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Abstract
Mass-media coverage is one of the most widely used government strategies on influencing public opinion in times of crisis. 
Awareness campaigns are highly influential tools to expand healthy behavior practices among individuals during epidemics 
and pandemics. Mathematical modeling has become an important tool in analyzing the effects of media awareness on the 
spread of infectious diseases. In this paper, a fractional-order epidemic model incorporating media coverage is presented 
and analyzed. The problem is formulated using susceptible, infectious and recovered compartmental model. A long-term 
memory effect modeled by a Caputo fractional derivative is included in each compartment to describe the evolution related 
to the individuals’ experiences. The well-posedness of the model is investigated in terms of global existence, positivity, and 
boundedness of solutions. Moreover, the disease-free equilibrium and the endemic equilibrium points are given alongside 
their local stabilities. By constructing suitable Lyapunov functions, the global stability of the disease-free and endemic 
equilibria is proven according to the basic reproduction number R

0
 . Finally, numerical simulations are performed to support 

our analytical findings. It was found out that the long-term memory has no effect on the stability of the equilibrium points. 
However, for increased values of the fractional derivative order parameter, each solution reaches its equilibrium state more 
rapidly. Furthermore, it was observed that an increase of the media awareness parameter, decreases the magnitude of infected 
individuals, and consequently, the height of the epidemic peak.
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Introduction

Epidemic outbreaks are usually caused by transmissible 
infections, commonly transmitted through animal-to-per-
son, person-to-person, or from direct contact with poten-
tially infected environments (van Seventer and Hochberg 
2017). Many vital elements, including water, sanitation, 
food and air quality play an essential role in the spread of 
transmissible diseases (Musoke et al. 2016). According to 
World Health Organization (WHO), water supply, sanitation 

facilities, food and climate are the most important environ-
mental factors influencing the transmission of infectious 
diseases. Besides, the irrational behavior of humans in the 
global environment promotes the emergence of infections 
(Nava et al. 2017). Indeed, the over-exploitation of natural 
resources, the upheavals of biodiversity and climate change 
may lead to the sudden appearance of new infectious dis-
eases, particularly zoonotic diseases that are transmitted 
from animals to humans (Wilcox and Gubler 2005; Johnson 
et al. 2015). The emergence of SARS-CoV-1 in 2002, Ebola 
virus disease (EVD) and the emergence of MERS-CoV in 
2012 have been designated as zoonotic diseases (Reperant 
and Osterhaus 2017). In addition, the current coronavirus 
disease pandemic 2019 (COVID-19), caused by SARS-
CoV-2, has been similarly defined as an emerging infectious 
disease of animal origin (Abdel-Moneim and Abdelwhab 
2020; Mahdy et al. 2020). However, for a long time, humans 
have invented several strategies to fight against epidemics 
such as quarantine, isolation and vaccination. On the other 
hand, mathematical modeling of infectious diseases has 
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also been a valuable tool in the fight against epidemics out-
breaks (Hethcote 2000). Kermack and McKendrick (1927) 
proposed the first modeling investigation of the course of an 
epidemic for a certain population in the early 20th century. 
Recently, modeling infectious diseases have generated sig-
nificant interest in health research. Accordingly, modeling 
infectious diseases has been an interesting issue in math-
ematical epidemiology (Hethcote 2000; Venkatachalam and 
Mikler 2006; Area et al. 2015; Singh et al. 2016a, b; Tolles 
and Luong 2020; Aidoo et al. 2021). The authors have often 
used deterministic and stochastic versions of SIR-type com-
partment models (Buonomo et al. 2008; Jiang et al. 2011; 
Lin et al. 2014; Zhao 2016). However, in recent years many 
other researchers have used fractional extensions of math-
ematical models to study the dynamic of epidemics using 
fractional order derivatives (Ahmed et al. 2006; El-Saka 
2013; Al-Sulami et al. 2014). Modeling by fractional-order 
differential equations has been an essential tool for describ-
ing dynamical processes involving memory effects that 
exist in many biological systems (Huo et al. 2015). During 
an epidemic, we can observe a biphasic decline behavior 
of infections or diseases at a slower rate due to population 
experiences and memory effects that cannot be modeled only 
by a natural derivative. For this reason, fractional modeling 
is more accurate than models based on ordinary differential 
equations. In recent years, many fractional SIR-type models 
involving Caputo fractional derivative have been developed 
and studied (Area et al. 2015; Saeedian et al. 2017; dos 
Santos et al. 2017; Mouaouine et al. 2018). Saeedian et al. 
(2017) studied the effect of memory on the evolution of an 
epidemic by means of the following model

