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1  | INTRODUCTION

Large artery stiffness seems to be a common denominator in target 
organ damage in high‐risk population.1 In population studies, several 
noninvasive arterial parameters have been shown to be biomarkers 
of aortic stiffness.2 The stiffness of aorta is the ability of large ves‐
sel to dampen the pulsatility of ventricular ejection, and then, the 
transformation of a pulsatile pressure (and flow) at the ascending 
aorta into a continuous pressure (and flow), in arterioles, to lower 
the energy expenditure of organ perfusion.3 Numerous studies have 
presented that aortic stiffness is a marker of vascular aging and 
could reflect modification in mechanical wall properties responsible 
for vascular disease and occurrence of cardiovascular (CV) diseases.4 

Furthermore, in daily practice, its measurement may become a main 
routine assessment for patients.5

One of the main reproducible methods used to determine aor‐
tic stiffness is carotid‐femoral pulse wave velocity (PWV).6 PWV 
is defined as the velocity of arterial pulse moving along the vessel 
wall.7 Numerous studies have shown that PWV is a predictor of CV 
events.2

However, PWV measurement is not currently used in routine 
clinic, due to the difficulty of determining a nonpathological thresh‐
old value. Although some European consortium have reported nor‐
mal references values for PWV, it is still difficult to interpret elevated 
values of PWV independent of age or BP groups.8 These data allow 
identification of people in whom PWV is abnormal and whom might 
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Abstract
Aortic stiffness is a marker of vascular aging and may reflect occurrence of cardio‐
vascular (CV) diseases. Aortic pulse wave velocity (PWV), a marker of aortic stiffness, 
can be measured by applanation tonometry. A nomogram of aortic stiffness was eval‐
uated by the calculation of PWV index. Theoretical PWV can be calculated according 
to age, gender, mean blood pressure, and heart rate, allowing to form an individual 
PWV index [(measured PWV – theoretical PWV)/theoretical PWV]. The purpose of 
the present cross‐sectional study was to investigate the determinants of the PWV 
index, by applying a decision tree. A cross‐sectional study was conducted from 2012 
to 2017, and 597 individuals were included. A training decision tree was constructed 
based on seventy percent of these subjects (N = 428). The remaining 30% (N = 169) 
were used as the testing dataset to evaluate the performance of the decision trees. 
The input variables for the models were clinical and biochemical parameters. The 
different input variables remained in the model were diabetes, tobacco status, ca‐
rotid plaque, albuminuria, C‐reactive protein, total cholesterol, BMI, and previous CV 
diseases. For the validation decision model, the sensitivity, specificity, and accuracy 
values for identifying the related risk factors of PWV index were 70%, 78%, and 0.73. 
Since determinants of PWV index were all well‐accepted CV risk factors, a nomo‐
gram of aortic stiffness could be considered as an integrator of CV risk factors on 
their duration of exposure and could be utilized to develop future programs for CV 
risk assessment and reduction strategies.
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warrant more intensive follow‐up; however, whether the reference 
values should be used as cut‐off values for treatment remains to be 
discussed.

Though, individually, simple PWV measurement does not ap‐
pear relevant. Nevertheless, numerous studies have shown that 
age, gender, blood pressure (BP), and heart rate (HR) are strong 
determinants of aortic stiffness.9 A nomogram of aortic stiffness 
could be determined by the calculation of a PWV index and could 
better represent an individual parameter of CV management. A 
theoretical PWV, based on these determinants, was calculated to 
determine the individual relevance of aortic stiffness assessment. 
Also, a PWV index was calculated as ([measured PWV– theoreti‐
cal PWV]/theoretical PWV) to determine those patients with in‐
creased aortic stiffness, independently of age, gender, mean BP, 
and HR.10 Although PWV is a predictor of CV risk, the factors as‐
sociated with PWV index have been poorly studied, in particular 
through a decision tree model. Study of these potential factors 
could provide a better understanding of consistent data enabling 
to control and thus correct CV risk.

