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Abstract

Metastasis is initiated and sustained through therapy by cancer cells with stem-like and immune 

evasive properties, termed metastasis initiating cells (MICs). Recent progress suggests that MICs 

result from the adoption of a normal regenerative progenitor phenotype by malignant cells, a 

phenotype with intrinsic programs to survive the stresses of the metastatic process, undergo 

epithelial-mesenchymal transitions, enter slow-cycling states for dormancy, evade immune 

surveillance, establish supportive interactions with organ-specific niches, and co-opt systemic 

factors for growth and recurrence after therapy. Mechanistic understanding of the molecular 

mediators of MIC phenotypes and host tissue ecosystems could yield cancer therapeutics to 

improve patient outcomes.

Significance

Understanding the origins, traits and vulnerabilities of progenitor cancer cells with the 

capacity to initiate metastasis in distant organs, and the host microenvironments that support 

the ability of these cells to evade immune surveillance and regenerate the tumor, is critical 

for developing strategies to improve the prevention and treatment of advanced cancer. 

Leveraging recent progress in our understanding of the metastatic process, here we review 

the nature of metastasis initiating cells and their ecosystems and offer a perspective on how 

this knowledge is informing innovative treatments of metastatic cancers.

Clinically evident metastasis remains largely incurable, but progress is being made in 

understanding its basic biological principles and laying the foundation for improving long-

term outcomes in patients with advanced cancer(1,2). In spite of the aggressiveness of 
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metastatic cancer, only a small proportion of cells released from a tumor end up forming a 

distant lesion. This is partly due to the extensive attrition that cancer cells suffer as they 

confront the stresses of cancer cell dissemination, dormancy, outgrowth, and resistance to 

therapy(2). Cancer cells must accumulate numerous phenotypic traits in order to survive 

these stresses and become proficient at initiating metastasis.

It is increasingly clear that metastasis is initiated by a subset of cancer cells with a stem cell-

like phenotype that makes them more competent than the bulk cancer cell population at 

reinitiating tumor growth in distant sites(3–5). Cell “stemness” in mature tissues represents a 

phenotypically fluid condition rather than a developmentally imprinted and rigidly defined 

state. Stem cells in different tissues have distinct properties and developmental trajectories, 

as do stem cells that support tissue homeostasis versus those that are mobilized in response 

to injury to regenerate the disrupted tissue. Adult stem cells that maintain homeostasis may 

suffer oncogenic mutations and become tumor-initiating cancer stem cells (CSCs). However, 

the cells that initiate metastasis are not necessarily CSCs that acquired a few extra metastatic 

traits. Recent progress indicates that metastatic colonization of distant organs is initiated by 

stem-like cancer cells that are distinct not only in terms of expressing certain specialized 

pro-metastatic traits but also in terms of their overall phenotype, which is more akin to that 

of regenerative stem cells. Hence, we refer to these cells as “metastasis initiating cells” 

(MICs), a term which denotes what these cells can do and why they are of interest. Cells 

with MIC features are enriched in residual disease that survives cancer therapy, underscoring 

their importance not only in the original formation of distant metastases but also during 

relapse of increasingly lethal metastases after multiple treatment cycles in the clinic.

Understanding the origins, traits and vulnerabilities of MICs and their host ecosystems is 

critical for developing strategies to improve the prevention and treatment of metastasis. Here 

we leverage the conceptual framework and open questions from previous reviews on the 

metastatic process(1,2) and the cells and microenvironments that make it possible(3,5) to 

offer an update on recent progress towards the resolution of these questions. We present a 

summary of the metastatic process and the traits that cancer cells must possess in order to 

become MICs. We then address the question of how MICs acquire these traits. We consider 

the hypothesis that MICs emerge by the progressive accumulation of an array of pro-

metastatic traits through evolution of highly heterogeneous cancer cell populations under the 

selective pressures of the multiple steps of the metastatic process. We also consider the 

alternative hypothesis that cancer cells acquire many of their critical traits at once by 

adopting a regenerative progenitor phenotype with intrinsic tumor regrowth capacity. 

Finally, we offer a perspective on the implications of the growing understanding for 

improving the treatment of patients with metastatic cancer.

Phases of the metastatic process

Metastasis starts with a phase of cancer cell dissemination from the primary tumor to 

regional and distal sites (Figure 1a). In certain cancers, such as breast cancer, dissemination 

may start during early stages of tumor progression while the tumor is still small and appears 

to be confined by basement membrane within a ductal structure – i.e. ductal carcinoma in 

situ(6,7). Dissemination can continue until the source tumor is removed, as demonstrated by 
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the presence of circulating tumor cells (CTCs) in patients undergoing surgical resection of 

the tumor(8). CTCs culminate their journey by exiting from blood capillaries (a process 

called extravasation) and infiltrating the new host parenchyma.

The dissemination phase is followed by a phase of metastatic dormancy during which 

disseminated cancer cells do not yet grow to form a clinically manifest lesion because the 

host stroma presents physical, metabolic and immune barriers that prevent this growth(9). 

Disseminated cancer cells survive under these conditions by entering a state of proliferative 

quiescence. During dormancy, metastasis remains a cryptic process that may eventually 

progress towards overt tumor growth or disappear by exhaustion of the disseminated cancer 

cell population under these barriers or by the effect of therapy.

The final phase of the metastatic process involves overt outgrowth by colonization of the 

host organ (Figure 1a). Clinically detectable metastases may not become evident until 

months or decades after initial diagnosis and removal of a primary tumor. In some cancers 

overt metastasis occurs in multiple sites without marked preference for one or another organ. 

In other cancers, metastasis shows strong preference or “tropism” for certain organs. 

Notably, 2%-5% of metastatic cancers are diagnosed as carcinomas of unknown primary, in 

which the primary tumor is not detected either because of its small size or because it may 

have spontaneously regressed after seeding aggressive metastases(10).

The three phases of the metastatic process –dissemination, dormancy and outbreak– may 

coexist in time (Figure 1b). Cancer cell dissemination may persist as long as the source 

tumor remains in place, long after the first disseminated cells accumulated as metastatic 

seeds in distant organs. Precocious metastatic lesions may break out from dormancy while 

the primary tumor is still in place, as it occurs in patients whose cancer is first diagnosed as 

widely metastatic stage IV disease (Figure 1b). When distant relapse occurs in a particular 

site long after the surgical elimination of the primary tumor, other organs may still harbor 

dormant metastatic cells that can independently evolve and eventually initiate metastatic 

outgrowth with their own set of organ-specific metastatic traits. An example is provided by 

late brain recurrence in patients with HER2-positive breast cancer who were treated with 

anti-HER2 agents that suppressed visceral metastasis(11).

Metastatic dissemination

A combination of invasive cell migration, extracellular matrix remodeling, and the presence 

of leaky vasculature at the tumor invasion front enable the dispersion of cancer cells through 

the circulation, lymphatics, perineural and perivascular routes, or via direct infiltration of 

adjacent body cavities(12) (Figure 2). The hematogenous circulation is the principal route in 

most types of cancer, but lymphatic dissemination and forms of extravascular spread are 

prominent routes in various types of cancer as well.

Invasion and intravasation.

Malignant cells remodel the basement membrane to invade into tissue parenchyma, induce 

neoangiogenesis, move directionally towards blood vessels and undergo trans-endothelial 

migration to enter the portal or systemic venous circulations(13,14) (Figure 2a). These steps 
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are enabled by dynamic changes in the repertoire and function of cell-cell adhesion 

molecules (cadherins, CAM family cell adhesion molecules), extracellular matrix 

remodeling enzymes (matrix metalloproteinases, ADAMTS endopeptidases), and cell-

matrix adhesion molecules (integrins, syndecans)(15,16). Carcinoma cells undergo 

epithelial-to-mesenchymal transition (EMT), a phenotypic conversion process that enables 

cell migration and entry into the circulation (see below)(1,17). Stromal cells, including 

macrophages, fibroblasts and neutrophils, can further stimulate invasion and intravasation by 

direct interactions with carcinoma cells(18,19). Cancer cell-derived fibrogenic signals 

stimulate the deposition of desmoplastic matrix by mesenchymal cells in the tumor 

stroma(20,21), which in turn facilitates the invasion of cancer cells and their proliferation 

through mechanosignaling cues(15,16). The physical stress of migrating through tight 

interstitial spaces leads to nuclear envelope rupture and chromatin shearing, thus causing 

further genomic and phenotypic diversification of cancer cells that survive such 

stress(22,23).

Circulating tumor cells.

Unlike tumor tissues, which can only be accessed via invasive biopsies, CTCs derived from 

primary or metastatic tumors can be readily and repeatedly sampled via simple blood draws 

from cancer patients. This provides a unique window to study metastasis biology and for use 

as longitudinal clinical biomarkers of metastasis and therapy response(24),(25). For these 

reasons, CTCs have become a topic of intense study. Although, the sensitivity and specificity 

of current CTC detection assays remain limiting for some applications, the prospect of 

delineating CTC characteristics that discriminate between high and low metastatic capacity 

is of biological and clinical significance.

Cancer cells circulate singly and in clusters(26) (Figure 2b). CTC clusters are observed in 

the blood of patients and tumor-bearing mice and have a superior ability to seed metastasis 

in experimental models(27). CTC clusters may also include tumor-derived stromal cells(28). 

CTC clustering provides intercellular spaces that concentrate paracrine growth-promoting 

signals(29), and enable cooperation between different cancer cell states within a cluster(30). 

CTC clusters are enriched in genome methylation patterns that denote a stem-like cancer cell 

state(31), and therefore have features of MICs. MICs upregulate expression of certain cell-

cell and cell-matrix adhesion genes(32), raising the question, are CTC clusters more 

metastatic because clustering augments the aggressiveness of cancer cells or because MICs 

are intrinsically prone to clustering?

