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A successful Staphylococcus aureus vaccine remains elusive, and one controversy in the field is whether humans generate a protec-
tive adaptive immune response to infection. We developed a bacterial challenge murine assay that directly assesses the protective 
capacity of adoptively transferred human serum samples. We first validated the model by showing that postpneumococcal vaccine 
serum samples from humans induced effective clearance of Streptococcus pneumoniae in mice. We then found that human serum 
samples adoptively transferred from children with invasive S. aureus infections exhibited protection from disease in a murine model, 
with some samples conferring near complete protection. These findings demonstrate that human serum samples are capable of con-
ferring a protective adaptive response generated by humans during invasive staphylococcal disease, allowing for the study of protec-
tive factors in a murine model. Identification of the protective factors present in the most efficacious serum samples would be of high 
interest as potential staphylococcal vaccine candidates or passive therapeutics.
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Staphylococcus aureus is now the most common invasive bac-
terial pathogen infecting children in the United States [1–3], 
owing in part to successful vaccines against Hemophilus 
influenzae and Streptococcus pneumoniae [4]. Despite these suc-
cesses, an effective human vaccine against S.  aureus remains 
elusive. Although many vaccines have shown success in labo-
ratory animals, all vaccines that have advanced to clinical trials 
have failed [5]. Speculation for the failures abound and include 
improper antigen selection or inadequately characterized host 
responses to S.  aureus during human infection [6, 7]. S.  au-
reus is well known to express numerous factors to combat the 
humoral immune response which have also been proposed to 
interfere with vaccination [8, 9]. The differential expression or 
variation in species tropism of critical S. aureus virulence fac-
tors are additional speculated factors [10–12]. In total, the poor 
predictive value of animal models threatens to derail new ef-
forts to bring investigative vaccines to clinical trials.

A reliable approach to assess direct human immune re-
sponses to S.  aureus or staphylococcal vaccines is crucially 
needed to advance vaccine development. Various in vitro cor-
relates of human responses to S.  aureus have been reported. 
We and others have observed that serum samples obtained 
from human subjects with invasive S.  aureus disease are ca-
pable of facilitating neutrophil-mediated killing in vitro [13]. 
These effects may occur via a number of potential mechan-
isms, including antibody-dependent facilitation of neutrophil 
uptake (ie, opsonophagocytosis) [14, 15]; antibody-mediated 
neutralization of crucial secreted S.  aureus virulence factors 
(eg, the leukocidins) [16–18]; Fc fragment–mediated effects 
(eg, antibody-dependent complement deposition) [14]; or 
nonantibody components of serum (eg, proteases, cathelicidins, 
etc) [19, 20]. To date, however, the critical factors that confer 
protection by human serum samples are inadequately defined, 
and a serologic correlate of protection for S.  aureus remains 
elusive.

In the current study, we report the development of a bac-
terial challenge mouse assay that directly assesses the protec-
tive capacity of adoptively transferred human serum samples. 
Using the model, we showed that postpneumococcal vaccine 
serum samples induced effective clearance of S. pneumoniae in 
mice. Furthermore, we described application of the platform 
to human serum samples collected from children invasively 
infected with S. aureus at multiple time points. We sought to 
(1) determine whether adoptively transferred human serum 
was capable of protecting mice from S.  aureus infection, (2) 
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determine whether protective efficacy varies by postinfection 
kinetics, and (3) compare in vivo protection with hypothesized 
in vitro correlates of protection.

METHODS

Donor Subjects

We enrolled a series of 14 children over a 12-month period 
admitted to the Monroe Carell, Jr, Children’s Hospital at 
Vanderbilt, a large tertiary care children’s hospital, with culture-
proven invasive S.  aureus infection (bacteremia, endocarditis, 
or musculoskeletal infection). Serum samples were obtained on 
enrollment in the study (V1), 4–6 weeks after enrollment (V2), 
and, when possible, 6–12 months after enrollment (V3). Serum 
samples were obtained by centrifugation of unheparinized 
whole-blood samples and stored at –20°C. (See Supplementary 
Methods for study approvals and details for patients with inva-
sive disease and healthy control subjects).

