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Abstract

Fast and accurate calculation of standard binding free energy has many important applications. 

Existing methodologies struggle at balancing accuracy and efficiency. We introduce a new method 

to compute binding free energy using deep generative models and the Bennett acceptance ratio 

method (DeepBAR). Compared to the rigorous potential of mean force (PMF) approach that 

requires sampling from intermediate states, DeepBAR is an order-of-magnitude more efficient as 

demonstrated in a series of host-guest systems. Notably, DeepBAR is exact and does not suffer 

from approximations for entropic contributions used in methods such as the molecular mechanics 

energy combined with the generalized Born and surface area continuum solvation (MM/GBSA). 

We anticipate DeepBAR to be a valuable tool for computing standard binding free energy used in 

drug design.
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Non-covalent molecular binding is essential for many processes such as self-assembly1 and 

signal transduction.2 Accurate estimation of the absolute binding affinity could provide 

insight into the physicochemical interactions that drive these processes.3 Computing binding 

free energy also has important practical applications in drug discovery for in silico screening 

and design of small molecules that bind with a target protein.4

Numerous methods have been introduced for computing binding free energy. The alchemical 

double decoupling (ADD)5 and the potential of mean force (PMF) methods6,7 are both 

exact. They rely on extensive molecular dynamics simulations and can, in principle, produce 

values directly comparable to experimental measurements, barring the approximations 

introduced in force field parameterization. Notably, these two methods require simulations 

for both the two end states (bound and unbound) and many alchemical/physical intermediate 

states that bridge them.5–7 In addition to increasing the computational cost significantly, 

intermediate states are non-trivial to construct, and their definition varies greatly among 

systems. On the other hand, the molecular mechanics/Poisson–Boltzmann or generalized 

Born and surface area continuum solvation (MM/PBSA8 or MM/GBSA9) methods 

circumvent the need for intermediate states and only require sampling from the two end 

states. While computationally more efficient, MM/GBSA and MM/PBSA are less accurate 

due to the approximations introduced for estimating the entropic contributions.8,9 The 
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quality of such approximations is system-dependent, and their impact on the computed free 

energy values is hard to gauge a priori.

In this letter, we introduce a new method, DeepBAR, to compute the binding free energy as 

the difference of the absolute free energy for the bound state A and the unbound state B, i.e., 

ΔFbinding = FA − FB. Previously, we showed that absolute free energy could be calculated 

using deep generative models and the Bennett acceptance ratio (BAR) method with high 

accuracy.10 Like MM/GBSA and MM/PBSA, DeepBAR only requires sampling from the 

end states. A crucial difference from these methods is that DeepBAR is exact and can 

achieve the same accuracy as ADD and PMF. Therefore, it is designed to perform fast and 

accurate computations of binding free energy.

We first briefly review the method for calculating absolute free energy using reference states 

constructed with deep generative models.10 For conciseness in notation, we present the 

algorithmic details using state A as an example, but the procedure applies to state B equally. 

We define the reference state A° as a probabilistic model, qA°(x; θ), and its energy function 

as UA°(x) = −β−1 log qA°(x; θ). x represents the Cartesian coordinates of a molecular 

configuration and θ corresponds to the model parameters. β = 1/(kBT) is the inverse of the 

product of the Boltzmann constant (kB) and temperature (T). The benefit of defining the 

reference state as a probabilistic model is that because qA°(x; θ) is normalized, the absolute 

free energy of this state is 0, i.e.,

FA° = − β−1log ∫ e−βUA°(x) dx = − β−1log∫ qA°(x; θ)dx = 0. (1)

Therefore, the absolute free energy for state A equals to its free energy difference from A°, 

ΔFA°→A, and can be determined by solving the BAR equation:11

∑
n = 1

NA°
f β ΔU xA°

n − M − ΔFA° A = ∑
n = 1

NA
f −β ΔU xA

n − M − ΔFA° A , (2)

where f(t) = 1/(1 + et), ΔU(x) = UA(x) − UA°(x), and M = log(NA/NA°). A reliable 

estimation of the free energy difference, ΔFA°→A, from the above equation requires (i) 

independent samples xA°
n :n = 1, …, NA°  from the reference state A° besides state A 

samples xA
n :n = 1, …, NA  that can be produced using molecular dynamics simulations and 

