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Abstract

Mapping of cancer survivability factors allows for the identification of novel biological insights 

for drug targeting. Using genomic editing techniques, gene dependencies can be extracted in 

a high-throughput and quantitative manner. Dependencies have been predicted using machine 

learning techniques on –omics data, but the biological consequences of dependency predictor pairs 

has not been explored. In this work we devised a framework to explore gene dependency using 

an ensemble of machine learning methods, and our learned models captured meaningful biological 

information beyond just gene dependency prediction. We show that dosage-based dependent 

predictors (DDPs) primarily belonged to transcriptional regulation ontologies. We also found that 

anti-sense RNAs and long- noncoding RNA transcripts display DDPs. Network analyses revealed 

that SOX10, HLA-J, and ZEB2 act as a triad of network hubs in the dependent-predictor network. 

Collectively, we demonstrate the powerful combination of machine learning and systems biology 

approach can illuminate new insights in understanding gene dependency and guide novel targeting 

avenues.
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1. Introduction

In the era of targeted therapy, understanding cancer fitness is critically important for future 

therapeutic development. Genes hinge on each other to define context specific phenotypes 

and our understanding of such interactions is paramount for better drug targeting. The 

term gene dependency was coined to describe genes that a particular cancer cell cannot 

proliferate without. Genetic screens have been used to identify gene dependencies [1]. 

Tsherniak et al. performed one of the most inclusive screens using RNAi in human cancer 

cell lines [2]. They then constructed regression conditional inference trees to model a given 

gene’s dependency based on somatic mutations, gene copy number, and gene expression. 

Surprisingly, 82% of predictable differential dependencies were best predicted by gene 

expression alone. This finding suggests that gene dependency is primarily dictated by 

transcriptomic features. Chen et al. added to this work by mapping gene dependency 

at the proteomic level [3]. Broadly, proteomics is considered less practical for systems 

analysis due to its variation across protocols, scarcity in public repositories, and lower 

gene coverage. Despite these challenges, Chen et al. revealed a similarly strong predictive 

power of proteomics in gene dependency. While both groups linked gene dependencies to 

other genes predictive of their function, neither explored the biological associations between 

dependency predictor gene pairs. Thus, the biological significance of gene dependency and 

predictor relationships has been largely unexplored. We hypothesize that the relationships 

between a gene dependency and its predictors can be captured at the transcriptomic 

level and encompass valuable information on gene dependency biological mechanisms 

and cancer fitness. Specifically, we examined the transcriptomic landscape for a specific 

type of predictor called dose-dependent predictors (DDPs). Dose-dependent predictors are 

predictors that show dose response behavior with gene dependency. Here, we developed a 

machine learning procedure termed Expression Dosage Dependent Inferelator (EDDI) that 

can enable the identification of predictive dependency genes and elucidate their biological 

relationship in human cancer cell lines. In this way, we leveraged the learned features 

from the machine learning model in systems biology approaches to further biological 

understanding.

2. Method

2.1 Data

Gene expression and dependency data was obtained from the depmap portal (https://

depmap.org/portal/) [2]. CCLE RPKM data from release 18Q3 was used for this study. 

This dataset included 487 cancer cell lines spanning 21 tissue and 32846 genes [4, 5]. 

DEMETER inferred dependency scores for 17098 genes across 501 cell lines were obtained 

from Achilles release 2.20.2 [6]. Expression data was transformed to log2(RPKM+1). 

Hematopoietic cell lines were removed from the datasets due to their unique genetic 

background compared to solid tissue tumors, and common cell lines between the two 

datasets were kept, leaving 440 cell lines spanning 20 tissues. We refer to dependencies as 

genes from the set of 17,098 with dependency scores.
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2.2 Initial Screen

Pairwise screening was performed for all combinations of dependencies and genes to 

identify genes showing expression-based separation between dependent and non-dependent 

cell lines, as well as linear expression in the dependent cell lines (Figure 1). Due to the lack 

of a strict dependency score threshold denoting dependency, different thresholds were tested 

for each pair to find a naïve boundary and assess predictive viability. For a given dependency 