For proof-of-principle studies involving pneumococcal 
serum samples, leftover samples were obtained from a vac-
cine clinical trial (see Supplementary Methods for details). 
For the neutrophil phagocytosis assay, human whole-blood 
samples collected at Massachusetts General Hospital from 
healthy donors and used as sources of uninfected primary 
neutrophils.

Murine Model of Disseminated S. aureus Infection

Overnight culture of S. aureus strain of USA300 lineage LAC, a 
methicillin-resistant S.  aureus strain, was diluted 1:00 in Todd 
Hewitt broth and grown to an optical density of 0.6. Female 
C57BL/6 mice, 6–8 weeks old, were injected intraperitoneally with 
100 μL of human serum. After 24 hours, all mice were challenged 
intraperitoneally with 107 colony-forming units (CFUs) of S. au-
reus. Spleen and kidneys were harvested after 24 hours, homogen-
ized in 1 mL of phosphate-buffered saline (PBS). and plated on 
agar plates, and CFUs were enumerated the next day. Kidneys and 
spleens were of equivalent size across animals within the same ex-
periment. For samples that demonstrated efficacy and for which 
sufficient residual sample remained, these experiments were re-
peated with heat inactivated serum samples at 55°C and 60°C for 
complement and antibody inactivation, respectively.

Enzyme-Linked Immunosorbent Assay and Toxin Neutralization Assays

Binding of serum samples to LukAB or α-hemolysin (Hla) 
was detected by indirect enzyme-linked immunosorbent 
assay. The antigens were immobilized (62.5  µg per well) 
on microtiter plates. Serum samples in serial PBS dilutions 
from 1:10 to 1:1000 were added, and bound antibodies were 
detected using anti-human immunoglobulin (Ig) G anti-
bodies conjugated to peroxidase. The data were plotted 
using Prism software (GraphPad), and nonlinear regres-
sion analysis was performed to calculate the half-maximal 
binding concentrations.

For toxin neutralization, polymorphonuclear leukocyte 
(PMN)–like HL-60 cells were used as described elsewhere [21]. 
Serial dilutions of each serum sample were mixed with 1.25 µg/
mL of purified LukAB. Samples were preincubated for 30 min-
utes at room temperature (RT) before adding 1.26 × 105 PMNs 
in a final reaction volume of 100 µL. Cells were incubated for 1 
hour at 37°C and 5% carbon dioxide before addition of CellTiter 
CellTiter metabolic dye, as described elsewhere [13].

Neutrophil-Mediated Killing of S. aureus

Overnight cultures of a WT S. aureus strain of USA300 lineage 
LAC [3, 15], grown in Roswell Park Memorial Institute 1640 
medium (RPMI; Invitrogen) supplemented with 0.05  mol/L 
sodium bioate and 1% casamino acids (RPMI + CAS), 
were subcultured 1:100 in RPMI + CAS and incubated for 5 
hours with shaking at 180 rpm. Cell pellets were washed and 
normalized to equal density before infection [4]. Normalized 
S.  aureus cultures were used to infect PMN-like HL-60 cells, 
seeded at 2 × 105 cells per well, at a multiplicity of infection of 
2.5, in the presence of 5% guinea pig complement and serial 
dilutions of human serum samples in a final volume of 190 µL, 
and incubated at 37°C and 5% carbon dioxide. Next, 5 µL sam-
ples were removed and plated for CFU counts at 0, 30, 60, 120, 
180, and 240 minutes after infection. CFU counts were obtained 
after overnight incubation at 37°C.