Blood platelets coat CTCs providing protection from shear stress and immune attack, 

particularly attack by natural killer (NK) cells. Platelets can also facilitate cancer cell 

extravasation by mediating adhesion to selectins on the endothelium and by enforcing EMT 

in the cancer cells. Platelets release factors including transforming growth factor β (TGF-β) 

and platelet-derived growth factor (PDGF) that suppress NK cells and promote EMT of 

CTCs (14,33,34). A small proportion of CTCs in breast cancer patients are bound to 

neutrophils, an abundant white blood cell type; these CTCs are more proliferative and 

effective at forming metastases in mice than are neutrophil-free counterparts(35).
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Extravasation.

Within seconds to minutes of leaving a primary tumor, CTCs may already become trapped 

in the capillaries of distant organs. In experimental systems, CTCs can remain lodged in 

capillaries for days until they either extravasate or disappear(36). The half-life of cancer 

cells in the circulation is estimated to be just a few hours, based on the rate of decline in the 

CTC numbers following surgical removal of primary tumors in patients(8).

Differences in the tightness of capillary endothelial walls determine the difficulty of seeding 

metastasis in different organs, contributing to organ-specific patterns of metastatic spread 

(Figure 2c). Liver and bone, the most common sites of metastasis from many cancers, 

contain sinusoid capillary beds with large intracellular fenestration gaps as well as gaps in 

the underlying basement membrane, which facilitate CTC extravasation. At the other end of 

the range, the blood-brain and blood-choroid plexus barriers restrict the movement of 

molecules and cells between the systemic circulation and the brain parenchyma and 

cerebrospinal fluid, respectively. Accordingly, metastasis to the brain and leptomeningeal 

spaces selects for MICs expressing factors that increase barrier permeability or disrupt the 

barrier altogether(37),(38,39).

Extravasation can be facilitated by platelets coating CTCs(34) and cytokines secreted by 

perivascular macrophages in target organs or by the cancer cells themselves(13) (Figure 2c). 

As an alternative to squeezing through tight interstitial spaces between endothelial cells, 

cancer cells may induce endothelial cell death. Human and mouse cancer cells have been 

shown to induce necroptosis of endothelial cells in co-culture and orthotopic lung metastasis 

models, while inhibition of RIPK1/3 dependent endothelial necroptosis reduced 

extravasation and metastasis in these models(40).

Following extravasation, metastatic cells remain situated near blood capillaries and migrate 

along the abluminal surface on the capillaries(36,41–44). Integrins mediate interactions 

between cancer cells and capillaries(45). This is most apparent in experimental models of 

metastasis to the brain where the elongated nature of capillaries facilitates imaging 

studies(41,43). However, perivascular residence of extravasated cancer cells is also observed 

in other sites including the liver, lungs and bone marrow(43).

Lymphatic dissemination.

Cancer cells disseminate via the lymphatic circulation, but whether lymph nodes are an 

obligatory staging post for metastasis remains controversial and likely depends on tumor 

type(46,47). Comparative genomics of regional lymph node and distant metastases from 

colorectal and breast cancers suggest that in the majority of cases, distinct clones within 

primary tumors give rise to nodal and distant metastases, with the latter undergoing more 

stringent clonal selection(48–50). In patients, highly aggressive triple negative breast cancers 

often metastasize without apparent regional lymph node involvement(47). Consistent with a 

correlative, not causal relationship between lymph node and distant metastasis, recent 

clinical trials have shown no survival benefit for regional lymph node dissection in patients 

with breast and ovarian cancers and melanoma(51–53). Even when injected directly into the 

lymph nodes of mice, cancer cells preferentially metastasize via the blood rather than 
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through the lymphatics(54,55). However, transient passage through the lymphatics may 

confer long-term survival benefits to MICs as they join the blood circulation(56).

Melanomas implanted in mice lacking dermal lymphatic vessels exhibited lower cytokine 

expression and leukocyte infiltration than those implanted in wildtype controls, suggesting 

that cancer cell interactions with immune cells in lymphatic structures are important for anti-

tumor immunity(57). The distinctive metabolic milieu of lymph may also enable cancer cells 

adaptation to the stresses of metastasis. For example, exposure to oleic acid in lymph 

protected melanoma cells from ferroptosis and increased their ability to initiate metastasis 

during subsequent hematogenous dissemination(58).

Extravascular spread.

The metastatic spread of some tumors occurs largely or at least partly through routes that 

obviate the need to enter and exit the circulation (Figure 2d). In ovarian cancer, cell clusters 

carried by the peritoneal fluid attach on the abdominal peritoneum where the cells grow(59). 

Peritoneal metastasis is also frequent in colorectal and pancreatic cancers. Melanomas and 

other cancer can spread without entering and exiting the circulation by engaging in 

extravascular migratory metastasis, a process of migration over the abluminal surface of 

vessels that is common during embryogenesis(60). Perineural spread is a long recognized, if 

under-appreciated form of metastatic spread in head and neck cancers and other squamous 

cell carcinomas(61). Regional spread of lung adenocarcinoma can occur by spread through 

air spaces where cancer cells detach from a primary tumor, migrate as clusters through air 

spaces, and reattach to the alveolar walls through vessel co-option to resume tumor growth, 

which is associated with tumor recurrence and poor survival of stage I lung 

adenocarcinomas(62,63).

Dormancy and immune evasion

Dormant metastasis and the ability to predict the likelihood of an eventual outbreak in 

patients diagnosed with early-stage cancer are major considerations in the clinic(64). For 

example, patients with estrogen receptor-positive early stage breast cancer who undergo 

complete surgical removal of the primary tumor continue to experience metastatic relapse as 

late as 20 years from their original diagnosis(65). Dormant metastasis is an understudied 

problem, owing to a dearth of appropriate experimental models. Models using aggressive 

metastatic cells sidestep the dormancy phase altogether. Some models of dormant metastasis 

rely on comparisons between non-isogenic cancer cell lines of varying propensity to develop 

metastatic colonies after inoculation in mice. Spontaneously arising models of dormancy 

have been characterized in detail(9). New experimental models have been developed by in 

vivo selection of early-stage tumor derived MICs that are competent to establish dormant 

metastasis and spontaneously generate late outbreaks, thus mimicking the course of the 

disease in patients(66). Studies on these various models have begun to shed light on the 

biology of MIC entry and exit from dormancy (Figure 3).
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Causes of cancer cell elimination.

Clinical dormancy implies one of two complementary scenarios: either a cell-autonomous 

“temporary mitotic exit” as originally advanced by Geoffrey Hadfield in 1954(67), or 

alternatively the existence of persistent attempts at colonization that are aborted by cell-

extrinsic limitations on metastatic outgrowth. While several studies have explored the 

niches, signals and mechanisms that maintain both modes of dormancy (reviewed in 

(9,68,69)), multiple lines of experimental and clinical data are converging on the view that 

dormancy reflects a dynamic equilibrium of MICs with antagonistic immune surveillance 

(Figure 3a).

Cancer cells suffer extensive attrition after infiltrating distant organs, as shown in mouse 

models of metastasis and as inferred from the low counts of disseminated cancer cells 

relative to the number of CTCs that a primary tumor likely shed while it was present in a 

patient. Elimination of cancer cells after extravasation is driven by passive factors such as 

high oxidative stress in the lungs(70,71), a dearth of growth factors and nutrients in the 

cerebrospinal fluid(38,72), or more generally, a lack of the appropriate microenvironment 

cues that had nursed the growth of MICs in the primary tumor. These passive mechanisms of 

disseminated cancer cell elimination are accompanied by the proactive role of tissue resident 

immunity and other defenses, such as astrocytes in the brain(36), against intruding cancer 

cells. Tissue resident macrophages, such as microglia in the brain and Kupffer cells in the 

liver, as well as NK cells attack infiltrated cancer cells(18,73,74). In experimental models, 

depletion of T cells and NK cells increases the survival and outgrowth of disseminated 

cancer cells(66,75,76). Tumor lymphocyte infiltration, indexed in the form of an 

“immunoscore” is inversely correlated with metastatic burden in patients(77), and metastatic 

clones can show branched evolution as a result of different immunoediting pressures(78). 

Dramatically, immunosuppressed recipients of transplant organs from donors deemed cured 

of localized melanoma or glioblastoma developed donor-derived metastasis(79,80). 

Underscoring the importance of immune surveillance of MICs, in patients with completely 

resected localized melanomas, post-surgical adjuvant therapy with immune checkpoint 

inhibitors to boost anti-tumor immunity reduced later metastatic relapse and prolonged 

survival(81–84).

Entering dormancy.

Disseminated MICs that enter proliferative quiescence may be particularly equipped to 

survive these threats. Quiescence allows cancer cells to evade the innate and adaptive arms 

of immunity mediated by NK and T cells respectively(66,85–88). As an added benefit, 

dormancy renders disseminated cancer cells resistant to anti-mitotic therapy. The ability to 

enter a slow-cycling state is a property of some adult stem cells. Thus, to the extent that 

MICs are primed to enter protective dormancy, dormancy will enrich for MICs in 

disseminated cancer cell populations.

Entry of MICs into quiescence is stimulated by growth inhibitory signals in the host 

microenvironment (Figure 3a). TGF-β has cytostatic effects on normal epithelial cells and 

carcinoma cells by inducing the expression of cyclin-dependent kinase inhibitors, while it 

triggers tumor suppressive apoptosis in premalignant epithelial cells. Carcinoma cells bypass 
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the pro-apoptotic effect of TGF-β through various mechanisms while retaining the ability to 

respond to TGF-β with pro-metastatic effects, including entry into immunoprotective 

quiescence(89,90). TGF-β has been shown to stimulated dormancy in experimental models 

of prostate, breast, and head and neck carcinomas(9). The three isoforms, TGF-β1, -β2 and -

β3, are known to be produced in tumor microenvironments by various stromal components 

and cancer cells. Latent TGF-β1 in particular is present in perivascular niches of the bone 

marrow and brain parenchyma of mice and is activated by thrombospondin (TSP) to drive 

extravasated breast cancer cells into proliferative quiescence(44)(Figure 3a). In this context 

TGF-β likely functions through canonical binding to the paired receptor kinases TGFBR1 

and TGFBR2 with betaglycan, also known as type III TGF-β receptor, serving as a co-

receptor that is particularly important for TGF-β2 binding(89).

