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Background.  Antibody Fc-mediated functions, such as antibody-dependent cellular cytotoxicity, contribute to vaccine-induced 
protection against viral infections. Fc-mediated function of anti-Ebola glycoprotein (GP) antibodies suggest that Fc-dependent acti-
vation of effector cells, including natural killer (NK) cells, could play a role in vaccination against Ebola virus disease.

Methods.  We analyzed the effect on primary human NK cell activation of anti-Ebola GP antibody in the serum of United 
Kingdom–based volunteers vaccinated with the novel 2-dose heterologous adenovirus type 26.ZEBOV, modified vaccinia Ankara–
BN-Filo vaccine regimen.

Results.  We demonstrate primary human NK cell CD107a and interferon γ expression, combined with down-regulation of 
CD16, in response to recombinant Ebola virus GP and post-vaccine dose 1 and dose 2 serum samples. These responses varied sig-
nificantly with vaccine regimen, and NK cell activation was found to correlate with anti-GP antibody concentration. We also reveal 
an impact of NK cell differentiation phenotype on antibody-dependent NK cell activation, with highly differentiated CD56dimCD57+ 
NK cells being the most responsive.

Conclusions.  These findings highlight the dual importance of vaccine-induced antibody concentration and NK cell differentia-
tion status in promoting Fc-mediated activation of NK cells after vaccination, raising a potential role for antibody-mediated NK cell 
activation in vaccine-induced immune responses.
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Determining correlates of protection for Ebola vaccines has 
proved difficult and ambiguous [1]. Anti-Ebola antibodies pos-
sess strong neutralizing capacity [2, 3]; moreover, antibodies 
with limited neutralizing activity were protective in animal 
models and human in vitro culture systems, suggesting that 
neutralization alone presents an incomplete mechanistic picture 
of in vivo protection [3–5]. Ebola-specific antibodies induce 
antibody-dependent cellular cytotoxicity (ADCC) in human 
peripheral blood natural killer (NK) cells and NK cell lines in 
vitro; in light of this, Fc-mediated function in anti-Ebola mon-
oclonal antibody therapy and vaccine-induced protection is 
gaining in interest [5–7]. 

Analysis of the primary response to the candidate Ebola vac-
cine, rVSV-ZEBOV, revealed a correlation between early NK 
cell activation and anti-Ebola antibody titer [8]. Furthermore, 
protection of nonhuman primates against Ebola virus (EBOV) 
challenge is associated with a low immunoglobulin (Ig) G2/
IgG1 antibody isotype ratio, compatible with ADCC as a 
major mechanism of protection [9]. In murine experimental 
filovirus vaccines, induction of anti–glycoprotein (GP) anti-
bodies with robust ADCC function was critical for protection 
[10–12]. Taken together, these studies suggest that Fc func-
tions of anti-Ebola antibodies may contribute to protection 
and may be exploited for improving vaccine and therapeutic 
monoclonal antibody efficacy and as markers of vaccine-
induced immunity.

NK cells, like other innate immune effector cells, express Fc 
receptors (FcRs) on their surface, allowing activation of cell-me-
diated antibody-dependent antiviral functions [13]. Antibody-
dependent phagocytosis of virus or virally infected cells by 
monocytes, macrophages, and neutrophils, along with ADCC 
mediated by NK cells, promotes the clearance of infected cells, 
reducing viral load and dissemination. NK cell ADCC is prin-
cipally mediated by cross-linking of FcγRIIIa (CD16) by the 
Fc region of immunoglobulins—subclasses IgG1 and IgG3 in 
humans—which leads to phosphorylation of immunoreceptor 

applyparastyle “fig//caption/p[1]” parastyle “FigCapt”

mailto:martin.goodier@lshtm.ac.uk?subject=
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://orcid.org/0000-0002-4462-7484


1172  •  jid  2021:223  (1 April)  •  Wagstaffe et al

tyrosine-based activation motifs and downstream pathway 
activation. 