Data mining is a retrospective computational method for ex‐
tracting knowledge from large databases. Data mining algorithms 
were applied to define new models for predicting the risk factors 
of hypertension.11 Decision tree is easy to implement and interpret. 
It provides a tree‐based classification for developing a predictive 
model according to independent variables.12 Indeed, decision tree 
may appear to be one of the main algorithms among data mining 
tools in CV diseases.13

Study of the potential factors of PWV index could provide a bet‐
ter understanding of consistent data enabling to control and thus 
correct CV risk. Thus, the purpose of the present cross‐sectional 
study was to highlight biochemical and clinical factors of the aortic 
pulse wave velocity index through a decision tree.

2  | METHODS

2.1 | Overall population

The present study included 597 consecutive individuals from 
December 2012 to September 2017, both genders, with or without 
previous CV events. The individuals were eligible in this cross‐sec‐
tional study during their follow‐up at the Paris Hôtel‐Dieu University 
Hospital. The individuals were recruited after visit in the Diagnosis 
and Therapeutic Center of Hôtel‐Dieu University Hospital. Most of 
the individuals were in‐hospital source of patients, with routine CV 
follow‐up, and the others were referred by their general practitioner 
for a CV checkup because of the presence of one or more CV risk 
factors.

Exclusion criteria were as follows: age under 18, acute medical 
conditions, presence of atrial fibrillation, and unwilling to sign the 
participation agreement.

The study complies with the Declaration of Helsinki. The study 
was registered in the French National Agency for Medicines and 
Health Products Safety (No. 2013‐A00227‐38) and was approved 

by the Advisory Committee for Protection of Persons in Biomedical 
Research.

2.2 | Laboratory and clinical parameters

A question‐form was filled out at inclusion during the day‐hospital 
for CV screening and included age, gender, weight, height (respec‐
tively by a stadiometer fixed to a wall and Tanita scale with digital 
read‐out), body mass index (BMI) (weight [kg] divided by height [m2]) 
by standardized methods, family (first‐degree relatives) history of 
previous CV events, personal history of dyslipidemia (defined as a 
total/HDL cholesterol ratio >5 after an overnight fast or the pres‐
ence of lipid‐lowering medications), hypertension (treated or un‐
treated), smoking habits, previous diseases, and use of medications 
including antidiabetics and antihypertensive drugs. Previous CV 
events were retrospectively assessed by using scan imaging‐docu‐
mented stroke for cerebrovascular disease; past medical history 
of documented myocardial infarction, coronary revascularization, 
or coronary heart disease diagnosed by coronary angiograms for 
patients with symptoms or typical electrocardiographic modifica‐
tions for coronary heart disease; ankle‐brachial pressure index value 
<0.90, imaging‐documented atherosclerotic vascular disease, includ‐
ing asymptomatic severe carotid artery stenosis, peripheral vascular 
disease, and abdominal aortic aneurysm, arterial revascularization, 
or lower limb amputation. Left ventricular hypertrophy (LVH) was 
defined by left ventricular mass (LVM) indexed for body surface area 
(LVM/BSA) or for height2.7 (LVM/height2.7).

Hypertension was defined as supine systolic blood pressure (SBP) 
at least 140 mm Hg and/or diastolic BP (DBP) at least 90 mm Hg, ac‐
cording to guidelines by the European Society of Cardiology, and/
or antihypertensive drug used.14 Diabetes mellitus is defined as a 
glycosylated hemoglobin (HbA1c) ≥6.5% and/or fasting glucose 
≥7  mmol/L and/or the use of oral hypoglycemic agents or insulin 
therapy. Dyslipidemia was defined by the presence of lipid‐lowering 
medication and/or levels of LDL cholesterol and CV risk.15