Entry of disseminated MICs into dormancy is not merely a passive process resulting from 

the effect of local growth inhibitory signals from the tumor microenvironment. Entry into 

dormancy can also be initiated by MICs themselves such that MICs that actively avoid 

mitogenic stimulation are selected for because quiescence enables immune evasion(66). 

MICs derived from early-stage lung and breast tumors actively secrete DKK1, an inhibitor 

of WNT factors which are potent mitogens for adult stem cells (Figure 3a). This autocrine 

DKK1 enforces MICs dormancy in these models, and depleting DKK1 releases MICs from 

dormancy and delivers them to NK mediated clearance(66).

These insights suggest that dormant metastasis results from a dynamic equilibrium in which 

MICs enter proliferative quiescence and thus avoid immune-mediated killing or enter the 

cell cycle for tumor growth at the risk of being eliminated (Figure 3a). Another form of 

dormancy is tumor mass dormancy in which MICs start proliferating but are unable to 

satisfy the nutrient or oxygen requirements for growth beyond a small tumor mass due to 

lack of angiogenesis or other causes(9,91). However, large clinical trials have shown little 

success with antiangiogenic drugs in the adjuvant or neoadjuvant setting when targeting 

latent micrometatases, suggesting that (with the limitations of the drugs available) the 

angiogenic switch may not be a major limiting factor to metastatic outgrowth in patients, or 

that current therapies are inadequate to suppress angiogenesis(92).

Exiting from dormancy.

Little is known about the signals that lead disseminated cancer cells to exit from dormancy 

and develop clinically detectable metastases. It is possible that disseminated cancer cells are 

“awakened” from years of quiescence by signals that jolt them into entering the cell cycle. 

However, the cited studies on depleting mice of immunity suggest that there is always a 

fraction of disseminated cancer cells population attempting to proliferate perhaps due to a 

growth permitting balance between local mitogenic and antimitogenic signals (Figure 3a). In 

line with this idea, depletion of DKK1 in models of dormant lung adenocarcinoma and 

breast cancer metastasis enables exit from dormancy, implying that WNT ligands in the 

perivascular niche reactivate the proliferation of dormant cells(66). Bone morphogenetic 

proteins can trigger differentiation of disseminated breast cancer cells in mouse models, 

which is prevented by BMP sequestering factors(93). Cell metabolism may also play a role. 

Cell autophagy in response to metabolic stress promotes the survival of dormant breast 
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cancer cells in mouse models(94), and depleting autophagy related 3 (ATG3) or p62/

sequestosome-1 promotes cancer cell exit from dormancy with expression of 6-

phosphofructo-2-kinase which supports glycolysis(95).

MICs have certain requirements for continued growth during exit from dormancy. MICs 

derived from breast, lung, colorectal and renal cell carcinomas express L1CAM and use this 

cell adhesion molecule to bind to laminin in the perivascular basement membranes of 

capillaries, spreading on the abluminal surface of capillaries (Figure 3b). Once engaged, 

L1CAM cooperates with β1 integrins, the integrin-actin bridging protein ILK, and p21-

activating kinases (PAK) to activate transcription factors YAP and MRTF for the initiation of 

metastatic outgrowth(32),(43). ILK and β-parvin regulate actin-filaments supporting the 

formation of filopodia-like protrusions, which are required for metastatic outgrowth(96). 

The L1CAM-expressing MICs cells grow forming sheaths around the vessels, engulfing the 

capillary network before the micrometastatic mass acquires a spheroidal shape(32),(43). The 

requirement for L1CAM has been shown in experimental models of dormant MICs 

outgrowth following depletion of NK cells as well as models of aggressive metastatic 

outgrowth without an intervening dormancy phase(43).

Recent studies have revealed a role for neutrophil extracellular traps (NETs) in promoting 

YAP activation during cancer cell exit from domancy(97,98). NETs are protease-loaded 

chromatin webs that neutrophils release as an ultimate maneuver to entrap and clear 

pathogens(99). NETs are of interest for their roles in inflammation, autoimmune diseases, 

and cancer(100). Studies using intravital microscopy documented the presence of NETs 

around disseminated breast cancer cells in mouse models of metastasis and an inhibitory 

effect of DNAse I on metastatic growth, implying that cancer cell-triggered NETs promote 

metastasis(101). Indeed, NETs produced during inflammatory responses were shown to 

reactivate the growth of local dormant cancer cells through cleavage of basement membrane 

laminin by NET-associated elastase and matrix metalloproteinase 9 (MMP9) (Figure 3b). 

The resulting laminin fragment activates α3β1 integrin-mediated YAP and proliferation of 

the cancer cells(98).

Organ colonization and metastatic tropism

Colonization of distant organs is the most dramatic phase of the metastatic process clinically 

and the most complex biologically. The outgrowth of disseminated MICs into large 

metastatic colonies depends on the successful avoidance of organ-specific barriers and the 

productive interactions with specific components of the host tissue ecosystem. Many of 

these barriers and interactions vary with the site of metastasis. The lung, liver, or brain 

parenchyma, the lymph nodes, bone marrow, and leptomeninges present widely different 

tissue microenvironments. Not surprisingly, studies on metastatic colonization of these 

major target sites have uncovered different factors, metabolic changes, cell-cell interactions, 

and other determinants of metastatic colonization depending of the tumor type and the 

metastasis organ site. Detailed accounts of organ-specific metastatic colonization factors 

have been recently provided for metastasis to different organs(102,103), and specifically to 

bone(104), central nervous system(39,105), lung(106), and liver(107). Here we briefly 

summarize current concepts on general and organ-specific colonization processes.
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Determinants of organ tropism.

Metastatic tropism is manifest in the tendency of tumors to preferentially relapse in certain 

organs. Some cancers (e.g. small cell lung carcinomas, metastatic melanomas) form 

metastasis in multiple sites without marked organ preference, whereas other cancers 

preferentially relapse in certain organs (e.g. the bones in prostate and hormone receptor-

positive breast carcinomas, the liver in colorectal carcinomas and ocular melanomas, or the 

lungs in soft tissue sarcomas).

Metastatic tropism results from the combination of two distinct phenomena. One is the 

ability of cancer cells to reach particular organs through the circulation. Colon cancer is 

thought to predominantly metastasize to the liver because the mesenteric blood draining the 

intestines flows via the hepatic portal vein into the liver. The majority of CTCs derived from 

an intestinal tumor become trapped in the hepatic sinusoids and initiate metastases in the 

liver with far higher frequency than in the lungs, brain or bones. It has been proposed that 

cells derived from certain tumors use organ-specific endothelium adhesion molecules to 

concentrate in the capillaries of those organs and preferentially extravasate there(108). 

However, experimental(66,109,110) and clinical(111) evidence suggest that, in most types of 

cancer, disseminated cells reach all organs and leave dormant cells everywhere. This 

suggests that metastasis develops from latent surviving MICs in the least antagonistic site 

first, and in other sites later. Thus, the metastatic organ tropism of a particular type of cancer 

is a function of the organs that MICs can travel to and, most critically, the probability that 

MICs will growth in a particular organ site depending on their intrinsic or acquired ability to 

sort the barriers and utilize the supportive niches in that site.

Surpassing endothelial barriers.

As we noted earlier, differences in the permeability of capillary beds in different organs 

determine the ability of disseminated cancer cells to accumulate in these organs. Several 

mediators of cancer cells extravasation have been identified in experimental model systems, 

including cytokines (e.g. ANGPTL4, HBEGF), secreted enzymes (e.g. cathepsin S) and 

monocytes that facilitate extravasation in the lung capillary walls(1,2,13) or through the 

blood-brain barrier(37–39,112) (Figure 2c). Metastatic colon cancer cells that colonize the 

liver can gain lung metastatic ability by expressing the cytokine PTHLH, which mediates 

extravasation of these cells in the lungs after they reenter the circulation(113). In some 

instances, metastatic cells disrupt endothelial barriers to allow the influx of nutrients from 

the circulation. Breast and lung carcinoma cells that infiltrate the leptomeninges produce 

complement component 3 to activate the C3a receptor in the choroid plexus epithelium and 

disrupt the blood-CSF barrier, thereby allowing influx of growth factors and nutrients from 

blood into the nutritionally barren CSF(38).

Neutralizing hostilities.

The important role of immunity in suppressing the outgrowth of disseminated MICs can give 

rise to organ-specific differences depending on the ability of MICs from different types of 

cancer to evade tissue resident immunity(18,73,74). The ability of disseminated cancer cells 

to regulate their own exposure to immune attack by modifying the expression of MHC class 

I molecules(114), NK cell and effector T cell ligands(115), cytosolic DNA sensing 
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pathways(116) and damage-associated RNAs as ligands for pattern recognition 

receptors(117) are under study given their likely importance in metastatic colonization. 

Moreover, the defenses that invading cancer cells must neutralize in order to seed distant 

organs are not limited to classical immunity. Breast cancer and lung adenocarcinoma cells 

that infiltrate the brain must contend with the release of pro-apoptotic Fas-ligand by reactive 

astrocytes. Fas-ligand is released from its membrane-bound precursor in astrocytes by the 

protease plasmin, and cancer cells can prevent this by expressing serpin inhibitors of 

plasminogen activator(36).

Metabolic adaptations.

Metabolic adaptation is an important aspect of metastasis. Unlike glycolytic primary tumors, 

MICs in multiple cancer types undergo a bioenergetic shift into an oxidative phosphorylation 

state(70,118,119). Organ specific metabolic adaptations enable carcinoma MICs to reinitiate 

growth in tissues with variable bioavailability of oxygen, including in the lungs, where high 

oxygen levels cause oxidative stress that cancer cells can withstand by overexpressing 

NRF2(119–121) (Figure 3c). Metastatic melanoma cells also undergo metabolic adaptations 

in order to withstand high levels of oxidative stress in the blood and lungs(70). Adaptations 

to the bioavailability of amino acids(122,123), nucleotides(124) and other bioenergetic 

substrates(125,126) have also been noted in metastasis models and human tissue samples 

and are likely to vary depending on the host tissue. In turn, metabolic stresses may shape the 

genomic and epigenomic reprogramming of cancer cells to enable metastasis(127). Other 

cancer cell adaptations serve to source scarce nutrients. For example, metastatic cells secrete 

the iron chelating factor lipocalin A in order to scavenge scarce iron in the CSF(72).

