
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predictor, subject identities (Subject ID, see Results). Subject ID is a dummy-coded group 

variable (subject B: subject ID=1; subject J: subject ID=2).

To quantify the amount of information provided when a gamble outcome is resolved, we 

calculated the entropic value of each option. The entropic value is the uncertainty about the 

possible outcomes that will be eliminated by either observing the outcome or receiving the 

information. It is captured by Shannon entropy:

the Shannon entropy (H) of the offer:

H(offer) = − ∑i ∈ 0, 1 p(outcome = i) ⋅ log(p(outcome = i)) . (3)

P is the reward probability associated with a gamble option.

When the non-informative offer is chosen, the entropic value of this choice is:

Entropicvalue = H offercℎosen . (4)

When the informative offer is chosen, the entropic value of this choice is:

Entropicvalue = H offercℎosen + H(offeruncℎosen) . (5)

A separate logistic regression was fitted to choice to assess whether subjects’ choice 

preference scaled with entropic value, above and beyond the effect of expected value:

log p(cℎoice)
1 − p(cℎoice) = B0 + B1 ⋅ ExpectedV alue1 + B2 ⋅ ExpectedV alue2 + B3

⋅ ExpectedV alue1 + B4 ⋅ ExpectedV alue2 .
(6)

The entropic value is 1 when choice of an option leads to resolution of both chosen and 

unchosen gambles and is 0 when it leads to the resolution of only the chosen gamble. This 

equation is structurally identical to Equation 1 above, except that informativeness is now 

replaced with entropic value.

For model comparison, AIC weights were calculated as following:

wi(AIC) =
exp − 1

2 AICi − AICmin

∑r = 1
m exp − 1

2 AICr − AICmin
, (i = 1, 2, …, m) . (7)

Wi is the probability of a model Mi being the one, among all m candidate models that is 

closest to the true data-generating model (Burnham & Anderson, 2010).
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A logistic regression was also fit to allow for expected value, the additional visual stimuli 

that came with informativeness options, and entropic value to compete to explain variance in 

choice:

log p(cℎoice)
1 − p(cℎoice) = B0 + B1 ⋅  SubjectID + B2 ⋅ ExpectedV alue1+B3

⋅ ExpectedV alue2 + B4 ⋅  Informativeness1 + B5 ⋅  Informativeness2 + B6
⋅  EntropicV alue1 + B7 ⋅ EntropicV alue2 .

(8)

The subjective value of information is calculated by comparing the expected value and 

entropy of the optimal strategy with that of subjects’ actual choice. Specifically, we defined 

the expected value to the optimal strategy as the mean of the maximum expected value of the 

collection of offer 1 and offer 2 for each trial i over all n info-choice trials:

OptimalEV

=
∑i

n argmax ExpectedV alue Offer1 i, ExpectedV alue Offer2 i
n .

(9)

We defined the entropy to the optimal strategy as the mean of entropic value achieved by 

expected-value- maximizing strategy in Equation 11 for each trial i over all n info-choice 

trials:

OptimalEntropy =
∑i

n EntropicV alue(OptimalCℎoice)i
n . (10)

Such that when the offer with the larger expected value happens to be a non-informative 

option, the entropic value is calculated with Equation 4 when it happens to be an informative 

option, the entropic value is calculated with Equation 5.

Expected value and entropic value of choice is calculated according to subjects’ actual 

choice:

CℎoiceEV =
∑i

n ExpectedV alue(ActualCℎoice)i
n . (11)

CℎoiceEntropy =
∑i

n EntropicV alue(ActualCℎoice)i
n . (12)

The subjective value of information is defined as sacrificed expected value per bits entropy:

EV perBits = OptimalEV − CℎoiceEV
CℎoiceEntropy − OptimalEntropy . (13)
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Finally, this choice pattern of sacrificing a small amount of reward for information is 

captured by a fitted psychometric curve of the probability of choosing the informative offer 

as a function of expected value difference between the informative and non-informative 

offers in info-choice trials. The psychometric curve is a fitted logistic curve:

log p(cℎoice)
1 − p(cℎoice) = B0 + B1 ⋅ (ExpectedV alue(InformativeOption)

− ExpectedV alue(NonInformativeOption)) .
(14)

The error bars are standard estimated error for each 10 percentile of choices.