Antigen Coupling to Fluorescent Beads

Supernatant from overnight culture of S.  aureus strain 
Newman, selected for its known ability to abundantly pro-
duce a variety of virulence factors in vitro [22], was pre-
pared by subculture 1:100 in RPMI + CAS, incubated for 5 
hours with shaking at 180 rpm, followed by centrifugation 
at 4°C and4000  rpm for 15 minutes and filter sterilization 
(0.22  µm). Supernatant proteins were covalently coupled 
to 5 × 106 Magplex-C microspheres (Luminex; MC100XX) 
or 9  × 108 carboxylate-modified, 1-μm fluorescent micro-
spheres (Thermo Fisher; F8823), using a 2-step carbodiimide 
reaction. The beads were first washed and resuspended in 
100 mmol/L monosodium phosphate, pH 6.2, and then ac-
tivated by incubation with 500  μg of sulfo-NHS (Pierce; 
A39269) and 500 μg of 1-ethyl-3-[3-dimethylaminopropyl] 
carbodiimide hydrochloride (EDC) (Pierce; A35391) at RT 
for 30 minutes. The beads were washed 3 times with cou-
pling buffer (50  mmol/L 2-(N-morpholino)ethanesulfonic 
acid (MES), pH 5.0), then incubated with 25  μg of S.  au-
reus supernatant protein in 100  μL of coupling buffer for 
2 hours at RT. The beads were washed 3 times with PBS-
TBN (1× PBS, 0.1% bovine serum albumin, 0.02% Tween-
20, and 0.05% sodium azide, pH 7.4) and then blocked with 
PBS-TBN for 30 minutes at RT. The beads were then washed 
3 times with PBS, 0.05% Tween 20, and resuspended in 
storage buffer (1× PBS, 0.05% sodium azide).

https://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa482#supplementary-data
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S. aureus–Specific IgG Quantification

Antigen-specific IgG levels were quantified using a method de-
scribed elsewhere [23]. Detailed methods are provided in the 
Supplementary Methods.

Antibody-Dependent Phagocytosis Assays

Assays for measuring antibody-dependent cellular phagocytosis 
and neutrophil phagocytosis were used as described elsewhere 
[24, 25]. Detailed methods are provided in the Supplementary 
Methods.

Statistical Analysis

For murine infections, differences in CFU burdens in each organ 
were compared using the Wilcoxon rank sum test, assuming 
nonparametric distribution. Differences were considered statis-
tically significant at P < .05. For in vitro characterizations, bi-
variate correlations were measured by calculation of the Pearson 
correlation coefficient, with Bonferroni correction for multiple 
comparisons. Statistical analyses were performed using Prism 
8.3.0 software (GraphPad).

RESULTS

Proof of Principle: Pneumococcal Model

We first validated the utility of the human serum adoptive transfer 
model using prevaccine and postvaccine serum samples from in-
dividuals who received the 13-valent pneumococcal conjugate vac-
cine; this vaccine has proved to be highly efficacious in generating 
a capsular type-specific functional antibody response in humans, 
with reliable correlates of protection including opsonophagocytic 
titers [26]. On transfer of human serum samples into the murine 
model, samples from high- and moderate-titer responders, but not 
from low-titer responders, completely protected against pneumo-
coccal disease in vivo, confirming the retention of antibody func-
tion and capacity of transferred human serum samples to protect 
against murine disease with efficacy equivalent to successful pri-
mary vaccination (Figure 1).

Human Samples After Invasive S. aureus Infection

The human antibody response after S.  aureus infections has 
been abundantly studied, but it is unknown whether these anti-
bodies confer short- or long-term protection against S. aureus 
in the host [27–29]. Therefore, after proof-of-principle studies 
involving pneumococcal serum samples, we sought next to 
apply the adoptive transfer platform to study protective anti-
body generation in children with invasive S. aureus infections.

Fourteen children were enrolled during the study period, all 
with culture-proven invasive S. aureus disease. The mean age of 
children enrolled in the study was 11.0 years (standard devia-
tion, 3.4 years), and 50% were female. All children had culture-
proven invasive S. aureus infection, defined as S. aureus in an 
otherwise sterile site, such as the bloodstream, bone, or joint. 
The majority of children (9 of 14) had acute hematogenous os-
teomyelitis and/or bacteremic septic arthritis (Table 1).