Lipids are important for tumor growth. CD36, a scavenger receptor that can transport fatty 

acids and other molecules, is upregulated in MICs from oral carcinomas and other cancers 

and required for metastasis in various organs(128). Brain metastasis appears to place higher 

demands on MICs with regards to procuring their own lipids. The brain has a markedly 

lower level of triacylglycerol stores than other tissues. Breast cancer cell lines that are 

metastatic to the brain up-regulate sterol response element binding transcription factor 1 

(SREBF1) to promote lipid synthesis and fatty acid metabolism or alternatively upregulate 

CD36 for metastasis growth(129).

Metastatic niches and stromal cooption.

MICs that survive the organ-specific stresses described above additionally require support 

from the host stroma. Stromal support is thought to be important for MICs immediately after 

their infiltration of new tissues and establishment as long-term seeds for metastases. This 

may depend on a combination of cellular and extracellular cues that fulfills the survival and 

self-renewal requirements of MICs by mimicking the native niches that these cells or their 

predecessors occupied in their tissue of origin. Various cellular and extracellular components 

of natural stem cell niches support the viability of disseminated MICs(3,5), including the 

extracellular matrix interacting components periostin and tenascin C, which MICs and 

fibroblasts produce to promote WNT and Notch signaling in MICs(130,131) (Figure 3b). 

Evidence that disseminated cancer cells intrude natural stem cell niches in the bone marrow 

has been provided in models of prostate(132) and breast cancer metastasis(133).
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In addition to biochemical signals from the niche, biophysical and mechanical features of 

stromal niches can also promote metastasis(134). An expanding primary tumor mass exerts 

mechanical force on its tissue microenvironment, in turn triggering differentiation of 

myofibroblasts to produce extracellular proteins such as collagens and tenascin C(135), 

which further increase stiffness of the extracellular matrix. In turn, increased ECM stiffness 

can promote integrin-mediated focal adhesion assembly, RHOA-ROCK-mediated cell 

contractility, and mechanosignaling via TGF-β, Wnt and YAP pathways (Reviewed in 

(134)). Stiffness-mediated mechanosignaling may thus mediate MIC behaviors including 

motility, anoikis evasion and EMT. Consistently, in patients with breast and pancreatic 

cancer, tumors with increased ECM stiffness were associated with increased metastasis, 

therapy resistance and poor prognosis(136–138).

Support from the stroma is also essential during the expansion of macrometastatic colonies, 

maintenance or aggressive metastatic lesions, and resistance to therapy. Most parenchymal 

components in sites of metastasis have been implicated in the support of survival, outgrowth 

and/or chemoresistance of MICs through unidirectional or reciprocal signaling interactions 

with the cancer cells. This includes osteoblasts and osteoclasts in bone 

metastasis(102,104,139–141), astrocytes(142,143), microglia(144), and neurons(145) in 

brain metastasis(39,105), monocytes(146,147), neutrophils(98,130,148), 

fibroblasts(131,149), and epithelial cells(150) in lung metastasis(106), and mesenchymal, 

epithelial, macrophage and other cells in liver metastasis(107). Cytokines and enzymes 

released by a primary tumor in soluble or vesicular form can alter the parenchyma of distant 

organs and establish “pre-metastatic niches”, zones that favor the immediate growth of 

cancer cells reaching these sites(151). It is unclear if pre-metastatic niches established by a 

primary tumor could support MICs as dormant seeds for long periods after a primary tumor 

is surgically removed.

Most studies on stromal interactions with metastatic cells have utilized experimental models 

in which aggressive cancer cells proceed to form metastatic colonies without an intervening 

dormancy phase. Therefore, with few exceptions, these studies do not directly distinguish 

whether a supportive interaction benefits MICs prior to dormancy, during the incipient 

outgrowth of micrometastasis after dormancy, or during the continued expansion of 

macrometastases. In spite of this shortcoming, several organ-specific metastatic mediators 

identified to date are accompanied with evidence of clinical relevance, providing potential 

targets for therapy in the treatment of metastasis.

Epithelial-mesenchymal transitions

EMT, referred to in passing above, is a key process during tumor progression and 

metastasis(1). Epithelial cells undergoing an EMT lose polarity and downregulate key cell 

adhesion molecules, resulting in the loss of contacts with neighboring cells and an increased 

ability to migrate and invade adjacent tissue. The ability to undergo an EMT is a property of 

epithelial stem and progenitor cells, both normal and neoplastic, and reflects an intrinsic 

phenotypic plasticity of these cell states. EMTs play important roles in development and 

epithelial regeneration. During gastrulation, epiblast cells undergo an EMT in order to 

migrate to appropriate locations as they differentiate into mesoderm and endoderm 
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progenitors. EMTs are also important in later morphogenic events and during wound healing 

in the adult (17,21,152). Cells that undergo an EMT return to an epithelial state through a 

mesenchymal-to-epithelial transition (MET)(17,21,152). The regained epithelial state after 

and EMT-MET sequence may be different from the starting one, as it occurs during 

gastrulation.

In normal and neoplastic cells EMTs are driven by SNAIL, SLUG, ZEB and TWIST and 

other transcription factors (referred to as EMT-TFs) which repress epithelial genes and 

stimulate the expression of mesenchymal components, together with micro-RNAs that 

balance this regulatory network(21). Stromal signals that trigger EMTs include TGF-β, 

WNT, NFkB activators(17,21,152). TGF-β induces the expression of EMT-TFs in 

cooperation with RAS-MAPK signaling; TGF-β-activated SMAD transcription factors and 

MAPK-activated RREB1 jointly drive expression of SNAIL and SLUG coupled to cell type-

dependent differentiation or fibrogenesis gene sets, both in normal and neoplastic cells(153). 

WNT- activated TCF transcription factors, and NFkB transcription factor also converge on 

EMT-TF gene enhancers to regulate EMTs(21).

Carcinoma cells at the tumor invasion front undergoing an EMT can drive collective 

migrating by pulling cohesive ensembles of cancer cells that remain connected by cell-cell 

contacts(154). After efficiently disseminating and infiltrating distant organs using the 

mesenchymal properties acquired with the EMT, disseminated MICs undergo an MET in 

order to reinitiate tumor growth(155,156). In human and mouse carcinomas, loss of cell 

surface E-cadherin during EMT activates pro-survival signaling that is necessary in the 

detached state, but E-cadherin re-expression is required for the outgrowth of metastatic 

colonies(35). What signals trigger MET in disseminated MICs, and whether MET occurs 

before or after MICs pass through dormancy remain open questions.

Epithelial and mesenchymal states are now viewed not as discrete endpoints but a continuum 

of highly fluid, interconverting phenotypic states. Each particular epithelial progenitor cell 

state undergoes its own form of EMT, involving a distinct combination of EMT-TFs and 

different changes in cell morphology, adhesion and motility(17). The extent of mesenchymal 

conversion achieved by an epithelial progenitor during an EMT also depends on the 

developmental state of this cell and reflects the phenotypic space that this state is programed 

to sample. Many epithelial progenitors undergo what is referred to as a “partial” or “hybrid” 

EMT. However, the current trend is to consider every departure of epithelial cells from the 

polarized phenotype an EMT regardless of how far towards a stereotypical (“full”) 

mesenchymal phenotype this departure may reach(17). Although EMT is a common 

mechanism for metastatic dissemination, the cells that are most competent at forming 

metastasis are not necessarily those that adopt the most mesenchymal-like phenotype in their 

EMT(157–159). Some forms of dissemination, such as collective migration, may enable 

cancer cells to retain epithelial identity and intercellular contacts during migration and may 

not require an EMT.
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Becoming a MIC

Cancer cells require a large number of traits in order to perform each step of the metastatic 

process and additionally survive therapy if present. Some of the traits required to become a 

MIC are imparted by the basic tumor-initiating phenotype resulting from genetic alterations 

that activate driver oncogenes and that disrupt tumor suppressor genes. In addition to 

uncontrolled survival and proliferation functions, these traits include the ability to migrate, 

invade, and remodel extracellular matrix, all of which are conducive to metastasis. The basic 

traits or “hallmarks” of cancer included with the neoplastic phenotype remain essential 

throughout the course of tumor progression(160). Moreover, growing evidence indicates that 

cancer is initiated by oncogenic mutations in stem cells whose normal function is to 

maintain tissue homeostasis. Turned into CSCs, these cells retain self-renewal capacity, or 

“stemness”, which is essential for long-term tumor growth(4).

But even with these powerful traits in place, a vast majority of cancer cells leaving a tumor 

fail to form distant metastasis, instead succumbing to the stresses of the metastatic process. 

The many obstacles that MICs must sort on their way to establishing metastasis imply a 

need for additional traits beyond those provided by the CSC phenotype alone. Indeed, work 

over the past two decades has identified a large number of “metastasis genes” whose 

expression (or repression) enhances the ability of cancer cells to enter the circulation, 

extravasate, avert stromal attack, resist metabolic stress, enter dormancy, evade immune 

surveillance, reinitiate tumor growth, secure a supportive niche, and coopt organ-specific 

stromal components(2,5,102).

Adaptability is another key trait of the MIC phenotype. Disseminated cancer cells must 

adapt to a succession of rapidly changing physical, metabolic and immune challenges. In 

order to survive these stresses, MICs adjust their phenotype accordingly. Phenotypic 

plasticity, the ability of cells to dynamically change their gene expression programs, is an 

overarching hallmark of tumor progression and metastasis, and a source of adaptability for 

MICs(161,162). Phenotypic plasticity enables cancer cells to undergo EMT, adapt to specific 

microenvironments, and resist therapy(163,164). Moreover, plasticity accentuates the 

phenotypic heterogeneity of genomically diverse cancer cell populations(165).