in which, the population is divided into three compartments, 
depending on the epidemiological status of individuals: 
numbers of susceptible (S(t)), infectious (I(t)) and recovered 
(R(t)) at time t. � and � are infection and recovery coeffi-
cients, respectively. D� denotes the Caputo fractional deriva-
tive of order � , where � ∈ (0, 1) . The authors showed that the 
dynamics of the system depends on the degree of memory 
effects, governed by the order of fractional derivatives � , in 
which the evolution of an epidemic depends on the fraction 
of infected individuals at the onset of memory effects in the 
evolution. Recently, Mouaouine et al. (2018) investigated a 
fractional-order SIR epidemic model with nonlinear inci-
dence function to cover various types of incidence rate that 
exist in literature. More recently, several studies have been 
conducted to study the dynamics of the COVID-19 pan-
demic using fractional-order mathematical models (Ahmad 

(1)

⎧⎪⎨⎪⎩

D�S(t) = − �S(t)I(t),

D�I(t) = �S(t)I(t) − �I(t),

D�R(t) = �I(t),

et al. 2020; Zeeshan et al. 2021; Oud et al. 2021; Chu et al. 
2021). However, during an epidemic, awareness campaigns 
have been the most recommended Non-Pharmaceutical 
strategies used by the public health departments in order to 
slow down the spread of infections (Bergeron and Sanchez 
2005; Cui et al. 2008; Liu and Ja 2008; Liu et al. 2007). 
The current crisis of COVID-19 pandemic has shown great 
interest of the media coverage as a means of health educa-
tion through the dissemination of awareness programs and 
preventive measures. The health awareness campaigns have 
played an important role in influencing people’s behavior, 
and consequently, in controlling the force of the infection 
(Musa et al. 2021). In this paper, we enhance the model 
(1) by introducing the awareness campaign policy into the 
epidemic dynamics. For this end, we explore the following 
fractional SIR epidemic model with nonlinear incidence rate 
incorporating media coverage:

� is the recruitment rate of the population, � is the natural 
death rate, while d is the death rate due to disease and r is 
the recovery rate of the infectious individuals. �1 is the maxi-
mal effective contact rate before media alert, �2 is the maxi-
mal effective contact rate due to mass media alert in the 
presence of infected population. The half saturation m > 0 
reflects the reactive velocity of individuals and media cover-
age to epidemic disease. The function I

m+I
 is a continuous 

bounded function that takes into account disease saturation 
or psychological effects (Tchuenche et  al. 2011). The 
term �2I

m+I
 measures the effect of reduction of the contact rate 

when infectious individuals are reported in the media. 
Because the coverage report can slow, but cannot prevent 
disease from spreading completely, we have 𝛽1 ≥ 𝛽2 > 0 . 
Since the two first equations in system (2) are independent 
of the third equation, we can reduce this system to the fol-
lowing equivalent model:

This study is organized as follows. In the next section, we 
present some background material and we show that our 
model is biologically and mathematically well posed. In the 
following section, we investigate the existence of equilib-
rium points and their local stability. Then we mainly study 
the global stability of the system and we present some 

(2)

⎧⎪⎪⎨⎪⎪⎩

D�S(t) = � −

�
�1 −

�2I(t)

m + I(t)