Protection Against S. aureus Sepsis

In total, 35 serum samples, obtained at multiple time points from 
14 distinct patients, were adoptively transferred into C57BL/6 
mice before systemic challenge of the mice with S. aureus LAC 
(USA300) by the intraperitoneal route. Of these, samples from 
6 patients exhibited significant protection against end-organ 
S. aureus disease compared to healthy control serum samples, 
with samples from 2 of the subjects demonstrating nearly com-
plete protection against S. aureus infection by end-organ CFU 
count (Figure 2). The serum samples with near-complete pro-
tection against disease (0 CFUs in kidney in spleen in most 
replicates) were obtained approximately 6 weeks after infec-
tion from a 9-year-old girl with severe USA300 methicillin-
resistant S. aureus sepsis, and a 17-year-old girl with USA100 
methicillin-susceptible S.  aureus osteomyelitis. Broadly, sam-
ples could be classified as highly protective (n = 2), moderately 
protective (n = 4), or nonprotective (n = 7).

Of note, all of the highly or moderately protective samples 
resulted from the convalescent time point (V2, obtained 4–6 
weeks after infection), and all paired serum samples exhib-
ited greater protective function at the V2 compared to the V1 
(immediately after infection) time point. Three of the children 
with highly or moderately protective serum samples at V2 were 
willing and able to return to provide a sample for a late (V3) 
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Figure 1. Adoptive transfer proof of principle with postvaccine pneumococcal 
serum samples. Prevaccine (Pre) and postvaccine (Post) serum samples were adop-
tively transferred to mice from human subjects who received the conjugate pneu-
mococcal vaccine and had a high (P1), moderate (P2), or low (P3) vaccine response 
by opsonophagocytic (OP) titer. Colony-forming units (CFUs) per milliliter were enu-
merated from whole homogenized kidney (n = 5 mice per group). Mice receiving 
serum samples from high- and medium-titer vaccine respondents exhibited no 
detectable Streptococcus pneumoniae 24 hours after infection. Abbreviation: LLD, 
lower limit of detection.
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Figure 2. Adoptive transfer of human sera after invasive Staphylococcus aureus infection. Serum samples obtained from pediatric subjects at disease convalescence (4–6 
weeks after infection) were adoptively transferred to C57BL/6 mice. In the 13 subjects in whom convalescent serum samples could be obtained, samples from 6 exhibited sig-
nificant protection from disease, by S. aureus colony-forming units (CFUs) per milliliter in kidney (A) and spleen (B) 24 hours after infection, with serum samples from 2 children 
(subjects M and N) exhibiting near-complete protection from disease. H1, H2, and H3 represent healthy control subjects with no known history of S. aureus infection. CFUs 
were enumerated from whole homogenized organ in 1 mL of phosphate-buffered saline.*P < .01 (Wilcoxon rank sum test; n = 5 animals per group). Abbreviation: ID, identifier.

Table 1. Clinical and Molecular Epidemiologic Characteristics of Enrolled Subjects and the Infecting Staphylococcus aureus Isolates