D (range of - to −2) cell lines with dependency scores less than 0 were used as an initial set 

of “dependent” cell lines and the remaining cell lines were the initial set of ‘non-dependent’ 

cell lines. For a given gene G, a 10-fold cross-validated logistic regression model was fitted 

using G’s expression a predictor and D’s labels. The brier score which is used for binary 

outcomes, was calculated for each fold and averaged to give the final cross- validation brier 

score [7]. This process was repeated iteratively by dropping the highest scoring cell line 

from the dependent set until only 20 cell lines remained. The dependency score associated 

with the lowest cross-validated brier score was chosen as a tentative boundary to classify 

‘dependent’ and ‘non-dependent’ cell lines. Pairs were then filtered based on whether the 

dependent cell lines’ expression 75th percentile of G was greater than or equal to that of the 

non-dependent set’s expression 25th percentile of G and vice versa. This step was performed 

to determine whether there may be good expression-based separation between the dependent 

and non-dependent cell lines. To screen for potential linearity in the remaining pairs, a 

relaxed lasso model was fit on the dependent set of cell lines using G’s expression as a 

predictor and D’s scores as the labels. Only genes whose linear models had a significant 

slope (P<0.001) were kept as a potential predictive feature for their respective D.

2.3 Defining Dependent Cell Lines

The previous dependent/non-dependent score boundaries were designed solely to identify 

dependency-gene pairs where expression may control the dependency. A strict dependency 

classification was needed to proceed with analysis. We initially set dependency score 

threshold of −2. However, a threshold at −2 may not be enough to reveal significant 

differences between the two dependency classes. To remedy this, each dependency (D) 

and expression (G) pair passing the previous filtering step was clustered using k-means 

clustering with k=2 and a minimum cluster size of 20 cell lines. The cluster with the most 

cell lines below −2 was deemed the ‘dependent’ cluster, and cell lines with dependency 

scores < −2 in this cluster were labeled as dependent. For a given dependency D, the union 

of all dependent cell lines from the pairwise clustering became the final set of dependent cell 

lines.

2.4 Classification Models

2.4.1 Random Forest: A random forest classification model was built for all 

dependencies. The previously determined gene sets for each dependency were used as 

features for their respective models. Models were constructed using a constant size of 500 

trees and minimum node size of 1. The number of predictors to consider at each split (m) 

was tuned using the randomForest package’s tuneRF function [8]. We assessed our model 

with a stratified 10-fold cross validation scheme repeated 5 times using the AUC as our 

performance metric (roc package) [9]. To account for the lack of dependent cell lines in 
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comparison to non-dependent lines, dependent cell lines were up-sampled in each fold. 

We collected the variable importance for each model using the randomForest package’s 

varImpPlot function, which reports the mean Gini index decrease for each feature.

2.4.2 Regression Modeling: Dependencies which had a final cross-validated AUC of 

0.7 or higher were considered for lasso regression modeling. Regression models were built 

for the dependent cell lines only. Using the feature set determined from the initial screen, we 

first normalized the expression data using a z-score transformation. We then used the glmnet 

package [9] to fit a relaxed lasso regression model to our data and selected the optimal hyper 

parameters γ and λ using leave-one-out cross-validation [10].

2.5 Characterizing Gene-Dependency Relationships

Predictive genes from the well performing random forest models were grouped into broad 

classes that describe their expressions patterns between dependent and non-dependent cell 

lines. For each of the dependencies whose random forest classifiers achieved and AUC>0.7, 

we computed their differentially expressed gene sets between dependent and non-dependent 

cell lines using DESeq2 [11]. We compared the results to the respective model’s feature 

list. Predictive genes in the random forest model with at least a 2 fold expression difference 

and an adjusted p- value<0.05 were identified as over or under-expressed genes depending 

on the direction of the expression difference. Predictive genes demonstrating extreme 

under-expression in dependent cell lines with a log2(RPKM+1) expression less than 0.1 

were labeled as “suppressed under-expressed” genes. In addition to differential expression 

analysis, we also used a template matching scheme where a binary vector was constructed 

for each dependency [12]. Dependent cell lines were represented as “1” and non-dependent 

cell lines were represented as “0” in this binary template vector. The Pearson correlation 

coefficient between each template and its corresponding predictive genes was computed. 