�
S(t)I(t) − �S(t),

D�I(t) =

�
�1 −

�2I(t)

m + I(t)

�
S(t)I(t) − (� + d + r)I(t),

D�R(t) = rI(t) − �R(t),

(3)

⎧⎪⎨⎪⎩

D�S(t) = � −

�
�1 −

�2I(t)

m + I(t)

�
S(t)I(t) − �S(t),

D�I(t) =

�
�1 −

�2I(t)

m + I(t)

�
S(t)I(t) − (� + d + r)I(t).
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numerical simulations to support our theoretical findings. 
Finally, we provide some conclusions.

Preliminary results

In this section, we recall some preliminary definitions of 
the fractional-order integral, Caputo fractional derivative, 
and Mittag–Lefller function (see Podlubny 1999), and the 
references therein). Therefore, we establish, the positivity 
and boundedness of solutions of the model (3).

Definition 1  The fractional integral of order 𝛼 > 0 of a func-
tion f ∶ ℝ+ → ℝ is defined as follows:

where Γ(.) is the Gamma function.

Definition 2  The Caputo frational derivative of order 𝛼 > 0 
of a function f ∶ ℝ+ → ℝ is given by

where D ≡ d∕dt , with � ∈ (n − 1, n) and n ∈ ℕ
⋆ . In particu-

lar, when � ∈ (0, 1) , we have

Definition 3  Let 𝛼 > 0. The function E� defined by

is called the Mittag–Lefller function of parameter �.

It is well-known that both of infected population and sus-
ceptible individuals number should remain nonnegative and 
bounded. For this end, we explore the well-posedness of our 

proposed problem (3). Let X(t) =
(
S(t)

I(t)

)
 , then we can 

reformulate the system (3) as follows:

where

For biological reasons, we assume that:

(4)I�f (t) =
1

Γ(�) ∫
t

0

(t − x)�−1f (x)dx,

(5)D�

t
f (t) = In−�Dn

t
f (t),

(6)D�

t
f (t) =

1

Γ(1 − �) ∫
t

0

f �(x)

(t − x)�
dx.

(7)E�(z) =

∞∑
j=0

zj

Γ(�j + 1)
,

(8)D�X(t) = F(X(t)),

(9)

F(X(t)) =

⎛⎜⎜⎜⎝

� −

�
�1 −

�2I(t)

m + I(t)

�
S(t)I(t) − �S(t)

�
�1 −

�2I(t)

m + I(t)

�
S(t)I(t) − (� + d + r)I(t)

⎞⎟⎟⎟⎠
.

In order to establish the global existence of solutions for 
system (3) with initial condition (10), we need the follow-
ing lemma:

Lemma 1  Assume that the vector function F ∶ ℝ
2
→ ℝ

2 sat-
isfies the following conditions: 

1.	 F(X) and �F
�X

 are continuous.
2.	 ‖F(X)‖ ≤ � + �‖X‖ ∀X ∈ ℝ

2 , where � and � are two 
positive constants.

Then system (3) has a unique solution defined on ℝ+.
The proof of this lemma follows immediately from (Lin 

2007).

Theorem 1  For any initial conditions satisfying (10), then 
system (3) has a unique solution on [0,∞) , and this solution 
remains non-negative and bounded for all t ≥ 0 . In addition, 
we have

where N(t) = S(t) + I(t).

Proof  Using the results in (Hale and Lunel 1993), we estab-
lish the existence of solutions. Let

then the system (3) can be written as follows:

Then

Hence, the proprieties of Lemma 1 are satisfied. Then the 
system has a unique solution. Now, we establish the non-
negativity of the solution, we have

Therefore, the solution of system (3) remains non-negative 
in ℝ2

+
 for all t ≥ 0.

(10)S(0) ≥ 0, I(0) ≥ 0.