Killing proceeds by releasing lytic granules from activated 
NK cells, inducing apoptosis of virally infected cells. Cross-
linking of CD16 by antibody induces its cleavage from the NK 
cell surface [14–16], but despite this, NK cells can move on to 
kill multiple targets, providing effective clearance of infected 
cells [17]. Fc functions of broadly neutralizing antibodies have 
been shown to be indispensable for protection against influenza 
virus infection [18, 19]; however, the role of Ebola vaccine–in-
duced antibody-dependent NK cell functions is unknown.

The novel adenovirus type 26 (Ad26).ZEBOV, modified 
vaccinia Ankara (MVA)–BN-Filo 2-dose vaccine regimen has 
shown promising results in phase 1 and 2 studies; high levels 
of anti-Ebola GP–specific antibody are sustained for at least 
360 days with high neutralizing activity and a strong correlation 
between binding and neutralizing antibody responses [20–23]. 
However, vaccine regimens based on Ad26.ZEBOV and MVA-
BN-Filo and differing in order and interval between doses 1 and 
2 induced substantially different serum antibody concentra-
tions in United Kingdom–based volunteers at both post–dose 
1 and post–dose 2 time points [21]. 

Therefore, the purpose of the current study was to as-
sess the ability of post-Ad26.ZEBOV, MVA-BN-Filo vacci-
nation serum samples (with differing regimens) to mediate 
antibody-dependent NK cell function in an in vitro ADCC 
assay targeting immobilized EBOV GP. We observed robust, 
antibody-dependent activation of NK cells in whole human 
peripheral blood mononuclear cell (PBMC) preparations cul-
tured with EBOV GP in the presence of post-Ad26.ZEBOV, 
MVA-BN-Filo vaccination serum. NK cell activation varied 
depending on vaccine regimen and was positively correlated 
with antibody concentration. NK activity also varied between 
NK cell donors, consistent with the assumption that differenti-
ation phenotype influences the potency of antibody-dependent 
NK cell responses.

METHODS

Study Participants and Samples

Eligible, healthy volunteers were recruited to take part in the 
EBL1001 (EBOVAC consortium) single-center, random-
ized, placebo-controlled, observer-blind Ebola vaccine trial 
held in Oxford, United Kingdom (ClinicalTrials.gov identifier 
NCT02313077). Another 15 volunteers were subsequently re-
cruited for group 5 (see Milligan et  al [21] for additional in-
formation on methods). Serum samples from 72 donors 
(age range, 18–50  years) were obtained for this study from 
nonplacebo arms (Table 1).

Active vaccination comprised monovalent Ad26.ZEBOV, ex-
pressing the GP of the Ebola Zaire virus (Mayinga variant), and 
multivalent MVA-BN-Filo, expressing the GP of the Sudan and 
Zaire EBOVs and Marburg virus together with Taï Forest virus 

nucleoprotein (Janssen Vaccines and Prevention and Bavarian 
Nordic). Vaccination schedules were as follows; groups 1 and 
2 received MVA-BN-Filo on day 1 and Ad26.ZEBOV on ei-
ther day 29 or 57, respectively; and groups 3, 4, and 5 received 
Ad26.ZEBOV on day 1 and MVA-BN-Filo on days 29, 57, or 15, 
respectively.

Additional blood samples were obtained from nonvaccinated, 
nonstudy volunteers. PBMCs were isolated using Histopaque 
1077 (Sigma-Aldrich) gradient centrifugation and cryopre-
served in liquid nitrogen or used immediately. Ebola GP–spe-
cific IgG concentration and Ebola GP–specific pseudovirion 
virus neutralizing antibody (psVNA) titers were determined 
previously [21], and human cytomegalovirus (HCMV) 
serostatus was determined by means of IgG enzyme-linked im-
munosorbent assay (Demeditec) (36% HCMV seropositive). 
The trial protocol and study documents were approved by the 
National Research Ethics Service (reference no.  14/SC/1408) 
and the London School of Hygiene and Tropical Medicine 
Research Ethics Committee (reference no. 14383).