In sum, MICs acquire different classes of traits from different sources (Figure 4a): basic pro-

metastatic traits acquired with the neoplastic phenotype, additional specialized traits 

acquired under selection for tumor regeneration in specific organs, and a plastic phenotype 

adept at deploying these traits under rapidly changing conditions and MICs attempt to 

regenerate the tumor in new locations.

Tumor evolution and metastatic progression

How do MICs acquire their unique adaptability and other specialized traits? Heterogeneous 

cancer cell populations evolve under continual selective pressures during tumor progression 

and metastasis. The identification of large numbers of tumor-associated mutations by large-

scale genomic sequencing of matched normal and primary tumor tissues provides a basis for 

the notion that metastasis specific traits may emerge by selection from the genetic 

Massagué and Ganesh Page 14

Cancer Discov. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



heterogeneity present in cancer cell populations. However, the search for mutations that 

specifically drive metastasis has met with few examples to date.

Genetic drivers of metastasis.

Studies seeking to identify metastasis-specific mutations pose several challenges(166,167). 

Metastasis typically evolves in patients over several years, and this temporal dimension 

cannot be adequately reproduced in mouse models. On the other hand, patient-based studies 

are logistically cumbersome, complicated by interpatient heterogeneity, and subject to 

sampling bias if only a small region of a large tumor is biopsied for genomic analysis(168). 

Therapy is another important confounder, since patients who experience metastatic relapse 

after initial removal of primary tumors will have typically received systemic anti-cancer 

therapies, and such metastases reflect therapy resistance and may not represent the natural 

history of metastasis per se. Despite these hurdles, several recent studies involving multi-

region sampling of matched primary and metastatic cancers biopsied from large numbers of 

patients have illuminated the genetics of metastatic evolution(164,167,169–174). Notably, 

across tumors, there appear to be few recurrent metastasis-specific somatic mutations 

including single nucleotide variants (SNVs), insertions and deletions. Where such mutations 

have been identified, their functional significance is frequently linked to expanding the 

activity of the oncogenic driving pathway or conferring resistance to 

therapy(168,170,175,176). However, activation of certain general growth promoting 

pathways may translate into organ-specific metastatic advantage. For example, mutations in 

PIK3CA (phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit α) have been 

proposed to favor brain metastasis of breast cancer by driving lipid synthesis(129).

The association of genetic mutations with metastatic progression reflects a selection of pro-

metastatic traits or an association of bystander mutational events with clones that gain a pro-

metastatic phenotype by other means. A recent study of 1,421 samples from 394 tumors 

across 22 tumor types identified increased clonality of somatic copy number alterations 

(SCNAs) in metastases versus primary tumors, potentially indicating an as yet inadequately 

understood role for large scale genomic rearrangements in driving metastasis(177). In non-

small cell-lung cancer, elevated copy-number heterogeneity across multiple sequenced 

regions of early stage primary tumors was associated with increased risk of relapse(178), 

suggesting that ongoing chromosomal instability is an important mechanism to generate 

evolutionary space for the emergence of pro-metastatic traits within tumors.

Modes of evolution.

Computational analyses of SCNAs and SNVs enable reconstruction of phylogenetic trees to 

determine the sequence and selection of mutations during metastasis(179). Two models for 

metastatic evolution have long been considered(180). The “linear evolution” model 

envisions that primary tumors gradually accumulate mutations, with a late subclone 

acquiring metastatic capacity (Figure 4b). The “parallel evolution” model, on the other hand, 

argues that cancer cells that disseminate early are more effective at forming metastasis 

because they evolve in the host microenvironment, unlike clones that remain in the primary 

tumor(181). In HER2+ mouse models of metastatic breast cancer, early disseminating cells 

were found to be more metastatically competent than late disseminators(182,183). Using 
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sensitive cell-free DNA technology, circulating DNA with tumor-associated mutations can 

be detected in patients with subclinical primary tumors in a variety of cancers, suggesting 

that early dissemination is possible. However, the rarity of metastasis-specific SNVs in 

patients argues against the parallel evolution model(167,169). Other studies have identified 

both metastasis-specific recurrent alternations and recurrent alterations that are shared 

between primary and metastatic tumors, suggesting that both early and late metastatic 

dissemination can occur(164). Moreover, recent work suggests the presence of “punctuated 

evolution” in some tumors, with acquisition of mutations that rapidly clonally dominate the 

primary tumor, and then seed metastasis in an evolutionary “Big Bang”(171,184–187). Other 

tumors may evolve more gradually, with multiple clones of low metastatic fitness competing 

within the primary tumor.

Taken together, the evidence from clinical and murine studies suggest that metastasis 

imposes an evolutionary bottleneck that only select cells within primary cancer cell 

populations are able to overcome. Such metastases may be monoclonal or 

polyclonal(171,184–189), suggesting potentially distinct modes of seeding or selection. It is 

worth noting that the prevalent linear interpretation of the clonality and timing of metastases 

may be confounded by the possibility of ongoing “self-seeding” of metastases, wherein cells 

from metastatic tumors may recirculate and seed not only new metastatic lesions, but may 

also infiltrate pre-existing primary and metastatic tumors(190,191).

Evolutionary timing and cancer therapy.

Intriguingly, in clear cell renal cell carcinoma, dominant clones resulting from punctuated 

evolution seed aggressive multiorgan metastasis with little intermetastatic heterogeneity, 

while oligometastases with indolent behavior arise from tumors displaying gradual 

evolution(186) (Figure 4b). Unlike multiorgan metastasis, oligometastasis in a single organ 

may be amenable to curative surgery or other local treatments, and thus provides an 

opportunity to use tumor clonality as a predictive biomarker for such therapies(192). In 

patients, there is a strong correlation between tumor size (a proxy for tumor age) and the 

probability of future metastatic relapse, which is inconsistent with the possibility of 

exclusive early metastatic seeding. However, in a large cohort of breast cancer patients 

treated with mastectomy and no systemic therapy, tumor size was associated with early local 

recurrence and distant metastasis, but not with late metastasis(193). This observation 

suggests the possibility that in some tumors both early and late dissemination may coexist, 

with late, more proliferative disseminating cells driving mostly rapid relapse. In contrast, 

early disseminating cells may be particularly prone to latency for extended periods of time, 

either because of a capacity to enter a deep quiescent state, or because those that grow are 

rapidly cleared by the immune system.

Epigenetic basis for metastatic adaptability

Although genomic alterations generate selectable survival traits in cancer cells, mutations 

alone cannot account for the fundamentally distinct biology of MICs. Unlike primary 

tumors, which are thought to largely arise through oncogenic transformation of homeostatic 

tissue stem and progenitor cells in their native niche(194–198), MICs must rapidly change 
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their phenotypes to detach from the primary tumor, survive mechanical, metabolic and 

immunological stresses during dissemination to distant organs, adapt to the foreign 

microenvironments, access proliferative cues to reinitiate tumor growth in distant organs, 

and resist therapy. Dynamic adaptation to changing circumstances during the metastatic 

process requires faster change than a purely genetic mechanism, which allows for selection 

of variants only once per cell cycle, might support.

While the dynamic expression of specific genes has long been associated with metastatic 

phenotypes, the master transcription factors and epigenetic remodeling mechanisms required 

for the different steps of the metastatic process in various tumors are only beginning to 

emerge(199). Genes required for chromatin modification (e.g. ARID1A/B, KMT2C/D) and 

DNA methylation (DNMTs) are frequently mutated in advanced tumors, underscoring the 

importance of epigenetic modulation in metastasis(173). A fundamental question is whether 

metastatic adaptability involves greater overall chromatin accessibility, and hence the 

potential to activate the expression of multiple genes, as implied by studies in genetically 

engineered mouse models of lung cancer(200–202), or whether the ability to transition to 

one or more pro-metastatic phenotypic states by activation of specific transcription factors is 

sufficient, as shown in models of pancreatic ductal adenocarcinoma(203) and renal cell 

carcinoma(204). Recent work illuminated the role of histone H3 variants(205), and specific 

histone marks, such as H3K36me2(206), as critical requirements for epigenomic 

reprogramming during metastasis. The question remains whether epigenetic alterations favor 

metastasis by randomly activating selectable genes or by enabling cancer cells to enter 

progenitor states that have a superior fitness to initiate metastasis.

Regenerative origins of metastatic traits

Several key traits of the MIC phenotype are normally present in regenerative progenitor 

cells. In wound-healing processes (Figure 5a), epithelial regenerative progenitors show 

intense phenotypic plasticity, undergo EMT, display migratory activity, interact with and 

remodel the extracellular matrix, and secrete signals that coopt mesenchymal, endothelial 

and immune stromal components to support the restoration of epithelial barrier 

integrity(207,208). Recent work raises the possibility that carcinoma MICs may capture 

these traits all at once by adopting a regenerative phenotype.

Phenotypic plasticity in regenerative progenitors.

Phenotypic plasticity, a key feature of tumor progression and metastasis(161,162), is also a 

feature of normal adult stem cells, including those of the gut, lung and skin. These cells are 

not locked in a fixed pre-existing cell fate but rather enter and exit “stem-like” states in 

response to demands to preserve the structural and functional integrity of the 

tissue(4,162,209–211). In the intestinal mucosa, cells expressing the WNT signaling 

pathway component LGR5 function as stem cells in the maintenance of epithelial 

homeostasis(212). However, when LGR5+ cells are lost by genetic ablation or injury, LGR5− 

progenitor cells can become LGR5+ cells(208,211). Moreover, unique stem cell states are 

mobilized by damage to revive the epithelium through transcription factor YAP (213).
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Cells from the mouse small intestine can grow as organoids, three-dimensional structures 

that form in laminin-rich basement membrane matrix and mimic the cellular composition 

and architecture of the intestinal epithelium(214). Both LGR5+ and LGR5− cells sorted from 

normal mouse intestinal epithelium can form organoids(211,215). Moreover, during the 

initial stages of organoid formation LGR5+ cells convert to a LGR5− state that includes YAP 

activation, and later re-express LGR5 and downregulate YAP to establish a differentiated 

epithelium(215). Thus, intestinal organoid formation appears to start as a process of 

epithelium recovery driven by LGR5− progenitors followed by restoration of differentiated 

structures driven by reemerging LGR5+ progenitors.