Subject ID Age, y Sex Diagnosis Isolate USA Type MLST (ST) ST Complex

Patients        

 A 5 F Endocarditis with septic emboli to brain MSSA 100 5 CC5

 B 10 M Femoral osteomyelitis with subperiosteal abscess MRSA 300 8 CC8

 C 7 M Pyomyositis (thigh) MSSA 400 88 NA

 D 11 M Septic arthritis and osteomyelitis MRSA 300 8 CC8

 E 14 F Bacteremia MSSA 300 8 CC8

 F 8 M Tibial osteomyelitis with subperiosteal abscess MRSA 300 8 CC8

 G 13 F Pyomyositis of iliopsoas and sacroiliitis MSSA NT 106 NA

 H 11 F Septic arthritis (hip) MRSA 300 8 CC8

 I 16 M Pelvic osteomyelitis MSSA NT 87 NA

 J 9 F Pyomyositis and pelvic osteomyelitis MSSA 600 45 CC45

 K 14 M Sepsis with multifocal osteomyelitis MSSA 300 8 CC8

 L 10 M Pneumonia MRSA NT 72 CC8

 M 9 F Osteomyelitis (hip) with pulmonary septic emboli MRSA 300 8 CC8

 N 17 F Clavicular osteomyelitis MSSA 100 5 CC5

Health controls        

 H1 10 M … … … … …

 H2 8 F … … … … …

 H3 13 F … … … … …

Abbreviations: ID, identifier; MLST, multilocus sequence typing; MRSA, methicillin-resistant Staphylococcus aureus strain; MSSA, methicillin-susceptible S. aureus; NA, could not be as-
signed; ST, sequence type.
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time point (6 months after infection). In all 3 cases, protective 
capacity of the serum had waned and was significantly reduced 
compared with the V2 time point (Figure 3). Four samples that 
demonstrated efficacy in the primary experiments had suffi-
cient residual sample to be tested by heat inactivation at 55°C 
and 60°C (for complement and antibody inactivation, respec-
tively). Of those, at least partial loss of protective efficacy after 
heat inactivation occurred for 3 samples by kidney CFUs and 2 
samples by spleen CFUs (Supplementary Figure 1).

Clinical and In Vitro Correlations With Protective Function

We hypothesized that specific clinical or in vitro factors might 
predict which human serum samples would be most efficacious 
in the prevention of S. aureus sepsis in vivo. Although this study 
was not powered to detect subtle clinical differences that might 
be associated with the generation of a protective host response, 

there were no clear distinctions between infection types or pa-
tient characteristics that resulted in a protective serologic re-
sponse. Of the subjects with highly or moderately protective 
serum samples, there was no predominant infection type, host 
age/sex, or infecting isolate strain type compared with those 
samples with minimal protection in vivo.

Given the role of the neutrophil as the primary innate medi-
ator of antistaphylococcal host defense, we hypothesized that 
facilitation of neutrophil-mediated killing in vitro may repre-
sent a surrogate marker for evaluating the protective capacity 
of serum samples against S.  aureus disease. We did observe 
marked differences in the ability of specific human serum sam-
ples to facilitate phagocyte-mediated S. aureus killing in vitro 
(Figure 4A–4B), and efficacy was not due to direct serum tox-
icity effects, because S. aureus killing only took place when cells 
were present. There was no correlation, however, between the 
samples most active in vitro and those that functionally pro-
tected in the mouse model (Figure 4C).

Serologic factors that were considered and tested included 
IgG levels against the pore-forming toxins Hla and LukAB, along 
with total binding IgM and IgG against S. aureus culture super-
natants, and the titer of neutralization against LukAB-mediated 
cytotoxicity. Similar to what was observed with facilitation of 
phagocyte-mediated killing in vitro, no evidence of significant 
correlation was found between these factors and functional ac-
tivity of the serum samples when adoptively transferred to mice 
(Figure  5A). Total binding IgG against S.  aureus was moder-
ately correlated with function in vivo, though not statistically 
significant after correction for multiple comparisons (r2 0.62; 
P = .07) (Figure  5B). Finally, we assessed functional serologic 
markers, such as antibody-dependent neutrophil phagocytosis 
and antibody-dependent cellular phagocytosis. While we again 
observed substantial differences between serum samples in this 
cohort, these were not correlated to protective capacity against 
murine sepsis (Figure 5A).

DISCUSSION

It has been long debated whether humans develop protective 
immunity after S. aureus infection, a question of fundamental 
importance for development of an effective S. aureus vaccine. 
Our study provides important insight toward this question 
and shows that, selectively, mice adoptively transferred serum 
samples from 6 of 13 children with invasive staphylococcal dis-
ease were protected from S. aureus sepsis in a murine model. 
Furthermore, the samples differed in their protective capacity, 
with some samples leading to undetectable CFU counts after 
transfer, and protective efficacy was maximal during disease 
convalescence (approximately 6 weeks after infection). This re-
port of protective function of human serum samples in a mu-
rine model of disease has particularly important implications 
for the development of an effective S. aureus vaccine, which is 
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Figure 3. Protective efficacy of human sera peaks in convalescence. End-organ 
Staphylococcus aureus colony-forming units (CFUs) after adoptive transfer of serum 
samples obtained at 3 distinct time points (V1, within 72 hours of hospitalization for 
invasive S. aureus infection; V2, 4–6 weeks after infection; and V3, 6 months after 
infection). Protective efficacy is present from samples obtained at V2, but protection 
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currently at a crossroad owing to the failure to date of all staph-
ylococcal vaccines tested in humans. 