Laboratory parameters included plasma glucose and glycated 
hemoglobin, cholesterol (total, low‐density lipoprotein, and high‐
density lipoprotein) and triglycerides, plasma creatinine and calcu‐
lated‐glomerular filtration rate (c‐GFR) (by MDRD formula, MDRD: 
modification of diet in renal disease, by mL/min/1.73m2; c‐GFR 
<60  mL/min/1.73  m2 defined chronic kidney disease (CKD)), and 
presence of albuminuria (on 24‐hour urine collection): as normo‐al‐
buminuria (<30 mg/24 h), microalbuminuria (30‐300 mg/24 h) and 
proteinuria (>300 mg/24 h).

2.3 | Hemodynamic parameters

Hemodynamic measurements were performed in the morning after 
an overnight fast in a supine position. Brachial SBP and DBP were 
measured in both arms using an automatic BP monitor (OMRON 
705 CP II IT) with cuffs of appropriate sizes after 5 minutes of rest. 
Five measurements 2  minutes apart were averaged, and HR was 
recorded.
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After BP determination, aortic PWV was performed nonin‐
vasively by applanation tonometry using an automatic device 
(SphygmoCor AtCor) with simultaneous three‐lead orthogonal 
ECG.16

This technique is considered as the standard direct and noninva‐
sive measurement for aortic stiffness determination.17 Aortic PWV 
was calculated as the direct distance between carotid and femoral 
arteries divided by the time interval between the feet of the pres‐
sure waves at the recording sites. Direct distance was multiplied by a 
scaling factor of 0.8.8 The reproducibility of these measurements, in 
our group and in others, has been previously published in detail.10,18

2.4 | Determination of PWV index

Parameters influencing PWV measurement at baseline and during 
follow‐up can be evaluated independently of sex, age, mean BP, and 
HR.10

A nomogram of aortic PWV was constructed, by a linear re‐
gression analysis, and previously described10,19,20; according to the 
determinants of the PWV,21 to determine theoretical aortic PWV 
values based on age, gender (male = 1 and female = 0), mean BP and 
HR.

The equation derived from the multivariate analysis was then ap‐
plied to the individuals to obtain a theoretical PWV value according 
to their age, BP, gender, and HR (Table 1).

2.5 | Equation
Theoritical PWV (m/s)=0.123079×age (y)+0.0619051×meanBP (mmHg)

+0.0262449 ×heart rate (bpm)+0.6152599

×gender (male=1, female=0)−5.168512

The results were expressed as: a PWV index defined as (mea‐
sured PWV − theoretical PWV/theoretical PWV) applied on these 
parameters for each patient.

The aortic PWV index was considered abnormal when positive.

2.6 | Decision tree model

The target or outcome variable consisted in two classes: one class 
for the positive PWV index and the second for negative PWV index. 
Data mining leads to explore unknown patterns or prediction rules. 

One of the different methods of data mining is decision tree. The de‐
cision tree process is a nonparametric method which creates a tree‐
based classification model.22 The major purpose of this method is to 
make a predictive model for the target variable regardless to predic‐
tors. Decision tree algorithms include three types of nodes, the root 
node, internal node, and end node.23,24 This method uses splitting 
criteria to break a nod to form a tree. The main purpose of decision 
tree is to make a predictive model for the target variable according to 
predictors. Thus, the internal variables of the model represent a tree 
structure in which a decision is made in each branch according to the 
data features. Splitting criteria provide a rate for each predictor vari‐
able. Variables that have the best rate of splitting criterion are se‐
lected as staying in the model. In the decision tree, the first variable 
or root node is the most important factor and other variables can be 
classified in order to importance.11,25 It can be stated also that the 
root node is the variable that can divide the whole population with 
the highest information gain.

2.7 | Statistical analysis

Characteristics of the study population were described as the means 
with standard deviation (SD) for continuous variables. Categorical 
variables were described as numbers and proportions. Comparisons 
between groups were performed using Student's t test for con‐
tinuous variables, which were normally distributed. Pearson's chi‐
squared test was performed for categorical variables.