In Vitro Culture Assays

For antibody-dependent NK cell activation assays, 10  μg/mL 
purified EBOV GP, Mayinga variant (Janssen Vaccines and 
Prevention), was immobilized on 96-well flat-bottom tissue 
culture plates overnight at 4°C, washed, blocked with 5% fetal 
calf serum (FCS) in Roswell Park Memorial Institute 1640 me-
dium supplemented with 100 U/mL penicillin/streptomycin 
and 20  mmol/L L-glutamine (Gibco; ThermoFisher), and 
washed again. Fresh PBMCs from a single individual donor 
(nonvaccinated) were washed in Roswell Park Memorial 
Institute 1640 medium supplemented as above and counted 
using a Countess II FL Automated Cell Counter (Invitrogen; 
ThermoFisher). PBMCs were seeded (3  × 105 per well) onto 
the antigen-coated plates together with pre- or postvaccination 
serum at various concentrations (with total serum concen-
tration made  up to 5% with FCS) and incubated for 6 hours 
at 37°C. Alternatively, cryopreserved PBMCs from multiple 
(nonvaccinated) donors were thawed, washed, and seeded onto 
the antigen-coated plates with pooled pre- or postvaccination 
serum from group 2 (regimen: MVA-BN-Filo on day 1 and 
Ad26.ZEBOV on day 57).

Anti-CD107a fluorescein isothiocyanate (clone H4A3; BD 
Biosciences) was added to the cultures for the entire culture 
period, and GolgiStop (Monensin; 1:1500 concentration; BD 
Biosciences) and GolgiPlug (Brefeldin A; 1:1000 final con-
centration; BD Biosciences) were added for the final 3 hours 
of culture. Positive control cultures comprised the CD20-
expressing human Burkitt lymphoma cell line (Raji cells; 
European Collection of Authenticated Cell Cultures [ECACC]) 
with monoclonal anti-CD20, rituximab (Ritxan; Genentech), 
at varying concentrations. In all cases, cells were harvested 
into round-bottom plates by soaking and resuspension in 
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fluorescence-activated cell sorting (FACS) buffer (phosphate-
buffered saline, 0.5% FCS, 0.05% sodium azide, and 2 mmol/L 
ethylenediaminetetraacetic acid) for staining.

Flow Cytometry

Cells were stained in 96-well round-bottom plates, as described 
elsewhere [24]. Briefly, cells were blocked with FcR Blocking 
Reagent (Miltenyi Biotech) and stained with fluorophore-labeled 
antibodies for surface markers, including viability marker (Fixable 
Viability Stain 700; BD Biosciences) in FACS buffer. Cells were 
washed in FACS buffer, fixed, and permeabilized using Cytofix/
Cytoperm Kit (BD Biosciences). Cells were then stained for in-
tracellular markers with further FcR blocking, washed again, 
resuspended in FACS buffer, acquired using a BD LSRII flow 
cytometer and FACSDiva software, and analyzed using FlowJo 
V10 (Tree Star). FACS gates were set using unstimulated cells or 
Fluorescence Minus One (FMO) controls, a minimum cutoff was 
determined as the frequency of responding NK cells in the pres-
ence of FCS alone [21], and samples with <100 NK cell events 
were excluded from the analysis.

The fluorophore-labeled antibodies used were anti-CD3-V500 
(clone UCHT1) (BD Biosciences), anti-CD56-BV605 (clone 
HCD56), anti-IFN-γ-BV785 (clone 45.B3) (Biolegendanti-CD16-
APC (clone CB16), anti-CD57-e450 (clone TB01) (eBiosciences), 
and anti-NKG2C-PE (clone 134591) (R&D Systems). 

Statistics

Statistical analysis was performed using GraphPad Prism software, 
version 7.04 (GraphPad). Functional responses were compared 
using Wilcoxon signed rank test or 1-way analysis of variance 
Friedman test with Dunn correction for multiple comparisons. 
Correlation analysis was performed using linear and nonlinear re-
gression models, and the P value for the correlation of the 2 vari-
ables was determined using Pearson correlation analysis. 