Data Availability

The datasets generated during the current study are available on OSF at Center for Open 

Science website, https://osf.io/42cvg/ (DOI: 10.17605/OSF.IO/42CVG). The analysis code 

generated during the current study is available from the corresponding author on request.

RESULTS

Monkeys Seek Counterfactual Information

Monkeys’ behavior following training suggested that they understood the task. Most 

importantly, they chose the gamble with larger expected value 82% of the time (subject B: 

82%; subject J: 83%). This proportion is larger than expected by chance (both subjects: X2 

(1, N = 8142) = 1865, p < 0.001; subject B: X2 (1, N = 5086) = 1133, p < 0.001; subject J: 

X2 (1, N = 3056) = 729.83, p < 0.001). Over the training period before data collection, 

subjects had ample opportunity to learn that the distribution of both actual and 

counterfactual outcomes perfectly matched their probabilities.

Both subjects preferred gambles that provided counterfactual information. To measure the 

effect of counterfactual information on choice, we used a multiple logistic regression model, 

on each subject’s choice behavior, to fit the probability of choosing offer 1 as a function of 

five variables: the intercept, the expected values and informativeness of the two offers 

(Equation 1–2; Fig. 2a–b). This model fits better than a constant model (Subject B: X2 

(5081, N = 5086) = 2970, p < 0.001; Subject J: X2 (3051, N = 3056) = 1760, p < 0.001). As 

reflected in the intercept, subject B has no choice bias and subject J has a slight bias to 

choose offer 2 (subject B: b = −0.06, t(5081) = −0.61, p = 0.54; subject J: b = −0.61, t(3051) 

= −4.59, p < 0.001). The probability of choosing offer 1 was positively predicted by 

expected value of offer 1 (subject B: b = 0.03, t(5081) = 30.38, p < 0.001; subject J: b = 

0.03, t(3051) = 24.32, p < 0.001) and negatively predicted by that of offer 2 (subject B: b = 

−0.03, t(5081) = −30.47, p < 0.001; subject J: b = −0.03, t(3051) = −21.85, p < 0.001).

Most importantly, informativeness predicted choice above and beyond the effect of expected 

values. Specifically, informativeness of offer 1 drove choice (subject B: b = 0.26, t(5081) = 

3.27, p < 0.001; subject J: b = 0.26, t(3051) = 2.61, p = 0.008), as did the informativeness of 

offer 2 (subject B: b = −0.15, t(5081) = −1.89, p = 0.059; subject J: b = −0.32, t(3051) = 

−3.13, p = 0.002). Thus, subjects were more likely to choose options with larger expected 

value and that provide counterfactual information.
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Preference for counterfactual information scales with information

Observing the outcome of a gamble reduces uncertainty about the observed outcome and 

thus provides information in a formal sense of entropy (Cover & Thomas, 2006; MacKay, 

2003; Shannon, 1948). The amount of entropy provided by revealing a gamble outcome is 

not constant for all gamble probabilities. Instead, it peaks at probability of 0.5, when the 

outcome is most uncertain, and decreases as probability moves towards 0 or 1, when the 

outcome gets more certain (Fig. 1b). To satisfy our proposed definition of curiosity, subjects’ 

willingness-to-pay for counterfactual information should scale with the option’s entropy.

We defined the entropic value of each choice as the entropy of the chosen gamble only when 

the chosen gamble was not informative and as the sum of entropy of both the chosen and 

unchosen gambles when the chosen gamble was informative (Equation 3–5; also see 

Discussion). Note, critically, informativeness (used in the previous section) and entropic 

value (used in the current section) are orthogonalized in our task because of the fully 

independently randomized probabilities for both options.

We then used a multiple logistic regression model to fit the probability of choosing offer 1 as 

a function of the intercept (subject B: b = −0.04, t(5081) = −0.26, p = 0.80; subject J: b = 

−0.81, t(3051) = −4.56, p < 0.001), the expected values of offer 1 (subject B: b = 0.03, 

t(5081) = 30.37, p < 0.001; subject J: b = 0.03, t(3051) = 24.28, p < 0.001) and offer 2 

(subject B: b = −0.03, t(5081) = −30.36, p < 0.001; subject J: b = −0.03, t(3051) = −21.68, p 