Dynamic phenotypic changes are also observed in cancer metastasis. In colorectal cancer 

(CRC), intestinal LGR5+ stem cells harboring constitutively activating mutations in the 

WNT signaling pathway act as tumor-initiating CSCs(197). However, intravital microscopy 

of experimental CRC metastasis in mice revealed that MICs disseminating from the primary 

tumor and seeding metastasis in the liver are predominantly LGR5− (216). To initiate 

metastatic tumor growth in the liver, some progeny of LGR5− cells reacquire LGR5 

expression(216), while other cancers may acquire LGR5-independent regenerative 

capacity(217,218).

Adopting a regenerative phenotype.

Recent work has shown that MICs in CRC and other epithelial cancers dynamically express 

L1CAM(32). Originally identified as a neuronal cell adhesion molecule, L1CAM is 

expressed in carcinomas at the primary tumor invasion front and is associated with poor 

prognosis in multiple tumor types, including those of the breast, lung, colon, ovary and 

kidney(219). L1CAM is not expressed in intact normal epithelia or required for epithelial 

homeostasis, but its expression is induced by the breach of epithelial intercellular adherens 

junctions during colitis and tissue injury, and is required for the survival of detached 

epithelial progenitors and for tissue repair(32). L1CAM expression in dissociated CRC cells 

is required for the initiation of organoid formation, where most L1CAM+ cells are LGR5−. 

L1CAM+ cells are highly competent to initiate growth of transplanted CRC tumors and liver 

metastases. As MICs initiate tumor growth and regain epithelial structures, L1CAM 

expression is downregulated, but can be reactivated again when tumor architecture is 

disrupted by therapy. Repeated cycles of therapy select for cells with the capacity to 

upregulate L1CAM-expression, which can more efficiently reinitiate tumor growth(32). 

Thus, L1CAM seems to mark certain regenerative progenitor states and its expression in 

these cells mediates the regrowth of intestinal epithelium after injury and tumor regrowth 

during metastasis.

Several studies highlight a biphasic process of epithelial repair that is coopted during 

metastasis. Upon wounding, an immediate emergency response is activated in which 

epithelial progenitors enter distinct migratory and proliferate states to seal the breach in the 

mucosa(220,221) (Figure 5a). This “bandaid” phase is followed by a slower regenerative 

phase in which normal tissue stem/progenitor hierarchies are recreated. Borrowing from 

repair, dissociation of epithelial structures in invasive CRC induces malignant progenitors to 
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adopt a highly plastic regenerative phenotype endowed with capacity to undergo EMT, 

migrate, avert anoikis, and drive L1CAM-dependent regrowth(32,43) (Figure 5b).

Further evidence for the regenerative nature of metastatic progression comes from single-

cell RNA sequencing studies on tumor tissue from lung adenocarcinoma patients as well as 

lesions from a mouse model of metastatic latency and outbreak(222). Whereas primary 

tumors showed developmental lineage promiscuity and cell states that were intermediate 

between the various cell states of the regenerative lung epithelium, metastatic cells reverted 

to earlier states and recapitulated lung organogenesis and regeneration phenotypes with 

striking fidelity.

The adoption of a regenerative phenotype by MICs has several implications. Instead of 

having to select a pre-determined rigid MIC fate or randomly acquiring a multitude of 

independent metastatic traits, CRC cells seem to sample among a range of phenotypically 

transient states, some of which, such as the L1CAM+ state, are adept at supporting survival 

of disseminated cells and the initiation of metastatic growth and are hence selected for 

during the metastatic process(32,43).

Acquiring organ-specific colonization traits.

The highly specialized nature of most organ-specific metastatic traits suggest that these are 

acquired through selection from heterogeneous MIC populations that complete their 

evolution after seeding distant organs, rather than being intrinsic properties of the stem cell 

states that give rise to MICs. However, not all organ-specific traits result from clonal 

evolution after dissemination. The microenvironment of a primary tumor can pre-select 

clones with properties that are compatible with the environment of a particular distant organ, 

thus influencing the metastatic tropism of the disseminating cancer cells. For example, 

primary breast tumors with high TGF-β activity are associated with lung relapse, and this is 

linked to the ability of TGF-β to induce the expression of the cytokine ANGPTL4 in the 

cancer cells. ANGPTL4 causes endothelium disjunction to promote extravasation of 

circulating breast cancer cells that lodge in lung capillaries(223). Primary tumors may also 

pre-select for MIC clones that thrive in distant organs whose stroma the primary tumor 

mimics. For example, breast carcinomas rich in mesenchymal cells that produce CXCL12 

select for MIC clones that thrive in a CXCL12-rich microenvironment, and thus are 

predestined to colonize the CXCL12-rich stem cell niches of the bone marrow(224).

Metastasis as a systemic disease

Metastasis is subject to important organ-specific barriers and adaptation, as in previous 

sections and recapitulated in Figure 6a. However, metastasis is by definition a systemic 

disease(225). Despite the growing understanding of MIC-intrinsic and metastatic niche 

dependent mechanisms, relatively little is known about the complex ways in which systemic 

physiological factors influence MIC plasticity and selection, and vice versa. However, recent 

studies have provided evidence for the potential role of various systemic sources in the 

development of metastasis (Figure 6b). While the molecular basis for a majority of these 

effects remains to be determined, and their causal relationship with metastatic progression 

remains to be firmly established, this is an area of rising interest.
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Systemic niche components.

Both primary and metastatic tumors can release cytokines, chemokines and hormones either 

directly into the systemic circulation or packaged into exosomes, which in turn can modulate 

distant niches to favor or resist metastatic colonization, including organ-specific metastatic 

dissemination(147,151,226,227). While many critical mediators and mechanisms of pre-

metastatic niche formation remain to be uncovered, studies to date suggest that organ 

specific stromal cell reprogramming induces changes in extracellular matrix and matrix-

associated proteins, which in turn enable recruitment of specific myeloid populations that 

support future MIC growth(228). Indeed, bone marrow derived myeloid cells can play 

critical roles in either limiting or promoting MIC survival and growth, and the mechanisms 

enabling their context-specific recruitment, differentiation and activity at various steps in the 

metastatic process have been a focus of growing interest(18,98,130).

Systemic immunity, inflammation and metabolism.

The critical role of systemic immunity in controlling metastasis is now firmly established. 

Physiological and pathological phenomena that modulate systemic immunity indirectly 

control metastasis, in addition to having direct effects on MICs (Figure 6). Stress and 

depression have been associated with early metastasis and poor prognosis in patients with 

breast, lung and hepatobiliary carcinomas(229). In cell line xenograft models of metastatic 

breast cancer, increased corticosteroid stress hormone levels generated during tumor 

progression resulted in increased glucocorticoid receptor activation, downstream ROR1 

upregulation, metastatic growth and chemoresistance(230). In addition to direct effects on 

MICs, glucocorticoids have widespread immunosuppressive effects, which in turn can 

promote MIC outgrowth(231,232). In addition to steroids, increased levels of the stress-

induced catecholamine norepinephrine induced changes in neutrophils that enabled MIC 

escape from dormancy in syngeneic lung cancer models(233).

Systemic inflammation and immunosuppression resulting from a range of physiological and 

pathological conditions, including ageing, post-partum breast involution, asthma and 

osteoarthritis have been associated with increased metastasis risk and reduced survival from 

a range of epithelial cancers(234–238). In a recent study, inflammation induced by surgical 

wounding was shown to promote MIC outgrowth from dormancy in breast cancer mouse 

models(239), suggesting a potential explanation for the early peak in metastatic recurrence 

within one year of curative breast surgery in patients(240). Based on these observations, 

several groups have proposed the prophylactic use of non-steroidal anti-inflammatory agents 

and beta-blockers in the peri-operative setting, although clear clinical evidence for a 

significant anti-metastatic effect is lacking(239,241).

Tumors in turn may alter host metabolism, immunity and physiology locally as well as 

systemically (Figure 6). Circulating cytokines and metabolites derived from metastatic 

tumors can have a dramatic impact on tissues such as skeletal muscle and adipose. Indeed, 

many patients with metastatic cancer develop cachexia, a debilitating muscle-wasting 

syndrome that is associated poor prognosis and accelerated death(242). A better 

understanding of the molecular basis for how metastatic disease promotes cachexia is 

important for improving the care of patients with metastatic cancer.
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Nerves and metastasis.

The nervous system is emerging as a potential systemic modulator of metastasis(243,244). 

Innervation is essential for physiological regeneration(245), but the role of nerves in 

metastasis had long been surmised to be only as passive conduits for tumor dissemination in 

cases of perineural invasion(61). Growing evidence, however, suggests that neurons can be 

active determinants of cancer progression and outcome(243,244) (Figure 6). Direct 

innervation of tumors can contribute to tumor progression at both the primary and metastatic 

sites. In mouse cancer models, autonomic denervation of the prostate, stomach and pancreas 

inhibited tumor progression and cell dissemination from these sites(246). In addition to 

effects mediated by direct tumor innervation, increasing understanding of neuronal 

regulation of immunity suggests a systemic means of neuronal metastatic regulation, 

although little mechanistic insight is currently available(247). For example, in a syngeneic 

metastatic mammary carcinoma model, denervation of sensory neurons suppressed NK cell 

activity resulting in increased lung and cardiac metastases(248).

Diet and exercise.