RESULTS

Ad26.ZEBOV, MVA-BN-Filo Ebola Vaccine–Induced Antibody-Dependent 

NK Cell Activation In Vitro

To assess the effect of Ad26.ZEBOV, MVA-BN-Filo vaccine–in-
duced anti-GP antibody on NK cell activation, whole PBMCs 

from 1 nonvaccinated donor were cultured with plate-bound 
EBOV GP plus pre- or postvaccination serum samples. Optimal 
serum concentrations were established for CD3−CD56+ NK cell 
CD107a surface expression (gating strategy shown in Figure 1A 
and Supplementary Figure 1A; Supplementary Figure 1B). NK 
cell CD107a, CD16, and IFN-γ expression was then measured 
in response to 5% prevaccination (visit 0), post–dose 1 (visit 
1), or post–dose 2 (visit 2)  serum from each individual study 
participant (n = 72) (gating strategy shown in Figure 1A–1C). 
Initially, data from all 5 vaccination arms were combined for 
analysis. 
Significantly higher frequencies of CD107a+ NK cells were ob-
served with post–dose 1 serum compared with prevaccination 
serum, and these frequencies were further enhanced with 
post–dose 2 serum (median, 2.39% and 8.24%, respectively, 
for post–dose 1 and post–dose 2 serum) (Figure 2A). CD56dim 
NK cell CD16 expression measured based on mean fluores-
cence intensity (MFI) decreased significantly in cells cultured 
with post–dose 1 serum, and there was a further decrease in 
cells cultured with post–dose 2 serum (median MFI, 8990 and 
4020, respectively for post–dose 1 and post–dose 2 serum) 
(Figure  2A). Frequencies of NK cells producing IFN-γ in re-
sponse to post-dose 1 serum were low but significantly higher 
than in response to prevaccination serum, and again, these were 
greatly increased with post–dose 2 serum (median, 0.28% for 
post–dose 1 and 1.17% for post–dose 2 serum) (Figure 2).

The effect of Ad26.ZEBOV, MVA-BN-Filo–induced anti-GP 
antibody on antibody-dependent NK cell activation was ana-
lyzed according to NK cell differentiation subset (gating 
strategy shown in Supplementary Figure 1C; Figure 1D shows 
the NK cell subset distribution for the single donor used in this 
assay). NK cell CD107a expression was induced equally in less 
differentiated CD56bright and more differentiated CD56dim NK 
cell subsets and in subsets further subdivided into moderately 
and highly differentiated CD56dimCD57− and CD56dimCD57+ 
(NKG2C− and NKG2C+) cells (Figure 2B). This was consistent 
with significant CD16 down-regulation observed in all NK cell 
subsets (Figure 2B). 

Basal CD16 expression increased with increasing differen-
tiation status (CD56dimCD57− < CD56dimCD57+NKG2C− < 

Table 1.  Vaccination Regimen of Each Trial Arm and Serum Samples Used in the Study 

Group Vaccine Regimen

Timing of Serum Samples 

Baseline (Visit 0) After Dose 1 (Visit 1) After Dose 2 (Visit 2)

1 (n = 15) MVA, Ad26 d 1 d 29 d 50

2 (n = 15) MVA, Ad26 d 1 d 57 d 78

3 (n = 14) Ad26, MVA d 1 d 29 d 50

4 (n = 14) Ad26, MVA d 1 d 57 d 78

5 (n = 14)a Ad26, MVA d 1 d 15 d 36

Abbreviations: Ad26, adenovirus type 26.ZEBOV; MVA, modified vaccinia Ankara–BN-Filo.
a12 individuals in group 5 received dose 2, MVA at day 15.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz657#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz657#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz657#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz657#supplementary-data
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CD56dimCD57+NKG2C+), and CD16 expression was main-
tained at higher MFI after dose 2 in the most differenti-
ated subsets (Figure  2B). CD107a was induced within the 
CD56bright NK cell population in response to postvaccination 
serum, but its overall contribution was <14% of the total ex-
pression (P < .001) (Figure 2C). IFN-γ expression in response 
to postvaccination serum was attributed to CD56dim NK cells, 
with no increase in expression observed within the least dif-
ferentiated CD56bright NK cell subset (Figure 2B).