< 0.001), and the entropic values of offer 1 (subject B: b = 0.35, t(5081) = 4.21, p < 0.001; 

subject J: b = 0.36, t(3051) = 3.36, p < 0.001; Equation 6) and offer 2 (subject B: b = −0.33, 

t(5081) = −3.96, p < 0.001; subject J: b = −0.20, t(3051) = −1.91, p = 0.057). This model fits 

better than a constant model (Subject B: X2 (5081, N = 5086) = 2980, p < 0.001; Subject J: 

X2 (3051, N = 3056) = 1750, p < 0.001). This model reveals that while one subject has a 

slightly higher tendency to choose offer 2, both subjects prefer offers with higher expected 

values. Critically, both subjects preferred choices associated with higher entropic value (Fig. 

2c–d). In other words, these results demonstrate that subjects’ preferences for options scaled 

with the amount of information available.

Monkeys prefer information, not the visual stimuli

One possible alternative explanation for subjects’ preference is that they seek the options 

that have or that lead to more visual stimuli, which in this task are the informative options 

(Roper, 1999). To rule out this possibility, we conducted the following two analyses.

First, if subjects’ preference for informative gambles truly reflected their tendency toseek 

more information, then using entropic value, instead of informativeness, in the multiple 

logistic regression would yield a better fit to the choice behavior. To compare model fit, we 

combined data from both subjects. First, we fit a multiple logistic regression model with six 

variables, with informativeness as the information predictor: the intercept (b = 0.16, t(8136) 

= 1.29, p = 0.20), the subject ID (b = −0.31, t(8136) = −4.82, p < 0.001), the expected value 

of offer 1 (b = 0.03, t(8136) = 38.94, p < 0.001) and offer 2 (b = −0.03, t(8136) = −37.50, p 

< 0.001), and the informativeness of offer 1 (b = 0.27, t(8136) = 4.27, p < 0.001) and offer 2 

(b = −0.20, t(8136) = −3.32, p = 0.001; Fig. 3a). This model fits better than a constant model 
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(X2 (8136, N = 8142) = 4730, p < 0.001). Then, we fit another multiple logistic regression 

model with six variables, with entropic value as the information predictor: the intercept (b = 

0.10, t(8136) = 0.68, p = 0.50), the subject ID (b = −0.31, t(8136) = −4.83, p < 0.001), the 

expected values of offer 1 (b = 0.03, t(8136) = 38.90, p < 0.001) and offer 2 (b = −0.03, 

t(8136) = −37.33, p < 0.001), and the entropic value of offer 1 (b = 0.35, t(8136) = 5.39, p < 

0.001) and offer 2 (b = −0.28, t(8136) = −4.25, p < 0.001; Fig. 3b). This model also fits 

better than a constant model (X2 (8136, N = 8142) = 4740, p < 0.001).

The Akaike information criterion (AIC) is a common tool for formal model comparison. We 

found that the model using entropic value (Equation 6) resulted in a smaller AIC score 

(AIC=6550.51) than the model using informativeness (AIC=6558.83; Equation 2), 

indicating a better fit to the data. AIC weight estimates the relative likelihood of a particular 

model among all the candidate models, and thus provides a quantitative measure of how 

much better a model is to the alternative(s) (Burnham & Anderson, 2010). Comparing these 

two AIC values, the model incorporating entropic value resulted in an AIC weight of 98%, 

which means that this model is 98% more likely to be the one that resembles the true data-

generating model, and thus better describing the choice behavior (Equation 7).

Second, we entered intercept, subject ID, expected value, informativeness (binary variable), 

and entropic value (entropy associated with a choice) simultaneously into a multiple logistic 

regression (Equation 8). Because informativeness was perfectly correlated with both 

presented and expected additional visual stimuli, this analysis allows the presence of 

additional visual stimuli and entropic value to directly compete for explaining variance in 

choices. Under this model, we found that the informativeness (additional visual stimuli) for 

offer 1 (b = −0.03, t(8136) = −0.27, p = 0.79) and offer 2 (b = 0.03, t(8136) = 0.22, p = 

0.83), and the intercept (b = 0.09, t(8136) = 0.66, p = 0.51) do not significantly correlate 

with the probability of choosing offer 1. In contrast, the expected value of offer 1 (b = 0.028, 

t(8136) = 38.74, p < 0.001) and offer2 (b = −0.027, t(8136) = −37.08, p < 0.001), the 

entropic value of offer 1 (b = 0.39, t(8136) = 2.86, p = 0.004) and offer 2 (b = −0.31, t(8136) 

= −2.28, p = 0.023), and the subject identity (b = −0.31, t(8136) = −4.83, p < 0.001) all 

significantly correlate with choice (Fig. 3c). Combined with results in Fig 3 a–b, these 

results suggest that even though the informativeness influences choice preference, the 

entropic value provides a better fit. These results indicate that the additional visual stimuli 

did not significantly account for variance in the behavior. It is the Shannon information, not 

the additional visual stimuli associated with informative options per se that drives 

preference.