Epidemiological and experimental studies have identified correlations between lifestyle 

factors such as diet and exercise with cancer incidence, therapy resistance and survival(249–

251). Proposed mechanisms of tumor modulation include direct effects on cancer cells (for 

example, by altering insulin signaling or lipid metabolism), indirect effects on tumor 

inflammation and immune surveillance, or especially for diet, tertiary effects mediated by 

the gut microbiome(128,250–255). Obesity, which is associated with both poor diet and low 

exercise, is an independent risk factor for the future development of distant metastasis and 

death in patients with surgically resected primary breast cancer(256). With some notable 

exceptions (e.g. (128,257)), the majority of animal studies of diet, exercise and microbiome 

modulation to date have been performed in models of tumor initiation or subcutaneous 

tumor cell transplantation, and the functional and mechanistic significance of these studies 

to the critical steps of MIC dissemination, dormancy and outbreak, as well as therapy 

resistance in patients with advanced cancer remain unresolved.

It is important to discern whether lifestyle factors that may influence tumor progression 

represent modifiable, and potentially therapeutically targetable, risk factors in patients who 

have already been diagnosed with primary tumors. A meta-analysis of 49,095 early stage 

breast and colon cancer survivors suggested that survivors who increased their physical 

activity from before diagnosis and surgery showed a statistically significant decreased total 

mortality risk in comparison with those who did not change their activity level(258). 

Prospective clinical studies randomizing newly diagnosed cancer patients to specific dietary 

or exercise interventions will help clarify the actionability of these factors in preventing and 

treating metastasis(259).

Microbiome.

The role of the microbiome as a player in influencing cancer biology is becoming 

increasingly evident(260,261) (Figure 6). The mucosal microbiome can interact directly with 

epithelial cells in niches such as the luminal gastrointestinal tract, respiratory tract and skin 

to influence tumor progression through local inflammation or immunosuppression(260,261). 
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Gut pathobiotic strains of fusobacterium have been shown to colonize colorectal tumors and 

drive metastasis to the liver(262). Mouse xenografts derived from such human liver 

metastases continue to be colonized by fusobacterium, and antibiotics that target 

fusobacterium can inhibit metastasis in mouse models(262). Intriguingly, many cancers that 

are not directly exposed to environmental bacteria, including breast and bone cancers, have 

recently been shown to also harbor intratumoral microbiota, although the functional 

significance of such colonization remains unclear(263). In addition to local effects, 

metabolites secreted by microbiota may have diverse systemic effects on immunity, 

hormones and organ function, most of which are currently poorly understood(264,265). 

Other systemic factors, such as diet, can rapidly alter microbiome composition(266,267), 

and patient-specific microbiota can in turn influence responses to therapy(268,269). Given 

this complexity, there is an increasingly evident need to characterize and control for the 

microbiome composition as an independent variable in animal and human studies of 

metastasis.

Aging.

In some cancers, such as melanoma, age at cancer diagnosis is associated with increased 

tumor aggression and metastasis(270). Three broad mechanisms have been proposed for 

age-related local and systemic acceleration of metastasis(271,272). First, age-dependent 

accumulation of senescent cells, and their associated secretomes, in the tumor 

microenvironment may promote tumor invasion, pre-metastatic niche formation and 

metastatic outgrowth(273–275). Co-injection of senescent fibroblasts, but not normal 

fibroblasts, promoted metastatic progression in mouse models(276). Second, age-related 

deterioration of extracellular collagen matrices may facilitate tumor cell invasion and 

promote transendothelial migration(277,278). Third, age-associated systemic low-grade 

chronic inflammation, termed “inflammaging”(279), can disrupt tissue architecture and 

promote tumor dissemination(277,280), while immunosenescence may prevent effective 

immune editing of disseminated MICs emerging from dormancy(272,281). Further 

delineation of the mechanisms by which aging intersects with metastatic progression is 

needed to define therapeutic strategies to prevent and treat cancer in aging populations.

MIC-intrinsic and acquired drug resistance mechanisms

A cardinal feature of metastatic disease is its ability to resist therapy. We recently reviewed 

the clinical contexts and approaches for targeting metastasis(282). Here we focus on the 

properties of MICs that enable therapy resistance, and potential approaches to overcome 

these.

Since tumors comprise numerous genetically distinct subclones, cells harboring therapy 

resistance mutations can be selected for during metastasis as the patient undergoes treatment 

for initially localized disease. Genetic analyses of matched primary tumors and metastases 

show that metastases from patients who had received adjuvant therapy for treatment of 

initially localized cancer had reduced clonal heterogeneity in comparison to metastases from 

previously untreated patients, suggesting that treatment imposes an evolutionary bottleneck 

for MIC emergence(173). This is particularly evident in the case of treatments that target 

Massagué and Ganesh Page 22

Cancer Discov. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



specific oncogenic signaling pathways, where therapy with inhibitors of these pathways 

selects for the emergence of cancer cells with specific recurrent resistance mutations. 

Examples include EGFR T790M mutations in patients treated with first generation tyrosine 

kinase inhibitors gefitinib and erlotinib(283), and ESR1 mutations in estrogen receptor-

positive breast cancer patients treated with anti-estrogen therapy(175). Clinical and 

experimental studies characterizing such targeted therapy-specific resistance mutations have 

enabled the rapid development of improved drugs that anticipate and target resistance 

mutations, with improved therapeutic results(284).

In addition, these genetically acquired mechanisms of drug resistance, MIC phenotypic 

properties may confer intrinsic therapy resistance(154,282,285). In most cancers, the 

mainstay of treatment of metastasis remains cytotoxic chemotherapy, which preferentially 

targets rapidly proliferating cells. Thus, MICs that are capable of entering quiescence may 

more readily evade chemotherapy than do proliferative cancer cells. When therapies result in 

partial destruction of glandular metastatic tumors, they may in turn disrupt epithelial 

adherens junctions and induce MICs to enter a regenerative progenitor state, as observed in 

colorectal cancer(32). Successive rounds of therapy may further select for residual cells that 

are epigenetically primed to reenter regenerative states(286), suggesting an explanation for 

the successively restricted duration of clinical response typically observed with sequential 

lines of therapy in patients with advanced cancer. In addition, the stem-like properties of 

MICs may include the expression of ATP-binding cassette drug efflux transporters that could 

confer multidrug resistance(287). Dying or senescent cancer cells induced by therapy that 

partially debulks metastatic tumors can release cytokines as secretomes, to which MICs can 

respond by activating growth factor signaling programs to regenerate tumors(288–290).

The immune evasive properties of MICs are likely also of importance in resisting both tumor 

cell-directed therapy and systemic immunotherapy. In addition to MIC-intrinsic mechanisms 

of immune escape, desmoplasia in tumors is an important mechanism of therapy resistance. 

In pancreatic ductal adenocarcinoma, Hedgehog signaling induces fibrosis, which in turn 

poses a physical barrier for drug delivery to tumor cells that are surrounded by 

fibroblasts(20,291,292). In many cancer types, immune cells are recruited to tumors from 

the systemic circulation but are spatially segregated from tumor cells by fibroblast barriers, 

resulting in immunologically “cold” tumors that do not respond to PD-1 checkpoint 

immunotherapy(293,294). Targeting these fibroblast barriers using hedgehog inhibitors 

disrupts desmoplasia in mouse models of pancreatic ductal adenocarcinoma (292). TGF-β is 

strongly immunosuppressive and fibrogenic(89,90); the use of TGF-β inhibitors in colorectal 

and breast cancer increase drug and immune cell infiltration into the tumor, reversing 

immunotherapy resistance in preclinical models and correlating with superior 

immunotherapy responses in patients(295,296). However, the translation of these approaches 

to patients has been challenging to date due to complex effects of drugs that target 

developmental signaling pathways on the tumor microenvironment, as well as broader 

systemic toxicities(297–299). Improved understanding of the mechanisms of tumor 

fibrogenesis and immune cell communication may yield more specific targets for therapeutic 

intervention.
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The plasticity of MICs arguably poses the greatest bottleneck to therapeutic success, since 

MICs that are capable of sampling among numerous transcriptional and epigenetic states 

may be surmised to rapidly select for gene expression programs that enable therapeutic 

escape. However, understanding the molecular mechanisms of MIC plasticity may yield 

improved therapeutics(162,300). For example, epigenetic modulators could be used to 

inhibit or reverse MIC plasticity or to force MIC differentiation into terminal, non-

proliferative states. Targeting genotype-agnostic conserved regenerative states may block the 

relapse of metastatic disease that is being debulked by antineoplastic chemotherapy. 

Characterizing the endpoints of plasticity, such as neuroendocrine lineage plasticity in 

prostate cancer, may enable the development of new drugs that target the emergent 

neuroendocrine state instead of or in addition to the pre-existing androgen-driven epithelial 

state(163).

Summary and Perspectives

In summary, recent work is illuminating the fundamental principles of metastasis initiating 

cells and their ecosystems, and importantly shedding light on the mechanisms by which 

metastatic tumors emerge and develop as phenotypically distinct, therapy resistant entities in 

comparison to primary tumors. In brief:

• Metastasis develops through three distinct phases, namely dissemination, 

dormancy and outbreak, which can co-exist until the removal of the primary 

tumor.

• Each phase of metastasis reflects a dynamic equilibrium of MICs with host 

immunity, with the eventual outbreak of MICs as macrometastatic colonies that 

can be detected using standard imaging reflecting a failure of immune 

surveillance.

• While pre-existing genetically distinct tumor subclones with high metastatic 

propensity are selected for in primary tumors, phenotypic plasticity, enabled by 

epigenetic and metabolic adaptations, is an overarching hallmark of MICs.

• Phenotypic plasticity endows MICs with the ability to sample multiple 

transcriptional states and dynamically adapt to diverse stresses during each phase 

of metastasis.

• MICs can adopt epithelial regenerative progenitor states that possess stem-like, 

immune evasive, tissue regenerative, and therapy resistance capacities.

• The dynamic equilibrium between MICs and their organ-specific 

microenvironmental niches can be modulated by systemic factors that impact 

either or both components.