N(t) ≤ N(0) +
�

�
,

� =

(
�

0

)
, A =

(
−� 0

0 − (� + d + r)

)
,

B1 =

(
−�1
�1

)
, B2 =

(
�2
−�2

)

(11)F(X) = � + AX + B1SI + B2

I

I + m
SI.

(12)‖F(X)‖ ≤ ‖�‖ + (��B1
�� + ��B2

��)‖SI‖ + ‖A‖‖X‖.

(13)D�S|S=0 = � ≥ 0,

(14)D�I|I=0 = 0.
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Finally, we prove the boundedness of solution. From the 
model (3), and by adding all the equations, we obtain

Solving (15), we get

Since 0 ≤ E�(−�t
�) ≤ 1 , we get

This completes the proof. 	� ◻

Qualitative analysis of model (3)

Equilibria and local stability

In this subsection, we will determine the steady states of 
the model and investigate the local stability. We define 
the basic reproduction number R0 (Van den Driessche and 
Watmough 2002) of our model by

This quantity describes the average number of secondary 
infected individuals produced by one infected case in a sus-
ceptible population. First, we discuss the existence of equi-
libria for system (3). It is easy to see that system (3) has 
always a disease-free equilibrium E0(S0, 0) where S0 =

�

�
 . In 

addition, we will show that the model (3) has an endemic 
steady state when R0 > 1 . Let E⋆(S⋆, I⋆) be an endemic 
equilibrium such that S⋆ > 0 , I⋆ > 0 and

It follows that

and

(15)
D�N(t) =� − �S(t) − (� + d + r)I(t)

≤� − �N(t).

(16)D�N(t) ≤
(
−
�

�
+ N(0)

)
E�(−�t

�) +
�

�
,

(17)N(t) ≤ N(0) +
�

�
.

(18)R0 =
�1�

�(� + d + r)
.

(19)

⎧⎪⎨⎪⎩

𝛬 −

�
𝛽1 −

𝛽2I
⋆

m + I⋆

�
S⋆I⋆ − 𝜇S⋆ = 0,

�
𝛽1 −

𝛽2I
⋆

m + I⋆

�
S⋆I⋆ − (𝜇 + d + r)I⋆ = 0.

(20)
S⋆ =

𝜇 + d + r(
𝛽1 −

𝛽2I
⋆

m + I⋆

)

Substituting (19) into the first equation of system (18), we 
obtain

Let H be the function defined as

We prove that the equation H(x) = 0 has a unique solution. 
We have

we can see that H′ < 0 , then H is a decreasing function. On 
the other hand, we have limx→∞ H(x) = −∞ and

Since R0 > 1 we have H(0) > 0 . Therefore, by means of the 
intermediate value theorem, and since F is decreasing, there 
is a unique solution of the equation H(x) = 0 . It follows that 
system (3) has unique endemic equilibrium E⋆ = (S⋆, I⋆) . 
From the discussion above we get the following result:

Theorem 2 

1.	 If R0 ≤ 1 , then the system (3) has a unique disease-free 
equilibrium E0 .

2.	 If R0 > 1 , the disease-free equilibrium is still present and 
system (3) has a unique endemic equilibrium E⋆(S⋆, I⋆)

.

Next, we discuss the local stability of the disease-free 
equilibrium E0 and the endemic equilibrium E⋆ respectively. 
We define the Jacobian matrix of system (3) at any equilib-
rium Ē(S̄, Ī) by

(21)
𝛬(

𝛽1 −
𝛽2I

⋆

m + I⋆

)
I⋆ + 𝜇

=
𝜇 + d + r(

𝛽1 −
𝛽2I

⋆

m + I⋆

) .

(22)
𝛬 −

𝜇(𝜇 + d + r)(
𝛽1 −

𝛽2I
⋆

m + I⋆

) − (𝜇 + d + r)I⋆ = 0.

(23)
H(x) = � −

�(� + d + r)(
�1 −

�2x

m + x

) − (� + d + r)x.