(ii) a significant phase space overlap between states A° and A. Both requirements can be 

satisfied if qA°(x; θ) is designed as deep generative models, a special class of probabilistic 

models, with parameters (θ) that maximize the log-likelihood on samples xA
n :n = 1, …, NA

generated from state A. Deep generative models allow precise evaluation of the absolute 

probability for any molecular configuration and generating independent configurations at 

negligible computational cost. Log-likelihood maximization further ensures the similarity 

between configurations from deep generative models and those produced by molecular 

dynamics simulations for state A.
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To demonstrate the efficacy of DeepBAR for computing binding free energy, we applied it to 

four host-guest systems (Figure 1).12 These systems are small in size and permit exhaustive 

conformational sampling. They are widely used for benchmarking free energy calculation 

methods.13 The host molecule, cucurbit[7]uril (CB7),14–17 is an achiral ring consisting of 7 

glycoluril monomers. It features high binding affinities, especially for guests with a 

hydrophobic core that can fit tightly into its nonpolar binding pocket. To further simplify the 

system and eliminate sampling issues that might come from explicit water molecules, we 

used the OBC implicit solvent model18 in calculating the binding free energy.

Molecular dynamics simulations were performed to collect sample configurations from state 

A and B. We removed the translational and rotational degrees of freedom for the host in state 

A and both the host and the guest in state B using restraining potentials. These potentials 

were defined with the use of fixed anchor particles (P1, P2, and P3) and virtual sites (H1, 

H2, and H3) of the host (Figure 2a and 2b). As detailed in the Supporting Information (SI), 

removing these degrees of freedom does not impact the accuracy of free energy calculations 

but facilitates conformational sampling. For notational purposes, we use xh and xg for the 

full phase space of host and guest and xℎ* and xg* for the ones with translational and 

rotational degrees of freedom removed.

Host-guest conformations from MD simulations were used to learn references states A° as 

qA° xℎ*, xg  and B° as qB° xℎ*, xg*  using flow-based generative models.19–22 Flow-based 

models produce molecular configurations by applying a series of bijective transformations to 

independent random variables that have normal or uniform distributions (Figure 2c and 2d). 

The transformations are often represented as neural networks to ensure the expressibility of 

the probabilistic models so that they can approximate the complex distributions from MD 

simulations well. Because random variable generation from both normal and uniform 

distributions is trivial to perform, sampling molecular configurations by applying 

transformations to these random samples is straightforward and computationally efficient. In 

contrast to MD simulations that only provide relative probability for molecular 

configurations due to the unknown partition function, flow-based models compute the 

absolute configurational probability by reweighting the probability of normal/uniform 

random variables with appropriate Jacobians. More details on the flow-based generative 

models are provided in the SI. The probability distribution for guest molecules in state A is 

dependent on the conformation of the host and we decomposed the joint probability 

distribution as qA° xℎ*, xg = qA° xℎ* ⋅ qA° xg ∣ xℎ* . On the other hand, the host and guest are 

independent from each other in state B, and correspondingly we decomposed the joint 

probability distribution as qB° xℎ*, xg* = qB° xℎ* ⋅ qB° xg* .

After learning the reference states, we first evaluated their phase space overlap with the 

target states using marginal distributions of specific degrees of freedom. These marginal 

distributions can be estimated using sample configurations from reference and target states. 

Samples from the reference state were generated from the trained bijective transformations 

of random variables. Figure 3a and 3b show the distributions of x-y coordinates of atom C4 

on guest GIII for state A and state A°, respectively. Results for other systems and states are 

provided in Figure S1–S5. Because the host CB7 has a 7-fold rotational symmetry and its 
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middle section plane is aligned with the x-y plane, the distribution of C4 atom’s x-y 

coordinates in state A has a 7-fold rotational symmetry too (Figure 3a). Figure 3b shows that 

the corresponding distribution from the learned reference state A° matches quite well with 

that from state A even though the distribution has multiple modes. Figure S4a–S4d show 

similar agreement for the distributions of two representative dihedral angles between state A 

and A° for guest GIII.

In addition to the marginal distributions, we further examined the 3D conformations 

produced by generative models directly. The potential energy functions of the target states 

serve as a metric for the quality of these conformations as unphysical structures and even 

clashes between atoms will lead to high energy values. Figure 3c shows the probability 

distributions of the energy function UA computed using sample configurations from state A 

(blue) and A°(orange) for the host-guest system with GIII. There is a significant overlap 

between the two distributions, supporting the ability of generative models in producing 

realistic molecular configurations with reasonable energy. In addition to the distributions of 

the target state energy function, we also computed and compared the distributions of the 

reference energy function UA° (Figure 3d). Because the reference state was trained to 

maximize its likelihood on samples from state A, its energy function UA°(x) has similar 

values on samples from itself and from state A. Correspondingly, the overlap between the 

two distributions for UA°(x) is more significant than those for UA(x). The corresponding 

results for state B and B° are provided in the Figure S4e and S4f and support similar 

conclusions. Similar overlaps are also observed for all other guest molecules (Figure S6–

S8).