The most highly differentiated CD56dimCD57+NKG2C− and 
CD56dimCD57+NKG2C+ NK cell subsets showed the most 
extensive CD16 down-regulation and the highest frequen-
cies of IFN-γ producing cells (Figure 2B); 71.2% of all the NK 
cells producing IFN-γ in response to post–dose 2 serum were 
CD56dimCD57+ (NKG2C+/−) NK cells, with 25.5% of IFN-γ + 
cells being CD56dimCD57+NKG2C+ (Figure 2C). Consistent with 
antibody-dependent activation of more differentiated NK cell 
subsets, anti-CD20 (rituximab) and CD20-expressing Raji cells 
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Figure 1.  Flow cytometry gating strategy for natural killer (NK) cell CD107a, CD16, and interferon (IFN) γ expression. Flow cytometry plots show CD3−CD56+ NK cell (gating 
strategy shown in Supplementary Figure 1A) CD107a (A), CD16 (B) and IFN-γ (C) expression in response to 5% prevaccination (visit 0), post–dose 1 (visit 1), and post–dose 2 
(visit 2) vaccination serum and plate-bound Ebola virus glycoprotein antigen. Whole human peripheral blood mononuclear cells from 1 nonvaccinated single donor were used 
for NK cell activation assays in Figures 1–4, and the NK cell differentiation phenotype of the donor is shown in Supplementary Figure 1D.
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also preferentially induced NK cell degranulation and IFN-γ ex-
pression in CD56dimCD57+ (NKG2C+/−) cells (Supplementary 
Figure 2). These data suggest that EBOV GP–specific antibody 
induces antibody-dependent NK cell activation, including 
IFN-γ secretion, in more differentiated NK cell subsets.

Variation in Antibody-Dependent NK Cell Activation by Vaccine Regimen

The Ebola GP–specific IgG concentration in the serum samples 
of Ad26.ZEBOV, MVA-BN-Filo–vaccinated individuals varied 
depending on the vaccination regimen [21]. We therefore ana-
lyzed the impact of vaccine regimen on antibody-dependent NK 
cell activation. There was significant up-regulation of CD107a and 

IFN-γ and down-regulation of CD16 with post–dose 2 serum in 
all groups compared with prevaccination serum responses, but re-
sponses differed significantly between study arms (Figure 3A–3C).

Groups 1 and 2 (MVA-BN-Filo followed by Ad26.
ZEBOV) resulted in the strongest induction of CD107a and 
IFN-γ expression and the lowest CD16 MFI of all 5 groups 
(Figure  3A–3C). Serum collected after MVA-BN-Filo (dose 
1)  did not induce NK cell activation, but significant induc-
tion of CD107a and IFN-γ and down-regulation of CD16 was 
seen with post-Ad26.ZEBOV (post–dose 2) serum (compared 
with both prevaccination and post–dose 1 vaccination serum) 
(Figure  3A–3C and Supplementary Table 1). By contrast, 
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in groups 3, 4, and 5 (Ad26.ZEBOV followed by MVA-BN-
Filo) there was induction of NK cell responses in post-Ad26.
ZEBOV (post–dose 1)  serum that was further enhanced by 

post–MVA-BN-Filo (post–dose 2) serum (Figure 3A–3C and 
Supplementary Table 1). 

However, earlier MVA-BN-Filo dose 2 in groups 3 (day 29) and 
5 (day 15)  did not result in further significant NK activation 
(1-way analysis of variance; Supplementary Table 1) compared 
with the first dose of Ad26.ZEBOV (except weak boosting of 
IFN-γ in group 3), and group 5 resulted in the weakest overall re-
sponse (Figure 3A–3C and Supplementary Table 1). This suggests 
that Ad26.ZEBOV as the first dose induces sufficient concen-
trations of antibody for a robust NK cell response that is further 
increased by the MVA-BN-Filo second dose, whereas MVA-BN-
Filo alone does not induce sufficient antibody (or antibody of the 
correct isotype or subclass) to mediate ADCC.

Correlation of NK Cell Function With Anti-GP Antibody Concentration and 

psVNA Titers

Variation in NK cell function according to vaccine regimen is 
consistent with data on the effect of vaccine regimen on anti-GP 
antibody concentration [21]. Therefore, we next analyzed the 
relationship between individual Ebola GP–specific IgG con-
centration (determined by Milligan et  al [21]) and antibody-
dependent NK cell activation. With all groups combined, there 
was a significant positive correlation between post–dose 2 an-
tibody concentration and frequencies of NK cell CD107a and 
IFN-γ and a negative correlation with CD16 MFI (Figure 4A).