The study population was divided into two groups according to 
whether PWV index was negative (N = 343) or positive (N = 254). 
All the variables that were significantly different between negative 
and positive PWV index individuals were considered as input vari‐
ables. We utilized a confusion matrix to determine the performance 
of the decision tree process for the presence of a positive PWV 
index. The accuracy and the receiver operating characteristics (ROC) 
curve were measured for training and testing models. ROC graph 
is a method for visualizing and selecting classifiers based on their 
performance. The area under the curve (AUC) of the classifier can be 
described as the probability of the classifier to rank a randomly se‐
lected positive results the higher predictive accuracy. Statistics were 
performed using SAS software (version 9.4; SAS Institute). A P value 
<.10 was considered for inclusion in the decision tree model.

3  | RESULTS

The characteristics of the 597 individuals divided into the two 
groups (Positive PWV index and Negative PWV index are shown in 
Table 2. Eighty‐six individuals of our study presented no hyperten‐
sion, no diabetes, and no previous CV events.

The data were randomly divided into a training dataset (70% of 
the total) and testing dataset (the remaining 30%). A decision tree 
was built on training dataset (N = 428). Testing data (N = 169) were 
used to evaluate the model. In models, eight variables were used 
as input variables. The input variables in the models were type 2 

TA B L E  1   Linear regression analysis of aortic PWV in the study 
population

Term Estimate Std Error P value

Intercept −5.168512 1.18 <.0001

Age 0.123079 0.01 <.0001

Gender (m = 1; 
f = 0)

0.6152599 0.20 .0019

Mean BP 0.0619051 0.01 <.0001

Heart rate 0.0262449 0.01 .0001

Abbreviations: BP, blood pressure; M, male; F, female.
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diabetes, current smoking, carotid plaque, albuminuria, C‐reactive 
protein (CRP), total cholesterol, BMI, and previous CV diseases.

The variables type 2 diabetes, carotid plaque, albuminuria, CRP, 
total cholesterol, previous CV diseases, and BMI remained in the 
model.

The evaluations of the model were undertaken using a confusion 
matrix on testing and training dataset and are shown in Table 3.

The decision tree of the training dataset had an accuracy of 
0.76 of the 243 individuals with negative PWV index in training 
dataset, 204 were classified correctly using the decision tree with 

a specificity of 82%. For the 185 participants with positive PWV 
index in the training dataset, the decision tree correctly classified 
134 participants, with a sensitivity of 73%. The decision tree of 
the testing model had an accuracy of 0.73. Of the 100 individu‐
als with negative PWV index in testing dataset, 78 were classified 
correctly using the decision tree with a specificity of 78%. For the 
69 participants with positive PWV index in the testing dataset, the 
decision tree correctly classified 48 participants, with a sensitivity 
of 70%.

The final decision tree model is shown in Figure 1.

TA B L E  2   Clinical, biochemical and hemodynamic characteristics of the study population according to the threshold PWV index (negative 
or positive)

 
Study Population
(n = 597)

Positive PWV index
(N = 254)