Monkeys do not use counterfactual information to update choice strategy

Although counterfactual information in our task provided no strategic benefit due to trial-to-

trial independence, we wondered whether our subjects nonetheless acted as if it did. If so, 

they might have adjusted their strategy after receiving counterfactual information (Hayden et 

al., 2009). Thus, strategic adjustment is a signature of a potential confound. We thus 

examined changes in preference resulting from counterfactual information. Choice accuracy 

(likelihood of choosing the option with the greater expected value) did not measurably 

change after receiving counterfactual outcome information. Specifically, it was 82% (n= 
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4227) when the counterfactual outcome was revealed and 83% (n= 3914) when it was not 

(X2 (1, N = 4227, 3914) = 1.99, p = 0.158).

The valence of counterfactual information also did not measurably affect subsequent 

choices. Counterfactual information could potentially lead to either a good news condition 

(chosen gamble win and unchosen gamble loss, or, chosen win > unchosen win), or a bad 
news condition (chosen gamble loss and unchosen gamble win, or, chosen loss > unchosen 

loss). We found no difference in subsequent choice accuracy following a good news 

condition (83%) versus a bad news condition (81%; X2 (1, N = 2302, 3804) = 2.24, p = 

0.134). Moreover, a bad news condition (which could potentially lead to a regret-like state) 

did not motivate choice of the un-chosen side (X2 (1, N = 1726, 2502) = 0.05, p = 0.818) or 

original position (X2 (1, N = 1726, 2502) = 0.07, p = 0.789) relative to a good news 

condition. These null results suggest that our subjects did not apply a win-stay-lose-shift 

strategy (or something like it) based on counterfactual information. We also found no 

difference in subsequent information-seeking tendency following a good new condition 

versus a bad news condition (53% versus 52%; X2 (1, N = 1186, 1863) = 0.26, p = 0.609). 

These results argue against the possibility that our effects reflect erroneous associations by 

our subjects and suggest that our training routing was sufficient.

Furthermore, we asked whether monkeys seek the counterfactual information, not due to 

intrinsic demand for information, but due to other strategic reasons – they could have 

potentially perceived that there was a latent learning benefit to making sure the task structure 

has not changed yet. This motivation would be strategic and would not satisfy our proposed 

definition of curiosity. If so, when there is no counterfactual information available, subjects 

will make less accurate choices. The reason is that choosing the suboptimal alternative, 

instead of the option with highest expected value, and experiencing the outcomes, would be 

the only way that the subjects can check whether the task structure has changed or not. We 

thus compared the choice accuracy in info-choice trials where one of the options also offers 

information on counterfactual outcome when chosen, and accuracy in no-info trials where 

neither option leads to counterfactual outcome information. We found no significant 

difference in choice accuracy in info-choice (83%) and no-info (82%) trials (X2 (1, N = 

2173, 1899) = 1.91, p = 0.17). This result suggests that even if we could not fully rule out 

the possibility of perceived benefit of latent learning, such an explanation could not explain 

away the information seeking behavior we report.

This (perceived) latent learning benefit explanation would also predict that subject may only 

learn from information in the counterfactual outcomes, if the results were anomalies, i.e. 

when the rare events paid off. Thus, we defined anomalous trials as when on info-choice 

trials, informative offer was chosen and the counterfactual outcome resulted in a rare win 

(wins in which a priori probability was <0.33). We defined non-anomalous trials as when on 

info-choice trials, informative offer was chosen and the counterfactual outcome resulted in 

an expected win (its probability is >0.66). We compared the accuracy and information-

seeking tendency on the immediate next trial after anomalous trials and after expected trials. 