Groups 1 and 2 (MVA-BN-Filo followed by Ad26.ZEBOV) 
demonstrated the highest median NK cell functional responses 
after dose 2 (CD107a+ NK cell frequency, P = .048 for group 1 vs 
3 and P = .02 for group 2 vs 4; Wilcoxon paired t test). However, 
when analyzed according to vaccination group, only groups 3–5 
(Ad26.ZEBOV followed by MVA-BN-Filo) had a significant cor-
relation between post–dose 2 antibody concentration and NK 
cell function (Table  2). Antibody concentration and NK cell 
function were also significantly correlated after dose 1 when all 
groups were combined (Supplementary Figure 3A–3C), but when 
groups were analyzed separately, this relationship was significant 
only for group 3 (Ad26.ZEBOV followed by MVA-BN-Filo at day 
29) (Table 2). There was no correlation between antibody con-
centration and antibody-dependent NK cell function after dose 
1 or dose 2 in individuals vaccinated by MVA-BN-Filo followed 
by Ad26.ZEBOV (groups 1 and 2) (Table 2). Therefore, in vaccine 
regimens inducing the highest post–dose 2 responses (groups 1 
and 2), the association between the 2 variables is lost.

Analysis of antibody-dependent NK cell responses and Ebola 
GP–specific psVNA titers revealed a significant positive corre-
lation across the entire cohort with the frequency of NK cell 
IFN-γ and a negative correlation with CD16 expression, al-
though no association was observed with CD107a expression 
(Figure 4B). Consistent with the association with anti-GP anti-
body concentration, we observed the strongest correlations be-
tween all NK cell functions and psVNA titers for groups 3 and 4 
(Ad26.ZEBOV followed by MVA-BN-Filo) (Table 3).

Group 1: MVA, Ad26; dose 2 d 29
Group 2: MVA, Ad26; dose 2 d 57
Group 3: Ad26, MVA; dose 2 d 29
Group 4: Ad26, MVA; dose 2 d 57
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Table 2.  Correlation Between Natural Killer Cell CD107a, CD16, and Interferon γ Expression in Response to Plate-Bound Ebola Virus Glycoprotein (GP) 
Plus Post-Dose 1 (Visit 1) and Post-Dose 2 (Visit 2) Serum and Anti-GP Antibody Concentration According to Vaccine Regimen Groupa

Visit by Group

R2 (P Value)b

CD107a (%) CD16 (MFI) IFN-γ (%)

Visit 1    

  Group 1 (d 29) 0.129 (.21)c 0.00292 (.85)c 0.0214 (.60)c

  Group 2 (d 57) 0.00469 (.82)c 0.0193 (.62)c 0.00638 (.78)c

  Group 3 (d 29) 0.480 (.006) 0.550 (.002) 0.553 (.002)

  Group 4 (d 57) 0.0924 (.29)c 0.312 (.04) 0.248 (.07)c

  Group 5 (d 15) 0.394 (.052)c 0.221 (.17)c 0.397 (.051)c

Visit 2    

  Group 1 (d 50) 0.0209 (.61)c 0.00775 (.76)c 0.00144 (.89)c

  Group 2 (d 78) 0.0639 (.36)c 0.0339 (.51)c 0.0895 (.28)c

  Group 3 (d 50) 0.660 (<.001) 0.554 (.002) 0.531 (.003)

  Group 4 (d 78) 0.364 (.02) 0.612 (<.001) 0.327 (.03)

  Group 5 (d 36) 0.859 (<.001) 0.690 (.003) 0.276 (.12)c

Abbreviations: IFN, interferon; MFI, mean fluorescence intensity. 
aAntiglycoprotein antibody concentrations were determined previously by Milligan et al [21]. 
bR2 values determined by means of linear regression. Significance was defined as P < .05. 
cNonsignificant correlations.
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Variation in Antibody-dependent NK Cell Function by NK Cell Donor

To analyze the effect of donor variation, PBMCs from 
nonvaccinated donors (n = 16) were cultured with plate-bound 
EBOV GP and pooled prevaccination or post–dose 2 serum 
samples from group 2 (MVA-BN-Filo followed by Ad26.ZEBOV 
at day 57). NK cell CD107a (14 of 16 donors responding), 
CD16 down-regulation (all 16 responding), and IFN-γ (13 of 
16 responding) was induced with pooled post–dose 2 serum 
compared with pooled prevaccination serum (Figure 5A), sug-
gesting that the majority of donors respond to Ad26.ZEBOV, 
MVA-BN-Filo vaccine–induced antibody.