Negative PWV index
(N = 343) P valuea

Gender/female (%) 241 (40.4) 108 (42.5) 133 (38.8) .35

Age (y) 60.8 (11.4) 60.1 (12.9) 61.2 (9.92) .23

BMI (kg/m2) 27.4 (4.94) 27.8 (4.39) 27.0 (4.56) .06

Current smoking (%) 41 (6.9) 13 (5.1) 28 (8.2) .01

Dyslipidemia (%) 348 (58.2) 165 (64.9) 183 (53.4) .11

Hypertension (%) 454 (76.0) 215 (84.7) 239 (69.7) <.0001

Diabetes (%) 216 (36.2) 122 (48.1) 94 (27.4) <.0001

Carotid plaque (%) 321 (53.8) 155 (61.1) 166 (48.4) .01

Left ventricular hypertrophy (%) 100 (16.8) 44 (17.3) 56 (16.3) .81

Previous CV diseases (%) 117 (19.6) 61 (24.0) 56 (16.3) .02

c‐GFR (<60) (%) 62 (10.4) 28 (11.0) 34 (9.9) .23

“Healthy” patientsb 86 (14.4) 11 (4.3) 75 (21.9) <.0001

Microalbuminuria (%) 70 (11.7) 33 (12.9) 37 (10.8) .06

Proteinuria (%) 11 (1.80) 7 (2.70) 4 (1.10) .15

Anti‐diabetic therapy (%) 164 (27.5) 89 (35.0) 75 (21.9) .001

Statins therapy (%) 261 (43.7) 111 (43.7) 150 (43.7) .95

Antihypertensive therapy (%) 413 (69.2) 193 (75.9) 220 (64.1) .002

Systolic BP (mm Hg) 133 (16) 135 (17) 132 (15) <.0001

Diastolic BP (mm Hg) 78 (10) 77 (9) 78 (10) .06

Mean BP (mm Hg) 96 (11) 96 (11) 96 (11) .89

PP (mm Hg) 56 (13) 59 (14) 54 (12) <.0001

HR (bpm) 69 (12) 69 (12) 69 (11) .91

Aortic PWV (m/s) 10.47 (2.82) 12.46 (2.86) 8.96 (1.51) <.0001

Aortic PWV index 0.001 (0.12) 0.21 (0.17) ‐0.15 (0.09) <.0001

Fasting plasma glucose (mmol/L) 6.90 (2.72) 7.23 (2.85) 6.68 (2.62) .07

Triglycerides (mmol/L) 1.38 (0.99) 1.41 (0.98) 1.35 (0.93) .59

Total cholesterol (mmol/L) 4.85 (1.13) 4.95 (1.11) 4.68 (1.16) .04

HDL cholesterol (mmol/L) 1.09 (0.55) 1.06 (0.56) 1.12 (0.55) .17

LDL cholesterol (mmol/L) 2.08 (1.14) 2.23 (1.16) 1.84 (1.06) .001

Glycated hemoglobin (%) 6.32 (1.29) 6.54 (1.33) 6.11 (1.27) .02

CRP (mg/L) 2.91 (4.37) 3.72 (5.05) 2.16 (3.24) .0002

Abbreviations: BMI, body mass index; BP, blood pressure; c‐GFR, calculated‐glomerular filtration rate; CRP, C‐Reactive protein; CV, cardiovascular; 
HDL, high‐density lipoprotein; HR, heart rate; LDL, low‐density lipoprotein; PP, pulse pressure; PWV, pulse wave velocity.
aP value difference between Negative PWV index population and Positive PWV index population. 
bP value, healthy patients: patients with no hypertension, no diabetes and no previous CV events. 
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The if‐then rules created by the model are shown in Table 3. ROC 
curves were obtained by applying decision tree on training and test‐
ing dataset that are shown in Figure 2.

The decision tree model showed that in a subgroup with dia‐
betes, CRP ≥0.5 mg/L and previous CV disease, the probability of 
positive PWV index was 85.2% whereas in the subgroup with dia‐
betes, CRP ≥0.7  mg/L, no previous CV diseases, total cholesterol 
≥6.1  mmol/L, carotid plaque and micro‐albuminuria, the probabil‐
ity of PWV index was 74.1%. In the subgroup with diabetes, CRP 
≥0.7 mg/L, no previous CV diseases, total cholesterol ≥6.1 mmol/L, 
no carotid plaque and normo‐albuminuria, the probability of PWV 
index was 33.3%. In the subgroup with diabetes, CRP <0.7 mg/L and 
total cholesterol ≥5.4 mmol/L, the probability of positive PWV index 
was 66.7% whereas in the same subgroup but with total cholesterol 
<5.4 mmol/L, the probability of positive PWV index was 17.9%.