The significant phase space overlap between reference and target states allows robust 

estimation of their free energy difference with the BAR equation (Equation 2). Notably, for 

both state A and B, the estimations are relatively independent of the quality of the generative 

models. As shown in Figure 4c and 4d, the absolute free energy, FA and FB, converges by 

about 50 epochs, even though the generative models at this stage are less optimal and have 

smaller likelihood on the sample configurations from MD simulations (Figure 4a and 4b) 

compared to the final ones (80 epochs) that are used for making Figure 3. Similar results 

hold for all other guests, too (Figure S9–S11). Therefore, the free energy estimation is not 

very demanding on the phase space overlap between reference and target states and does not 

require the deep generative models to perfectly reproduce the probability distributions of 

target states.

With the absolute free energy of states A and B calculated, we can compute the binding free 

energy as their difference, i.e., ΔFbinding = FA − FB (Table 1). For comparison, we also 

computed the binding free energy of the four guest molecules using the PMF method.6,7 In 

contrast to DeepBAR, PMF requires MD simulations for both end states and intermediate 

states in which the guest molecule is placed at increasing distances from the host. These 

intermediate states help bridge the two end states that do not have phase space overlap. They 

must be introduced at a slow pace to ensure sufficient overlap between any two adjacent 

states as well. For all four guests, we found that 95 intermediate states, corresponding to 97 

windows in Table 2, are sufficient to produce converged results. There are significant 

overlaps between the probability distributions of collective variables for adjacent states 
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(Figure S12–S23), and the computed binding free energy from three independent repeats 

shows small standard deviations (Table 2). We also computed the binding free energy using 

PMF with 49 and 33 windows. These results have much higher uncertainty. The binding free 

energy calculated using DeepBAR agrees well with that from PMF with 97 windows and 

reaches a similar statistical uncertainty level. The values are also comparable to results from 

prior studies.23 On the other hand, the results computed using MM/GBSA show large 

systematic errors. Since 97 and 2 independent MD simulations are needed for the two 

methods, DeepBAR is almost 50 times more efficient than PMF in terms of the amount of 

sampling required to reach the same results with similar statistical uncertainty.

In summary, DeepBAR is exact and can accurately compute binding free energy using only 

a small fraction of the computational resource required by PMF. It does not suffer from the 

approximations that are inherent in other end state methods such as MM/GBSA and MM/

PBSA8,9 Although we benchmarked the method using host-guest systems, it can be readily 

applied to compute protein-ligand and protein-protein binding free energy.

We note that GB implicit solvent simulations18 were used to sample molecular 

configurations and parameterize deep generative models. Because explicit solvent 

simulations often provide better agreement with experiments for free energy calculations, it 

is desirable to couple them with the DeepBAR method. However, there can be challenges in 

modeling the ensemble distribution of all degrees of freedom in an explicit solvent system 

with generative models. Including solvent molecules dramatically increases the system size 

and introduces permutational symmetry (permutation of water molecules does not change 

the system’s energy) to the ensemble distribution. Encouraging progress is being made in 

designing flow-based generative models for systems with large sizes and permutational 

symmetry.22,24–26 Combining these techniques with DeepBAR will be an exciting future 

direction.

Computational Methods.

MD simulations were used for conformational sampling in both DeepBAR and PMF. A 

cutoff distance of 1.4 nm was used for non-bonded interactions including both electrostatic 

and van der Waals interactions. The temperature of the simulations was maintained at 298 K 

using the Langevin dynamics with a friction coefficient of 1 ps−1. The time step was set to 1 

fs. For guest molecules GI, GII and GIII, 20 ns of simulations were performed and 

conformations were saved at every 0.1 ps. Because the guest GIV has a larger size and is 

slower to rotate inside the host, we used 100 ns of simulations to sample and collected 

conformations at every 0.5 ps. Therefore, 200,000 conformations were produced for all four 

guests to train generative models and reference states.

Invertible linear transformations (ILT) were used to model the transformation between uℎ*

and xℎ* for both state A and state B, i.e., xℎ* = Muℎ* + μ, where M is an invertible matrix. 

Rational quadratic neural spline flows21 (RQ-NSF) with 20 coupling layers, each of which 

has 32 hidden units, were used to model the transformation between ug* and zg* for state B 

and between ug ∣ xℎ* and zg for state A. The architectures of the RQ-NSF are the same as that 
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used and also described in detail in our previous study.10 The 200,000 conformations 

sampled from state A (or B) were split into two sets, each of which has 100,000 

conformations. 90,000 configurations of the first set were used as training data for learning 

RQ-NSF for state A° (or B°) and the remaining 10,000 conformations were used as 

validation data. The 100,000 conformations from the second set were used as xA (or xB) in 

computing ΔFA°→A (or ΔFB°→B) using Equation 2. The stochastic gradient descent method, 

Adam optimizer,27 was used to optimize the RQ-NSF models by maximizing its likelihood 

on the training data. The learning rate was set to 0.001 and the training batch size was 512. 