We next analyzed NK cell activation in response to pooled 
post-dose 2 serum according to NK cell differentiation subset. 
Among the individuals tested, frequencies of the most highly 
differentiated CD56dimCD57+NKG2C+ NK cells varied widely 
(with frequencies >10% in 5 of 16 donors), with a wide range 
of subset frequency (Figure  5B). Overall, NK cell CD107a 
expression was apparent in all NK cell subsets, as was CD16 
down-regulation (Figure  5C). IFN-γ was significantly 
up-regulated with post–dose 2 serum in CD56dimCD57− and 
CD56dimCD57+NKG2C− subsets and with the highest fre-
quency of IFN-γ expression observed within the CD56dim NK 
cell subsets (Figure 5C). Almost half (41.0%) of total NK cell 
IFN-γ production was attributed to CD56dimCD57+ NK cells 
(Figure 5D). These data demonstrate that differences in NK cell 
differentiation status introduce additional interdonor variation 
in NK cell ADCC responses.

DISCUSSION

We have shown that antibodies to EBOV GP induced by the Ad26.
ZEBOV, MVA-BN-Filo vaccine regimen activate robust in vitro NK 
cell degranulation and IFN-γ secretion on coculture with Ebola GP 
antigen. These NK cell responses are highly variable depending on 
vaccine regimen and interval and are correlated with anti-GP IgG 
concentration and are markedly enriched in (though not limited 
to) more differentiated NK cell subsets. Variation in NK cell differ-
entiation status between donors contributes to the heterogeneity of 
postvaccination ADCC responses.

The positive correlation between post–dose 2 antibody con-
centration and NK cell activation demonstrates a good readout 
of antibody-dependent effector function. Interestingly, MVA-
BN-Filo followed by Ad26.ZEBOV vaccine regimen (groups 
1 and 2), giving rise to both the highest numerical geometric 
mean Ebola GP–specific IgG concentration and median NK 
cell function, did not result in significant correlations between 
the 2 factors on an individual level. NK cell CD107a expression 
did not increase further with the higher antibody concentra-
tions induced by a delayed second dose (day 57) compared with 
an earlier second dose (day 29), suggesting that sufficient anti-
body concentrations can be achieved with the early dose 2 (day 
29)  to obtain optimal responses [21]. NK cell IFN-γ expres-
sion was higher with a later second dose (day 57) than with the 
earlier second dose (day 29), suggesting that increasing levels of 
anti-GP antibody are associated with stronger NK cell cytokine 
secretion.

The lack of correlation between antibody concentration and 
NK cell responses after the MVA-BN-Filo followed by Ad26.
ZEBOV regimen highlights a requirement for a 2-dose vaccine 
regimen or primary vaccination with Ad26.ZEBOV to induce 
robust NK cell responses. This may also reflect effects of anti-
body affinity maturation and isotype/subclass switching. Of 
note, the Ad26.ZEBOV followed by MVA-BN-Filo vaccine reg-
imen is being further evaluated in phase 2 and 3 clinical studies.

NK cell activation after the Ad26.ZEBOV, MVA-BN-Filo vac-
cination regimen required relatively high serum concentrations, 
with similar levels of NK cell degranulation occurring with up 
to 40-fold lower concentrations of post–seasonal influenza vac-
cination serum [16]. Importantly, only antibodies binding to 
EBOV GP contributed to the response; antibodies specific for 
the nucleoprotein (contained in MVA-BN-Filo) were not as-
sessed. Significant correlations between NK cell function and 
psVNA were also observed after dose 2, most significantly for 
the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen. This is con-
sistent with a previously reported direct temporal and quan-
titative relationship between specific IgG concentrations and 
neutralizing activity and with a subset of vaccine-induced 