In the subgroup with no diabetes, total cholesterol ≥4.19 mmol/L, 
previous CV diseases, BMI ≥26 and micro‐albuminuria, the probabil‐
ity of positive PWV index was 80%, whereas in the same group but 
with BMI <26, the probability of positive index was 27.3%. In the 
subgroup with no diabetes and total cholesterol <4.19 mmol/L, the 
probability of positive PWV index was 21.6% (Figure 1, Table 3).

4  | DISCUSSION

According to previous studies, we have determined a PWV index 
based on a theoretical PWV calculated through a linear regression 
on major factors correlated with aortic stiffness, such as age, gender, 
mean BP, and HR.10,19,21

Few studies have investigated the different risk factors associ‐
ated with PWV index.10,21 In our study, we constructed a decision 
tree model, based on data from a cross‐sectional study to investigate 
the different factors associated with PWV index (positive or nega‐
tive values). A decision tree is a modeling method that has several 
advantages, such as the ability to handle nonlinear relationships, cre‐
ating rules, and being easy to interpret.26-28 Currently, no decision 
tree model methodology has been constructed to determine the dif‐
ferent factors of PWV index neither the PWV values.

The main advantage of using a decision tree analysis is the ability 
to convert complicated risk equations into an organized flowchart, 
which can be easily navigated to identify appropriate risk factors. 
This is important in clinical and practice to obtain risk stratifica‐
tion tools to better manage diseases. A simple, practical, and user‐
friendly approach can help clinicians to make more valid risk‐based 

TA B L E  3   Confusion matrix of training and testing dataset for decision tree and rules extracted through decision tree model

 

Training model Testing model

Predicted outcome

 

Predicted outcome

Positive PWV index Negative PWV index
Positive PWV 
index

Negative PWV 
index

Actual outcome     Actual outcome    

Positive PWV index 134 51 Positive PWV index 48 21

Negative PWV index 39 204 Negative PWV index 22 78

Sensibility 73%   Sensibility 70%  

Specificity 82%   Specificity 78%

AUC 0.76   AUC 0.73  

Rules extracted through decision tree model

R1: IF diabetes, CRP ≥0.7 mg/L and previous CV disease, then class: persons with positive PWV index (85.2%)

R2: IF diabetes, CRP ≥0.7 mg/L, no previous CV diseases, total cholesterol ≥6.1 mmol/L, carotid plaque and micro‐albuminuria, then class: per‐
sons with positive PWV index (74.1%)

R3: IF diabetes, CRP ≥0.7 mg/L, no previous CV diseases, total cholesterol ≥6.1 mmol/L, no carotid plaque and micro‐albuminuria, then class: 
persons with positive PWV index (60.0%)

R4: IF diabetes, CRP ≥0.7 mg/L, no previous CV diseases, total cholesterol ≥6.1 mmol/L, no carotid plaque and normo‐albuminuria, then class: 
persons with positive PWV index (33.3%)

R5: IF diabetes, CRP ≥0.7 mg/L, no previous CV diseases, total cholesterol <6.1 mmol/L, the class: persons with positive PWV index (25.0%)

R6: IF diabetes, CRP <0.7 mg/L, and total cholesterol ≥5.4 mmol/L, then class: persons with positive PWV index (66.7%)

R7: IF no diabetes, total cholesterol ≥4.19 mmol/L, previous CV diseases, BMI ≥26 and micro‐albuminuria, then class: persons with positive PWV 
index (80.0%)

R8: IF no diabetes, total cholesterol ≥4.19 mmol/L, previous CV diseases, and BMI <26, then class: persons with positive PWV index (27.3%)

R9: IF no diabetes, total cholesterol ≥4.19 mmol/L, no previous CV diseases, and micro‐albuminuria, then class: persons with positive PWV index 
(66.7%)

R10: IF no diabetes and total cholesterol <4.19 mmol/L, then class: persons with positive PWV (21.6%)

Abbreviations: AUC, area under the curve; BMI, body mass index; CRP, C‐reactive protein; CV, cardiovascular; PWV, pulse wave velocity.
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decisions. Furthermore, this tool can help to minimize the need for 
unnecessary factors with a view to better understand risk factors 
associated with aortic stiffness.