• Identifying the vulnerabilities of conserved regenerative MIC states, and the 

molecular determinants of communication between MICs and their ecosystems 

could yield improved therapeutics to prevent and treat metastasis, and thus 

improve outcomes for patients with advanced cancer.
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With the advent of immunotherapy and continued advances in targeted therapy, the last two 

decades have witnessed considerable improvements in outcomes of patients with some types 

of metastatic cancers(270). These advances are driven by increasingly closer collaborative 

bidirectional interactions between clinical and bench scientists, and improved, more 

representative patient-derived and animal models of metastatic cancer. Significant 

therapeutic advances are resulting from the rapid recognition, molecular characterization and 

clinical translation of biologically discrete phenotypes of metastatic disease. Examples 

include curative local therapy for oligometastatic disease, immune activation phenotypes in 

extreme outlier patients with exceptional response to therapy, and mechanism-based 

therapies for metastases in specific organs, such as the brain, where even small 

improvements in tumor shrinkage can yield significant improvements in patient 

survival(282).

Further improvements in patient outcomes will emerge from a deeper understanding of the 

mechanisms that underlie the plasticity and dormancy of MICs as well as the complex 

interactions between the MICs, their niches and systemic factors. To do so, preclinical 

models used to study metastasis and test therapies for metastatic cancer must recapitulate the 

genomic complexity, plasticity and niche biology of advanced human cancers, rather than 

relying exclusively on simpler systems that may fail to capture these critical features.

In 1889, Steven Paget first hypothesized that metastasis might result from a fertile “seed” 

landing on congenial niche “soil”(301). While investigations in the subsequent 111 years 

have vindicated Paget’s view, a third dimension of the metastasis ecosystem – the “forest” of 

systemic factors, is emerging. By understanding and targeting the interactions between the 

seeds, soil and forest, we may be able to convert metastasis, which is today still typically a 

death sentence, into a manageable illness.
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Figure 1. Phases of Metastasis.
a. Metastasis proceeds through three distinct phases of dissemination, dormancy and 

colonization. Metastasis Initiating Cells (MICs) disseminate from the primary tumor and 

seed multiple organs, where they enter a subclinical state of dormancy. During dormancy, 

MICs may shuttle between quiescent and proliferative states, with proliferative cells being 

continually cleared by niche-specific or systemic immune defenses. MICs that acquire 

immune evasive and organ-specific growth adaptations are able to exit dormancy and 

generate clinically evident macrometastatic colonies. During dissemination and dormancy, 

MICs are in a dynamic equilibrium with host immunity, while failure of immune 

surveillance results in metastatic outbreaks and organ colonization. b. The three phases of 

metastasis can overlap with the growth of primary tumors and may co-exist in the same 

individual until removal of the primary tumor (Stage I-III). The latter two phases continue to 

co-exist during adjuvant therapy, with the eventual dominance of the colonization phase 

resulting in macrometastatic relapse (in cases that were originally diagnosed as Stage I-III), 

or in patients diagnosed with de novo Stage IV cancers.
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Figure 2. Metastatic dissemination.
The most common and best characterized route of tumor dissemination is via the blood 

circulation (a-c). a. During hematogenous dissemination, cancer cells at the invasion front of 

primary tumors that undergo epithelial-mesenchymal transitions (EMT) lead intravasation 

into neoangiogenic capillaries in the tumor, and thus access the venous circulation for 

dissemination to multiple organs. Cancer cells may intravasate individually or in clusters 

during collective migration. Invasion and intravasation involve remodeling of the tumor 

extracellular matrix (ECM) and may be facilitated by tumor-resident fibroblasts and 

macrophages. b. In the circulation, cancer cells must rapidly adapt to overcome 

biomechanical, redox and immunological threats. Clustering of circulating tumor cells 

(CTCs) may enable paracrine growth factor signaling that promotes the niche-independent 

survival of disseminated epithelial cells. CTC clusters are enriched in stem-like cancer cells 

and can include other cell types including platelets and neutrophils, which in turn can protect 

CTCs from immune attack by secreting immunosuppressive factors. c. CTCs become 

trapped in the capillary beds of multiple organs and migrate into the organ parenchyma to 

seed nascent metastasis. Fenestrated capillary beds in the liver and bone marrow can 

facilitate extravasation. Non-tumor cells with CTC clusters, or in the parenchyma, including 

platelets and monocytes, can facilitate endothelial permeability and transmigration by 

secreting endothelial disjunction factors. Alternatively, CTCs can secrete factors that induce 

endothelial necroptosis. d. Beyond hematogenous dissemination, cancer cells originating in 

certain primary tumors can also reach distant organs via alternative routes.
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Figure 3. Metastatic dormancy and outbreak.
a. Metastasis initiating cells (MICs) seeding distant organs enter into a variable period of 

dormancy, when then cannot be detected by clinical imaging technologies. Clinical 

dormancy reflects an equilibrium incorporating cell-intrinsic growth arrest, and stochastic 

MIC proliferation events, which are countered by elimination of proliferating cells. Secreted 

factors in the perivascular microenvironment may either inhibit MIC proliferation (e.g. TGF-

β), or promote it (e.g. WNT), which in turn can be countered by MIC secretion of WNT 

inhibitors (e.g. DKK1). MICs spread on the abluminal surface of capillaries by adhering to 

the perivascular basement membrane, which provides proliferative inputs. However, stromal 

factors can induce proliferating MICs to differentiate and lose stemness properties (e.g. 

BMP). In contrast to quiescent MICs, proliferating MICs upregulate cell surface expression 

of NK ligands and MHC Class I molecules, facilitating their detection and destruction by 

NK cells and adaptive immune cells. b. Exit from dormancy requires close interactions 

between MICs and extracellular matrix (ECM). MICs induce innate immune responses that 
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include the recruitment of neutrophils and the formation of extracellular web-like chromatin 

decondensates harboring ECM remodeling enzymes, termed neutrophil extracellular traps 

(NETs). NET-dependent cleavage of laminin, a key component of the ECM, activates β1-

integrin signaling in MICs. MICs can also activate signaling through integrin-like kinase 

(ILK) by upregulating L1CAM, a cell adhesion molecule that binds laminin on extracellular 

basement membranes, including that of blood capillaries. Integrin/ILK signaling enables cell 

stretching via the formation of actin-dependent protrusions, which in turn enables 

mechanosignaling to activate YAP-dependent transcriptional output and proliferation. 

Homophilic L1CAM interactions as cancer cells multiply can extend this signaling. 

Additional cues from the ECM, including the stem cell niche ECM components tenascin C 

and periostin, can potentiate growth factor signaling and enable MIC stemness and 

proliferation. c. Outgrowth of dormant metastasis might be prevented by bolstering barriers 

to MIC survival and proliferation or targeting the phenotypic adaptations required for escape 

from dormancy.
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Figure 4. Acquisition of MIC phenotypes.
a. MICs arise from primary tumors but must acquire distinct phenotypic traits in order to 

successfully disseminate, seed and colonize distant organs. MICs adopt key phenotypic traits 

of regenerative progenitors that respond to tissue injury, including phenotypic plasticity, the 

ability to restore heterogeneous and morphologically complex epithelial structures upon 

disruption of tissue structure, and the ability to evade killing by immune cells. In addition, 

MICs must acquire organ-specific adaptations that enable colonization of distinct 

microenvironments. b. Models of metastasis evolution. In the parallel evolution model, 
cancer cells disseminating from the primary tumor early during cancer progression seed 

distant organs and evolve genetically, independently from the primary tumor. Thus, 

mutations in the primary and metastatic tumors would be expected to be different. In 

contrast, in linear evolution models, MICs disseminate late during tumor evolution from the 

primary tumor, and thus are closely clonally related to the primary tumor. Linear evolution 

can be gradual, in which case tumors may consist of multiple distinct subclones with similar 

fitness and individual metastases may be derived from distinct subclones, or punctuated, in 

which case a dominant subclone arising in the primary tumor rapidly outcompetes and 

overtakes the entire population and seeds all metastases. Dash arrows represent the length of 

metastasis latency time periods.
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Figure 5. Model of the regenerative progenitor origin of MICs.
a. In the intestine, proliferative LGR5+ crypt base cells maintain intestinal homeostasis. 

Injury disrupts intercellular adherens junctions and induces the emergence of an L1CAM+ 

regenerative progenitor phenotype, which is required for epithelial repair, regeneration of 

heterogeneous cell types, and resolution of the wound. b. Oncogenic driver mutations in 

homeostatic stem and progenitor cells create tumor initiating cells (or “cancer stem cells”, 

CSCs), capable of adenoma formation within an intact epithelial niche. Additional mutations 

give rise to an invasive carcinoma, which further breaches the integrity of the epithelium and 

triggers the emergence of an L1CAM+ regenerative progenitor state in cancer cells. As 

regenerative progenitors, these malignant cells have the capacity to survive the loss of the 

epithelial niche during tumor dissemination, are competent to enter quiescence, evade 

immune surveillance and therapy, and upon the receipt of favorable growth signals, 

regenerate heterogeneous tumors in metastatic sites and after therapy.
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Figure 6. Metastasis as a systemic disease with organ specific features.
a. A recap of organ-specific determinants of metastatic colonization. b. Systemic 

determinants of metastasis. During metastasis, cancer cells from primary tumors disseminate 

throughout the body via the blood and lymphatic circulations, among other routes. Tumor 

cells establish a dynamic equilibrium with both systemic immunity and organ-specific 

immune infiltrates. Systemic factors can modulate both primary and metastatic tumor 

growth as well as the anti-tumor immune responses. While the catalog of systemic factors 

that can modulate metastasis is incomplete, current evidence implicates circulating 

chemokines and cytokines and signals transmitted via nerves and hormones in controlling 

tumor growth and metastasis. In addition, intratumoral and gut microbiomes can influence 

cancer progression either through direct interactions with cancer cells and immune cells, or 

indirectly, via metabolites released into the systemic circulation. The dynamic equilibrium 

between tumors, metastases and their niches is influenced by systemic factors that impact 

MIC growth and therapy resistance.
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