Our study proposes 2 new approaches to address this 
problem. First, the adoptive transfer technique creates a plat-
form in which natural immunity to human disease can be 
explored for the identification of critical mediators of host 
defense and, therefore, potential target antigens for vaccines 
or therapeutics. Moreover, as demonstrated by the pneumo-
coccal proof-of-concept model, we suggest that a novel vaccine 
could theoretically be examined for efficacy in a small group 
of individuals before expanding to large-scale clinical trials, a 
concept that could reinvigorate vaccine development at a time 
when there is little confidence in vaccines derived purely from 
murine models.

Prior studies have used adoptive transfer of cells or serum 
between mice to demonstrate key features of the host response 
in ameliorating certain S.  aureus infections. For example, the 
adoptive transfer of T cells expressing the interleukin 36 re-
ceptor protected recipient mice against cutaneous inflammation 
due to S. aureus [30], and the roles of primed macrophages or 
human neutrophils in S. aureus–mediated dermonecrosis have 

also been evaluated via adoptive transfer [31, 32]. Furthermore, 
transfer of human monoclonal antibodies against S.  aureus 
antigens such as IsdB and Hla have also demonstrated pro-
tection against subsequent challenge [33–35]. Notably for our 
study, a serologic adoptive transfer model was used to demon-
strate the critical role of antibody-mediated protection against 
S. aureus skin infection when serum samples were transferred 
between mice [36]. 

The current study significantly extends this concept to pro-
vide evidence of a functional serologic response that occurs in 
humans after invasive disease. This is compatible with clinical 
observations that invasive disease may potentially be an “im-
munizing event” [37–40]; while recurrent noninvasive infec-
tions (eg, cutaneous abscesses) are common, S. aureus infection 
after invasive disease is exceedingly rare in the absence of im-
mune compromise, indwelling hardware, or other factors that 
perturb the host response.

The lack of a correlate of durable protection for invasive 
S. aureus disease in humans poses a substantial challenge to the 
development of vaccines and novel therapeutics against this 
major human pathogen. S. aureus is a highly human-evolved 
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pathogen, and one potential explanation for the failure of prior 
S. aureus vaccine constructs is that antigens that are important 
targets of the host response in murine models (which may vary 
based on the genetic background of the mice [36]) have less 
relevance in human infection. Furthermore, S.  aureus clearly 
regulates and expresses virulence factors differently in various 
conditions [41, 42], and it remains unclear which in vitro con-
ditions most closely recapitulate the human host environment. 
Serum samples from humans infected with S. aureus therefore 
represent an opportunity to assess the host response directly 
from the site of optimal relevance for evaluating which viru-
lence factors are actively expressed and recognized by the host 
in the setting of invasive disease.

The serum samples obtained in this study differed sub-
stantially in their ability to protect against sepsis via adoptive 
transfer, but there was no clear in vitro correlate for this pro-
tection. Total antibody binding to S.  aureus was most closely 
correlated of the factors tested, though the lack of strong 

correlation likely suggests that it is a functional antibody re-
sponse against a specific combination of targets that confers 
the potent protection observed in vivo, as the total binding IgG 
pool includes nonfunctional antibody response to factors such 
as teichoic acid [27]. 