We found no significant difference in either accuracy (X2 (1, N = 194, 463) = 0.55, p = 0.46) 

or information-seeking tendency (X2 (1, N = 194, 463) = 0.0005, p = 0.98) in these two 
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conditions. This lack of effect further suggests that learning effect, at least to the testable 

horizon of our task, cannot explain the information preference that monkeys exhibited.

Measuring the value of curiosity for counterfactual information

To quantify the subjective value placed on counterfactual information, we generated 

psychometric curves showing probability of choosing the informative gamble as a function 

of the expected value difference between informative and non-informative gambles (Fig. 3d, 

Equation 14). This curve was shifted to the left, indicating that our subjects sacrificed water 

reward for information. On average, they sacrificed 6.4 uL of water reward (subject B: 6.41 

uL; subject J: 6.37 uL) relative to a pure reward-maximizing strategy (t-stat=4.87; P<0.001; 

t-test), to gain 0.014 bits (subject B: 0.0147 bits; subject J: 0.0135 bits) more information 

(Equation 10–13). This payment for information is 5.32% the size of the average reward 

obtained per trial. Thus, our subjects sacrificed a small but significant amount of primary 

reward to satisfy their curiosity about the counterfactual outcomes.

DISCUSSION

We previously proposed three criteria that are diagnostic of human-like curiosity in non-

human animals (Wang et al., 2018). These criteria are that the subject (1) shows a 

willingness to pay for information that (2) gives no strategic benefit and (3) the willingness 

to pay depends systematically on the amount of information available. Here we show that 

macaques can meet these criteria. Specifically, we find that when choosing between risky 

options, two macaque subjects preferred gambles that promised information about what 

would have occurred had they chosen differently. This information, which we call 

counterfactual information, had no direct instrumental benefits. Indeed, we saw no 

measurable effect of counterfactual outcomes on strategic adjustments.

Assessing curiosity in animals is difficult because there are other things that decision-makers 

can learn besides unknown reward contingencies. Indeed, even curiosity-driven play among 

children and puppies is, presumably, in an evolutionary sense, there to drive learning. That 

is, it has an ultimate strategic purpose (Kidd & Hayden, 2016; Kidd, Piantadosi, & Aslin, 

2012; 2014). We do not want to exclude these forms of learning from formal definitions of 

curiosity at the risk of throwing out the baby with the bathwater. Future work formalizing 

curiosity will have to navigate this problem. Relatedly, we acknowledge that our current task 

cannot fully rule out the possibility that information seeking has potential strategic benefits. 

For example, if subject believe the task structure is more volatile than it actually is, they may 

seek to calibrate their strategy through frequent sampling. In any case our results provide, in 

our view, the strongest case yet presented in the literature for non-strategic information 

seeking in non-human animals.

Many non-human animals will explore new environments or stimuli (Kidd and Hayden 

2016). Although exploratory behaviors may reflect curiosity, it is hard to ascertain whether 

they reflect a drive for information per se: information gained sometimes is a byproduct as 

animals explore and manipulate the environment to acquire reward (Thorndike 2017; Emery 

and Clayton 2004). Observing behavior, likewise, is proposed to reflect curiosity (Stagner & 

Zentall, 2010; Wyckoff, 1952; Green & Rachlin, 1977; Blanchard et al., 2015). Despite its 

Wang and Hayden Page 13

Cognition. Author manuscript; available in PMC 2021 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



merits, the information provided carries the value of a conditioned reinforcer (Beierholm & 

Dayan, 2010). As such, information in this case is still correlated with reward contingency or 

surprise about the trial outcome. Even in some cases when no valid information before delay 

to reward was given (McDevitt, Dunn, Spetch, & Ludvig, 2016), and animals still preferred 

a suboptimal option, it is impossible to parse out whether this behavior is due to observing, 

curiosity, or risk seeking. Therefore, the goal of our new paradigm is to exploit monkeys’ 

understanding of the counterfactual outcome to provide a task design that orthogonalizes 

entropy (information), strategy, reward contingency, and risk.