There were seven predictors in our developed model. One key 
feature in our developed model was the classification of the differ‐
ent predictors. First, the main sensitive predictors (ie, diabetes, CRP, 
total cholesterol) appear in the decision tree model, and in the end 
the main specific predictors (ie, albuminuria, carotid plaque, BMI). 
A hierarchical classification of the different parameters of positive 
PWV index can be done using this model. For example, a subject 
without diabetes but a total cholesterol ≥4.19 mmol/L, presence of 
previous CV diseases, a BMI ≥26 and the presence of micro‐albumin‐
uria has a probability of positive PWV index around 80%. Moreover, 
using decision tree yields threshold values for the variables that have 
the highest classification accuracy where tree branching take places. 
This is an evident advantage of decision tress compared to regres‐
sion models. Moreover, the decision tree model yields a machine 
learning classifier that can accurately discriminate variables based 
on retrospectively acquired training data and assess positive PWV 
index risk with a prospective testing dataset.

Clinical and biochemical parameters should be sensitive to the 
signs and symptoms presented by the population that may evidence 
positive PWV index. Nevertheless, there are no studies in the liter‐
ature using decision tree models for PWV index or PWV values, and 
therefore it is difficult to compare with other samples.

However, several studies have shown that the different input 
variables (as diabetes, carotid plaque, total cholesterol, previous CV 
disease, BMI, albuminuria, and CRP) included in our decision tree 

have been associated with increased PWV. Thus, the predictors 
shown in our classification decision tree model are similar as the fac‐
tors observed in the literacy.

Indeed, aortic stiffness may be accelerated by pathophysiologi‐
cal conditions related to diabetes mellitus (a sensitive variable in our 
model)29 through several pathways, such as calcification, inflamma‐
tion, and oxidative stress.30

CRP level appears as a sensitive variable in our decision tree model. 
Several studies have shown that CRP levels are associated with aortic 
stiffness, atherosclerosis, and CV events.31 CRP is one of the markers 
of chronic low‐grade inflammation and is considered as a mediator 
of atherothrombotic disease.32 CRP is the only circulating biomarker 
related to vascular wall biology33 and increased levels of CRP are lin‐
early associated with PWV and PWV index values.10,34 High levels of 
CRP are associated with arterial and aortic stiffness in hypertensive 
and type 2 diabetes patients.35 However, the direct etiological role of 
CRP in arterial dysfunction and atherosclerosis remains contradictory 
and would require other studies to better understand it.35

Moreover, numerous studies have shown that albuminuria levels 
(ie, a specific variable in our model) were associated positively with the 
increase of PWV values and PWV index.10,36 Micro‐albuminuria is an 
early marker of CKD, vascular dysfunction, arterial stiffness, and CV 
diseases.37 However, the mechanism between albuminuria and arterial 
stiffness remains unclear. A possible link might associate inflammation 
(through CRP levels), PWV levels and the increase of albuminuria.38

Vascular calcifications and aortic stiffness are strongly cor‐
related39 although this bidirectional association remains unknown.40 
However, presence of vascular calcification is considered as the main 

F I G U R E  1   Final decision tree model (N: negative PWV index, P: positive PWV index). TC: total cholesterol; BMI: body mass index; CV: 
cardiovascular
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factor of accelerated aortic stiffness with age‐dependent mecha‐
nism in hypertensive and diabetic patients and appears as a specific 
variable in our model.41 It is thought to primarily involve structural 
changes within the media, such as fatigue fracture of elastin and 
deposition of collagen.42 Another suggested mechanism is directly 
the phenomenon of vascular calcification.43