(24)
H�(x) = −

m�2�(� + d + r)

(m + x)2
(
�1 −

�2x

m + x

)2
− (� + d + r),

(25)
H(0) =� −

�(� + d + r)

�1

=
�(� + d + r)

�1

(
R0 − 1

)
.
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From Petráš (2011), Matignon (1996), a sufficient condition 
for the local stability of Ē is

where �i are the eigenvalues of JĒ . Thus, we have the 
following:

Theorem 3  If R0 < 1 , then the disease-free equilibrium E0 
is locally asymptotically stable and it is unstable whenever 
R0 > 1.

Proof  At free-disease equilibrium E0 , (25) becomes

Therefore, the eigenvalues of JE0
 are �1 = −� and 

�2 = (� + d + r)(R0 − 1) . It is clear that �2 satisfies condi-
tion (26) if R0 < 1 , and since �1 is negative, this completes 
the proof. 	�  ◻

Now, we investigate the local stability of E⋆ . We have the 
following result.

Theorem 4  If R0 > 1 , then the endemic equilibrium E⋆ is 
locally asymptotically stable.

Proof  We assume that R0 > 1 . After evaluating (25) at 
endemic equilbrium E⋆ and calculating its characteristic 
equation, we get

where

It is obvious that a > 0 and b > 0 . Hence, the Routh–Hur-
witz conditions are satisfied. According to the results in 
Ahmed et al. (2006), the proof is complete. 	�  ◻

(26)

J
Ē
=

⎛⎜⎜⎜⎝

−𝜇 −

�
𝛽
1
−

𝛽
2
Ī

m + Ī

�
Ī

𝛽
2
mS̄Ī

(m + Ī)2
−

�
𝛽
1
−

𝛽
2
Ī

m + Ī

�
S̄

�
𝛽
1
−

𝛽
2
Ī

m + Ī

�
Ī

�
𝛽
1
−

𝛽
2
Ī

m + Ī

�
S̄ −

𝛽
2
mS̄Ī

(m + Ī)2
− (𝜇 + d + r)

⎞⎟⎟⎟⎠
.

(27)||arg(𝜉i)|| > 𝛼𝜋

2
, i = 1, 2,

(28)JE0
=

⎛
⎜⎜⎜⎝

−�
−�1�

�

0
�1�

�
− (� + d + r)

⎞
⎟⎟⎟⎠
.

(29)�2 + a� + b = 0,

(30)a =𝜇 +
𝛽2mS

⋆I⋆

(m + I⋆)2
+

(
𝛽1 −

𝛽2I
⋆

m + I⋆

)
I⋆,

(31)b =
𝛽2mS

⋆I⋆

(m + I⋆)2

((
𝛽1 −

𝛽2I
⋆

m + I⋆

)
I⋆ + 𝜇

)
.

Global stability

This subsection is devoted to the global stability of the two 
equilibria. To this end, we will use some suitable Lyapunov 
functions and fractional LaSalle’s invariant principle.

First, for the disease-free equilibrium E0 , we have the 
following result:

Theorem 5  If R0 ≤ 1 , then the disease-free equilibrium E0 
is globally asymptotically stable.

Proof  We consider the following Lyapunov function:

We calculate the fractional time derivation of �0 along with 
the solution of system (3). We obtain

Using the fact that � = �S0 , we obtain

Since R0 ≤ 1 , then D��0(t) ≤ 0 . Furthermore D��0(t) = 0 
holds, if and only if S = S0 and I = 0 . Consequently, the 
largest invariant set of {(S, I) ∈ ℝ

2
+
∶ D��0(t) = 0} is the 

singleton {E0} . By fractional LaSalle’s invariance principle 
(Huo et al. 2015), E0 is globally asymptotically stable. 	
� ◻

For the second endemic equilibrium E⋆ , we have the 
following result:

Theorem 6  The endemic equilibrium E⋆ is globally asymp-
totically stable whenever R0 > 1.