A prior study determined that IgG levels against Hla were 
correlated with protection against recurrent staphylococcal cu-
taneous infections in humans [43], but functional, protective 
serologic responses that are generated after invasive human 
disease remain undefined. Although none of the factors as-
sessed were found to predict which serum samples would be 
protective, there are several caveats to this. For example, the 
bicomponent leukocidins are known to be highly specific to 
human (rather than murine) neutrophils [10], particularly 
LukAB [11], Panton-Valentine leukocidin (PVL) [44], and 
LukED. It may be, therefore, that some serologic factors of crit-
ical importance in the setting of human disease would appear 
less important in a nonhumanized mouse model. Identifying 
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Figure 5. Correlation of in vitro characteristics of human serum samples compared with efficacy of serum samples to protect against Staphylococcus aureus sepsis in 
mice after adoptive transfer. A, Correlation matrix with Pearson correlation coefficient of specific in vitro characteristics: facilitation of neutrophil-mediated killing; antiβα-
hemolysin (Hla) immunoglobulin (Ig) G; anti-LukAB IgG; neutralization of LukAB-mediated phagocyte killing (neut); total S. aureus binding IgM and IgG by normalized enzyme-
linked immunosorbent assay units (EU) per milliliter, antibody-dependent cellular phagocytosis (ADCP), and neutrophil phagocytosis (ADNP) (by phagocyte [P] score) compared 
with S. aureus colony-forming units (CFUs) in mice after adoptive transfer. Blue color on heat map indicates higher titer/improved function. After correction for multiple com-
parisons, the closest correlation was seen with total binding IgG against S. aureus (r2 = 0.62, suggesting strong correlation; P = .07). B, Correlation of total binding S. aureus 
IgG and mean CFU counts (n = 5 mice per group) for individual serum samples. CFUs were enumerated from whole homogenized organ in 1 mL of phosphate-buffered saline. 
Abbreviations: NU, neutralization units; PMNs, polymorphonuclear leukocytes; V2, 4–6 weeks after enrollment.
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crucial factors conferring protective properties to serum sam-
ples, as well as determining whether serum samples gain or lose 
protective function when humanized mouse models are used, 
will be important future directions for this work.

Several caveats exist for the interpretation of these data. 
First, the model is not expected to represent a complete 
transfer of the adaptive host response, because T-cell re-
sponses are not accounted for. In addition, there are likely 
differences in Fc-mediated functions when human antibodies 
interact with murine effector cells, and these differences will 
need to be defined in future work. Furthermore, the age range 
of the infected subjects represents a period during which im-
mune maturation is occurring, and this may partially explain 
differences in the efficacy of the host response in some sam-
ples. Finally, the function of human antibody responses to 
bacterial virulence factors with high tropism for human cells 
(eg, LukAB and other leukocidins) may be masked or under-
represented after transfer to the murine model. Nevertheless, 
a highly protective serologic response (as seen in several sam-
ples in this study) certainly holds important information re-
garding which factors are important for the inhibition of 
bacterial pathogenesis.

It remains unclear which specific factor(s) confer the highly 
protective effect to certain serum samples after invasive human 
infection, and this is the target of a larger-scale future work. It 
should be noted that the samples with the greatest protective 
function were obtained from follow-up visits in convalescence 
from disease, the approximate time at which the adaptive re-
sponse is expected to be at its peak. Most samples tested lost 
protective efficacy after heat inactivation, further suggesting 
an antibody-mediated mechanism, though these experiments 
were conducted asynchronously and residual sample volume 
was not sufficient to conclude this definitively. 

It is likely that a complex interaction of the humoral re-
sponse (both Fab- and Fc-mediated functions) with certain 
key antigens and other components of the host response is re-
quired. It is also notable that serologic protection had waned 
by 6 months after infection. This may be owing, in part, to the 
known ability of S.  aureus to perturb the development of an 
effective memory response via SpA-mediated B-cell apoptosis 
[45, 46] a phenomenon that could be subverted by vaccination 
if effective mediators of protective factors in serum samples can 
be identified. Importantly, protective responses were generated 
by patients infected with diverse strain types and methicillin 
resistance patterns, a crucial observation because an effective 
intervention or prevention target will need to be broadly appli-
cable rather than restricted to specific strains.

In conclusion, the current study describes novel approaches 
to assessing the host response after invasive S.  aureus dis-
ease in humans, a concept with important implications for 
staphylococcal vaccine development. The adoptive transfer of 
human serum after infection allows for a unique assessment 

of the functional adaptive response and may provide a means 
to elucidate critical protective factors that result from natural 
human disease. Application of the model to acute and conva-
lescent serum samples provided important insight into the 
longstanding question as to whether humans develop protec-
tive immunity after infection, strongly suggesting that protec-
tive immunity is generated under certain conditions and peaks 
during disease convalescence. This platform provides the op-
portunity to identify human-disease-relevant staphylococcal 
vaccine antigens and represents a potential novel mechanism 
to directly test the protective efficacy of serum samples after 
vaccination, a modality that could broadly inform not only a 
S. aureus vaccine program, but also other challenging vaccines.
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