Table 3.  Correlation Between Natural Killer Cell CD107a, CD16, and Interferon γ Expression in Response to Plate-bound Ebola Virus Glycoprotein (GP) 
Plus Post–Dose 2 (Visit 2) Serum and Ebola GP–Specific Pseudovirion Virus Neutralizing Antibody Titers According to Vaccine Regimen Groupa 

Visit 2 by Group

R2 (P Value) 

CD107a (%) CD16 (MFI) IFN-γ (%)

  Group 1 (d 50) 0.0001 (.97)c 0.006 (.79)c 0.425 (.01)

  Group 2 (d 78) 0.063 (.36)c 0.034 (.51)c 0.089 (.28)c

  Group 3 (d 50) 0.446 (.02) 0.331 (.050) 0.352 (.04)

  Group 4 (d 78) 0.485 (.006) 0.548 (.003) 0.503 (.005)

  Group 5 (d 36) 0.182 (.29)c 0.306 (.16)c 0.380 (.10)c

Abbreviations: IFN, interferon; MFI, mean fluorescence intensity. 
aTiters determined previously by Milligan et al l [21]. 
bR2 values determined by means of linear regression. Significance was defined as P < .05. 
cNonsignificant correlations.
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antibodies having both NK cell activation and virus neutral-
izing properties [20, 22].

Our data highlight substantial variation in frequencies 
of activated NK cells subsets both within a single donor 
and between donors in response to postvaccination an-
tibody. Many variables affect NK cell ADCC function, in-
cluding FcR polymorphisms [25], antibody glycosylation 
[26], and cytokine-mediated regulation [27]. Antibody-
binding epitopes can also affect the ADCC function of 

vaccine-induced antibodies [3]; neutralizing antibodies bind 
Ebola GP core epitopes, potentially inhibiting virion cell 
entry, whereas antibodies with Fc function bind epitopes on 
the exposed upper domains of GP presented on the surface 
of infected cells [6, 28]. Ebola GP returning to the surface 
of the infected cell and liberation of soluble GP for immune 
complex formation could promote NK cell ADCC. However, 
GP shed from infected cells can also bind anti-GP antibodies 
and block, rather than facilitate, their activity [29].
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HCMV has seropositivity rates up to 60% in adults in de-
veloped countries and is near universal in developing countries 
[30]. HCMV infection strongly influences NK cell function in 
response to viral antigens and promotes accumulation of NK 
cells expressing NKG2C with a mature (CD56dimCD57+) and 
“adaptive” (FcεRγ −) phenotype [31–33] and with enhanced 
IFN-γ secretion in response to antibody-coated targets [34–36]. 
HCMV serostatus may affect antibody-dependent NK cell ac-
tivation after Ad26.ZEBOV, MVA-BN-Filo vaccination; there-
fore, measuring NK cell function may help evaluate vaccine 
responses across different human populations.

Future use of CD16-transfected NK cell lines for standardiza-
tion of these assays could potentially enable comparison across 
multiple vaccine studies [37]. However, NK cell tumor lines, 
such as NK-92, are largely derived from pre-NK cells and do 
not reflect the range of FcR expression, activation requirements, 
or functional differentiation of primary human NK cells, fac-
tors important in African settings where NK cells are enriched 
for highly differentiated subsets. Alternatively, Wines et al [38] 
have described a system using soluble dimeric ectodomains of 
human FcγRIII or FcγRII (CD32), which facilitate evaluation 
of antibody isotype specificity and binding to low- and high-
affinity variants of these FcRs.

In summary, Ad26.ZEBOV, MVA-BN-Filo vaccine–induced 
antibody promotes strong antibody-dependent NK cell activa-
tion that is correlated with antibody concentration. Our find-
ings suggest that NK cells are potential mediators of immunity 
after Ebola vaccination, wherein responses are determined by 
both the level of antibody and effector NK cells differentiation 
status. Antibody-dependent NK cell function may help define 
the effector capacity of vaccine-induced antibodies when com-
bined with antibody level or neutralization assays.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
are the sole responsibility of the authors, so questions or com-
ments should be addressed to the corresponding author.
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