Proof  We consider the following Lyapunov function:

(32)�0(t) =

(
S − S0 − S0 ln

S

S0

)
+ I.

(33)D��0(t) =

(
1 −

S0

S

)
D�S + D�I.

(34)

D��0(t) ≤ −
�

S
(S − S0)

2 −

(
�1 −

�2I

m + I

)
(S − S0)I

+

(
�1 −

�2I

m + I

)
SI − (� + d + r)I

= −
�

S
(S − S0)

2 +

(
�1 −

�2I

m + I

)
S0I

− (� + d + r)I

= −
�

S
(S − S0)

2

−
�2I

m + I
S0I + (� + d + r)(R0 − 1)I.

(35)𝛷1(t) =
1

2
(S − S⋆ + I − I⋆)2 + a

(
I − I⋆ − I⋆ ln

I

I⋆

)
,
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where a is a positive constant to be determined later.
We calculate the fractional time derivation of �1 along 

the solution of system (3). We get

hence

Using the fact that

we obtain

Choose a =
2𝜇 + d + r

𝛽1 −
𝛽2I

⋆

m + I⋆

 and notice that both I − I⋆ and 

𝛽2I

m + I
−

𝛽2I
⋆

m + I⋆
 have the same sign, we get

H e n c e ,  t h e  l a r g e s t  i n v a r i a n t  s e t  o f 
{(S, I) ∈ ℝ

2
+
∶ D��1(t) = 0} is the singleton {E⋆} . By frac-

tional LaSalle’s invariance principle (Huo et al. 2015), E⋆ 
is globally asymptotically stable. 	�  ◻

(36)

D𝛼𝛷1(t) = (D𝛼S + D𝛼I)(S − S⋆ + I − I⋆) + a

(
1 −

I⋆

I

)
D𝛼I,

(37)

D𝛼𝛷1(t) ≤ (S − S⋆ + I − I⋆)(𝛬 − 𝜇S − (𝜇 + d + r)I)

+ a

(
1 −

I⋆

I

)((
𝛽1 −

𝛽2I

m + I

)
SI

−(𝜇 + d + r)I).

(38)𝛬 =𝜇S⋆ + (𝜇 + d + r)I⋆,

(39)
(
𝛽1 −

𝛽2I
⋆

m + I⋆

)
S⋆ =𝜇 + d + r,

(40)

D𝛼𝛷1(t) ≤ (S − S⋆ + I − I⋆)
(
𝜇(S⋆ − S)

+(𝜇 + d + r)(I⋆ − I)
)

+ a(I − I⋆)

(
𝛽1 −

𝛽2I
⋆

m + I⋆

)
(S − S⋆)

− a(I − I⋆)

(
𝛽2I

m + I
−

𝛽2I
⋆

m + I⋆

)
S

= − 𝜇(S − S⋆)2 − (𝜇 + d + r)(I − I⋆)2

+

[
a

(
𝛽1 −

𝛽2I
⋆

m + I⋆

)

−(2𝜇 + d + r)](S − S⋆)(I − I⋆)

− a(I − I⋆)

(
𝛽2I

m + I
−

𝛽2I
⋆

m + I⋆

)
S.

(41)

D𝛼𝛷1(t) ≤ − 𝜇(S − S⋆)2 − (𝜇 + d + r)(I − I⋆)2

− a(I − I⋆)

(
𝛽2I

m + I
−

𝛽2I
⋆

m + I⋆

)
S

≤ 0.

Numerical simulations

In this section, we give some numerical simulations to 
illustrate our analytical results. For this end, we apply the 
algorithm presented by Erturk et al. (2008) to numerically 
solve the model (3). Let’s consider the following problem:

where X0 =

(
S(0)

I(0)

)
 is the initial condition. The problem 

(42) is solved using the following numerical scheme

with tj+1 = tj + h , for j = 0, 1,… ,N − 1 and X0 =

(
40

20

)
.