After each epoch of training, the likelihood of the RQ-NSF model on the validation data was 

calculated and the training of the RQ-NSF model stopped when its likelihood on the 

validation data started to decrease, i.e., when the RQ-NSF model started to overfit. After 

learning, 100,000 conformations were sampled from state A° (or B°) and these 

conformations were used as xA° (or xB°) in computing ΔFA°→A (or ΔFB°→B) by solving the 

BAR equation (Equation 2) using the FastMBAR solver.28

The PMF method used in this study follows the attach-pull-release (APR) framework 

presented in reference 7 for computing host-guest binding free energy. In this framework, 

the intermediate states are designed to open host cavity, remove guest and release host 

restraints in the three attachment, pulling, and release phases. Detailed information about 

restrain potentials used in the intermediate states is included in the SI. After sampling from 

both intermediate states and end states, the binding free energy was calculated by solving the 

multistate Bennett acceptance ratio equation.29

The MM/GBSA calculations were conducted using the MMPBSA.py program30 with the 

solute entropy calculated using the normal mode analysis (Table S1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Illustration of the cucurbit[7]uril (CB7) host-guest system used for testing the DeepBAR 

method. The left two panels provide a side and top view of the host, with its periodic unit 

highlighted in the top panel. Structures of the four guests (GI-GIV) are shown in the right 

panels.
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Figure 2: 
Parameterizing reference states with deep generative models using samples collected with 

restrained molecular dynamics simulations. (a, b) Illustration of the fixed anchor particles 

(P1, P2, and P3) and virtual sites (H1, H2, and H3) used to restrain the host in both bound 

and unbound states and guest molecules in the unbound state. Detailed definitions for these 

anchor particles and virtual sites are provided in the SI. (c and d) The flow-based deep 

generative models used for parameterizing reference state A° (c) and B° (d). The Cartesian 

coordinates for the host (xℎ*) and guest (xg/xg*) are determined from normal random variables 

(uℎ*) via invertible linear transformations (ILT) and from multiple bijective transformations 

of uniformly distributed random variables (ug/ug*), respectively.
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Figure 3: 
Phase space overlap between state A and A° for the CB7-GIII host-guest system. (a and b) 

Probability distribution of the x-y coordinates of atom C4 on guest GIII for state A (a) and A

° (b). Atom C4 is one of the three spiro carbon atoms connecting the two rings, as shown in 

the embedded structure in part a. (c and d) Distributions of the value (in kcal/mol) of energy 

functions UA (c) and UA° (d) on samples from state A (blue) and state A° (orange).
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Figure 4: 
Free energy values estimated with DeepBAR are robust with respect to model quality. (a and 

b) Log-likelihood of the generative models for state A° (a) and B° (b) on training data as a 

function of the number of epochs used for model parameterization. (c and d) Values of the 

absolute free energy for state A (c) and B (d) calculated using models trained with different 

numbers of epochs.
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Table 1:

Absolute free energy of states A and B, FA and FB, and binding free energy ΔFbinding
a
 of the four guests 

calculated using the DeepBAR method.

guest FA FB ΔFbinding

GI 1554.73±0.29 1567.37±0.22 −12.63±0.25

GII 1649.22±0.12 1664.05±0.18 −14.82±0.28

GIII 1722.73±0.17 1750.38±0.17 −27.65±0.15

GIV 1750.68±0.20 1780.54±0.24 −29.87±0.21

a
Standard deviations are computed using three independent repeats and the unit of free energy is kcal/mol.
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Table 2:

Comparison of binding free energy ΔFbinding
a
 of the four guests calculated using the DeepBAR method, the 

PMF based method and the MM/GBSA method.

guest DeepBAR
PMF

MM/GBSA
97 windows

b 49 windows 33 windows

GI −12.63±0.25 −12.76±0.27 −12.74±0.42 −13.47±1.83 −3.97±0.19

GII −14.82±0.28 −15.29±0.09 −14.90±0.47 −14.69±4.64 −6.53±0.15

GIII −27.65±0.15 −27.57±0.13 −27.32±0.60 −26.81±0.80 −20.61±0.16

GIV −29.87±0.21 −30.61±0.32 −31.26±0.64 −29.26±0.67 −22.65±0.14

a
Standard deviations are computed using three independent repeats and the unit of free energy is kcal/mol;

b
The PMF method with n windows means it samples from 2 end states and n − 2 intermediate states.
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