Numerous mechanisms have been described to explain the pos‐
sible link between BMI and aortic stiffness. Increased BMI is cor‐
related with low inflammation that enhances PWV.44 This link with 
inflammation (CRP levels) could explain the specific role of high BMI 
in our model for positive PWV index. Nitric oxide (NO) production 
is reduced by inflammatory cytokines, and then, reactive oxygen 
species (ROS) generated by inflammatory process consume existing 
NO.45 The reduction of NO production leads to increased PWV.46 
Inflammatory processes may induce changes in the arterial wall by 
breakdown of elastin, smooth muscle cells proliferation, and changes 
in the composition of extracellular matrix.47

The calculation of the PWV index is mainly associated with age. 
Advancing age may be the main potent independent predictor of 
future CV events. Thus, after adjusting on age, PWV index appears 
associated with numerous CV risk factors, such as CRP, diabetes, 
hypertension, LVH, microalbuminuria and CKD. The relationship be‐
tween time exposure and CV events is not fully explained by time‐re‐
lated changes in CV risk factors. Even if chronological age is mainly 
and independently associated with CV risk, the biological age of ves‐
sels may be different. Repeated exposure to potentially CV risk fac‐
tors may lead to differences in vascular function and structure and 
then leads to a dissociation between biological and chronological age. 
These observed differences may be correlated with inter‐individual 
differences in vascular health. Defining an integrative measure of 
vascular structure adjusted on age may provide prediction of the real 
biological age of arteries.48 PWV index calculation could appear as 
an interesting integrator risk factor correlated with time exposure of 
CV risk factors for the management and prevention of CV diseases.

4.1 | Limitations

The cross‐sectional design of our study may appear as a limitation, 
because it presents only simple correlation between determinants 

and PWV index and not causal interferences. The small study sample 
appears as a worth‐noted limitation of the study.

Even if HR appears as a significant determinant of PWV index, 
a long‐term follow‐up is needed to evaluate the potential clinical 
significance of increased HR. Gender, which appears as significant 
factor of PWV index, can influence the role of autonomic nervous 
system in attenuating pressure wave reflections but remains to be 
further established.

Calculation of an index is dependent on the theoretical evalua‐
tion, which is expected to be different in another population study 
and potentially depends on the method used to measure PWV. 
Theoretical PWV value has been estimated on individuals which 
were recruited in a hospital which presents a center of excellence 
in hypertension and a primary care with general practitioners. Thus, 
the study population is not representative of the general population 
but this double medical care center may limit population selection 
bias compared to hyper‐specialized centers. These life behaviors 
may enhance theoretical PWV values when compared to healthy 
populations. However, these life behaviors are also observed in the 
general population and can thus reflect a theoretical PWV close to 
reality. Moreover, the absence of ABPM could overlook cases of 
masked‐hypertension.

5  | CONCLUSION

A decision tree analysis was applied in our study population. 
Clinical and biochemical factors were identified to be associated 
with PWV index threshold. Diabetes, carotid plaque, albuminuria, 
total cholesterol, CRP, BMI, and previous CV diseases remained 
in the construction of the decision tree. This first decision tree 
model remains an experimental model for PWV index, as nomo‐
gram of aortic stiffness. One main feature of our developed model 
is the classification of the different predictors of PWV index. Use 
of decision tree in research could be a means of explaining the 
observed relationships between variables and thus classify them 
according to their degree of impact on PWV index. Future stud‐
ies may aim to develop prediction models with higher specificity 
and sensibility, which could be used for determining the threshold 

F I G U R E  2   Receiver operating 
characteristics curve for the decision 
tree model in training dataset and testing 
dataset
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of PWV index more accurately. However, this study provides an 
easy classification rules for identifying risk factors associated with 
PWV index that could be useful to develop programs for CV risk 
management.
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