Figure 1 depicts the evolution of the infection during the 
first 150 days of observation. It is shown that the curves 
converge toward the disease-free-equilibrium E0 = (320, 0) . 
In this case, the basic reproduction number is less than unity 
( R0 = 0.896 < 1 ) which confirms the stability result of E0.

The evolution of the disease infection is represented in 
Fig. 2 for the endemic steady state E⋆ . We observe that the 
curves converge to the endemic steady state E⋆ = (28, 177) . 
In this case, we calculate that R0 = 2.560 > 1 which sup-
port our theoretical result about the stability of E⋆.

Figure 3 shows the dynamics of the infection illustrat-
ing the impact of media coverage on the spread of an epi-
demic in the case of disease persistence (when R0 > 1 ) 
during the first 150 days of observation. Then we remark 
that increasing the values of the media coverage rate 
�2 = 0.0008;0.001;0.0015;0.0018 , decreases the magnitude 
of the infectious individuals.

We notice that from the three previous illustrations, the 
order of the fractional derivative � has no effect on the 
stability of the equilibria. However, for higher values of 
� , that describe the long memory term, the solutions con-
verge more quickly to the steady states; this can support 
the fact that epidemic dynamics is directly related to the 
individuals’ experiences, memory and knowledge induced 
from epidemic (Saeedian et al. 2017).

(42)
{

D�X(t) = F(X(t)),

X(0) = X0, X0 ∈ ℝ
2
+
.

(43)

X(tj) =
h�

Γ(� + 2)

(
(j − 1)�+1

−(j − � − 1)j�)F(X(t0)) + X(0)

+
h�

Γ(� + 2)

j−1∑
i=1

(
(j − i + 1)�+1

−2(j − i)�+1 + (j − i − 1)�+1
)
F(X(ti))

+
h�

Γ(� + 2)
F
(
X(tj−1)

+
h�

Γ(� + 1)
F(X(tj−1))

)
,
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Fig. 1   Behavior of the infection 
as function of time for � = 16 , 
�
1
= 0.0007 , �

2
= 0.0005 , 

� = 0.05 , d = 0.1 , r = 0.1 , 
m = 20 , which corresponds to 
the stability of the disease-free 
equilibrium E

0

Fig. 2   Behavior of the infec-
tion as function of time for 
� = 16 , �

1
= 0.002 , �

2
= 0.001 , 

� = 0.05 , d = 0.1 , r = 0.1 , 
m = 20 , which corresponds 
to the stability of the endemic 
equilibrium E⋆

Fig. 3   Simulation of the media 
coverage impact on the behavior 
of the infection for � = 16 , 
�
1
= 0.002 , � = 0.05 , d = 0.1 , 

r = 0.1 and m = 20



1318	 Modeling Earth Systems and Environment (2022) 8:1311–1319

1 3

Conclusion

In this work, a fractional order SIR epidemic model with 
the Caputo fractional derivative incorporating aware-
ness campaigns strategy is presented and analyzed. The 
global existence, positivity and boundedness of solutions 
are established. The local stability of both disease free-
equilibrium and the endemic-equilibrium are investigated. 
The global stability of both equilibria is explored by using 
Lyapunov method and fractional La-Salle invariance prin-
ciple. Numerical simulations of the system are performed. 
It was shown that different values of � affect the time to 
reach the steady states, but have no effect on the stability 
of disease-free equilibrium and the endemic equilibrium. 
Also, it can be observed that an increase of the media 
effect parameter �2 , decreases the transmission rate, and 
consequently, the magnitude of infected individuals. It was 
found out that from both the analytical and numerical find-
ings, the fractional-order derivative has no effect on the 
stability of equilibria. However, for increased values of the 
fractional derivative order, each solution curve converges 
more rapidly to its stationary state. Our proposed model 
may be useful to help in understanding the role of aware-
ness programs to prevent the spread of disease during an 
outbreak, epidemic, or pandemic.
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