At the heart of our task design is the trade-off between the prospect of expected reward and 

the prospect of total information gain. Therefore, we defined the entropic value of each 

choice as the entropy of the chosen gamble only when the chosen gamble was not 

informative and as the sum of entropy of both the chosen and unchosen gambles when the 

chosen gamble was informative. Due to the fact that information is designated as the entropy 

provided by revealing a gamble outcome, artificially assigning zero entropy to the chosen 

option would mean treating it as a “safe” (i.e. riskless) option. That is, one with 100% 

probability of reward or no reward. We know that subjects do not perceive the task this way 

(Hayden et al., 2009). Indeed, the philosophical underpinning of our task design is that 

subjects trade of both information and value. A subject who understands the task should 

only forgo water reward when there is a worthwhile amount of information. Sometimes this 

information comes from higher entropy on chosen option (high risk gamble) and medium 

entropy from counterfactual outcome, sometimes from low entropy on chosen option (low 

risk gamble) but high entropy on counterfactual outcome, and so forth. Choice leading to 

higher overall entropy is appropriately traded off with the reward magnitude (expected 

value) at stake and not to be confounded with a risk preference on counterfactual or chosen 

offers. Therefore, our way of calculating the entropy in addition to the expected value factors 

in the multiple logistic regression model captures this trade-off without relying on false 

assumptions or inviting risk preference confounds.

The term curiosity is – and, given our current lack of understanding of its phenomenology, 

should be – controversial. The phenomenon of curiosity, even in humans, where is best 

understood, is still something that has only recently begun to receive serious scholarly 

interest. As such, we believe that the field needs to keep an open mind about what curiosity 

may mean (Kidd and Hayden, 2016). At the same time, it would be a mistake to simply wait 

until the science is done to debate the term – that approach risks throwing out the baby with 

the bathwater. That is, avoiding the discussion would lead to confusion and would impede 

progress on the problem. For this reason, we believe the best approach is to use the term 

when it can be justified, to provide a working definition when doing so, and to justify the 

choice of that definition. In the case of human-like animal curiosity, we have proposed a 

tentative formal definition, and use that here (Wang et al., 2018). We believe that this 

definition can serve as a starting point for continuing discussions on animal curiosity and 

hope that these discussions will lead to a gradually better definition in the future.
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Figure 1. 
(A)The Counterfactual Information Task. Trial starts with serial presentation of offer 1 

and offer 2, followed by a central fixation, choice, outcome, and an inter-trial interval. The 

color of the offer indicates the size of the reward payoff and the height indicates the 

probability of receiving the payoff. The cyan dot at the center of the offers indicates the 

informativeness of each offer. Outcome is indicated following choice by color. Upon choice, 

payoff of the chosen gamble is delivered while the outcome is revealed. The informative 

option leads to the reveal of both the chosen and unchosen gamble outcomes. (B) Entropy 
of Probabilistic Outcomes. Entropy, information gained from revealing a gamble outcome, 

peaks at probability of 0.5, when the outcome is most uncertain, and decreases lawfully as 

probability moves closer to 0 or 1.
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Figure 2. 
(A-D) X-axis: predictors included in the multiple logistic regression. Y-axis: t-statistics of 

each predictor. (A-B) Probability of choosing offer 1 as a function of the intercept, the 

expected values and the informativeness of offer 1 and offer 2, fitted for each subject. (C-D) 
Probability of choosing offer 1 as a function of the intercept, the expected values and the 

entropic value of offer 1 and offer 2, fitted for each subject.

Wang and Hayden Page 21

Cognition. Author manuscript; available in PMC 2021 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wang and Hayden Page 22

Cognition. Author manuscript; available in PMC 2021 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
(A-C) X-axis: predictors included in the multiple logistic regression. Y-axis: t- tstatistics of 

each predictor. Both informativeness and entropic value can explain choice behavior in 

addition to expected value. However, entropic value provides a significantly better fit. (A) 
Probability of choosing offer 1 as a function of the intercept, the expected values (EV) and 

the informativeness (info) of offer 1 and offer 2, fitted for both subjects. (B) Probability of 

choosing offer 1 as a function of the intercept, the expected values and the entropic value of 

offer 1 and offer 2, fitted for each subjects. (C) Probability of choosing offer 1 as a function 

of the intercept, the expected values, the visual stimuli (informativeness visual cues), and 
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entropic value of offer 1 and offer 2. (D) Fitted logistic curve for probability of choosing 

informative option as a function of value difference (expected value of informative option 

minus expected value of non-informative option). The deviation from the curve of the 

optimal strategy and the left shift shows the higher subjective value placed on informative 

options.
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