Genes with a correlation coefficient magnitude of at least 0.5 were given the “separable” 

label to denote the distinct expression patterns between dependent and non-dependent sets. 

Lastly, predictive genes from the relaxed lasso models were given the “SEESAW” label to 

indicate a linear scaling of this gene’s expression on the dependency score of the gene’s 

corresponding dependency. The list of well performing dependencies, their predictive genes, 

and the relationship between predictor and dependency is provided in Data S1.

2.6 Pathway enrichment analysis for dosage-based dependency predictor genes

Pathway enrichment analyses for dosage-based dependency predictor genes (DDPs) for 

16 gene dependencies were performed using WebGestalt (http://www.webgestalt.org/) on 

KEGG pathways against the human genome [13]. Pathways with at least 5 genes overlapped 

with query pathway datasets and FDR<0.25 computed with Benjamini- Hochberg (BH) 

multiple adjustment test were deemed enriched.

2.7 Code availability

Codes for this work can be accessed freely at https://github.com/HuLiLab/EDDI for 

academic use.
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3. Results

3.1 Definition and search of dosage-based dependency predictor genes (DDPs)

Gene expression patterns seen in cancer cells reflect upstream signaling events, genomic 

mutations, and epigenetic variations. Typically, the expression of a given gene is affected 

by the expression of many other genes and as such genome-wide expression profiles are 

usually nonlinear. Gene expression and gene dependency are also highly context specific, 

and thus we hypothesized that DDPs (dose-dependent predictors) are specific to cancer 

type. Here, we used CCLE compendium to identify DDPs and we defined three major 

types of dosage-based gene expression patterns: over-expression, under-expression, and 

“SEESAW”-like expression. The expression patterns for over- and under-expression were 

non-linear. In the under- and over-expression categories, a subcategory of genes clearly 

separated dependent from non-dependent cell lines and thus were termed separable (Figure 

S1–S3). Furthermore, in the under-expression category certain gene’s expression was almost 

completely suppressed so we delineated this as a third more extreme category of suppressed 

under-expression. A third category of SEESAW expression was specified for genes that 

had linear expression patterns for dependent cell lines. SEE described the linear increase 

of a gene in dependent lines, and SAW described the linear decrease. Examples of these 

expression patterns are shown in Figure S1–S3. With these expression patterns defined, 

we performed a systematic search for candidate dosage-based dependency predictor genes 

(DDPs). We searched across 440 human cancer cell lines derived from 21 tissue types each 

with 17,098 gene dependency scores generated by Tsherniak et al. and corresponding CCLE 

expression data. Using an unbiased approach, we devised a novel strategy to exhaustively 

search for thresholds that best characterize a dependency (see Methods). Our approach 

contrasts with others that used a hard cut-off score to investigate gene dependency.

3.2 Dosage-based dependency predictors provide biological insights

To identify dependency with DDP, we used a naïve logistic-regression (Figure 1). Of 

the 17,098 dependencies, 109 were selected for having possible DDPs. A random forest 

model was then created for 109 dependencies using the possible pre-screened DDPs to 

predict dependency and extract feature weights. Using the area under the curve (AUC) 

as our validation metric (Figure 2a), we found 16 dosage-based dependencies with a cross-

validated model performance of greater than 0.7. The predictor genes (i.e. features) are given 

in Data S1. Out of these 16 dosage- based dependencies, SOX10 dependency was most 

accurately predicted by these random forest models which is consistent with the previous 

findings of Tsherniak et al. [2]. We noticed that the variability of predictive performance 

was not dependent on the number of cancer cell lines (Figure 2a). This indicated that the 

dissected patterns were driven by true expression patterns and not by under sampling. For 

instance, STRN4 had the smallest variation in predictive performance, and FERMT1 had the 

largest variation in predictive performance (Figure 2a). Across cancer types, STRN4 had a 

robust performance, which is in contrast to SOX10 that had a largely improved performance 

in skin cancer when compared to other cancer types.

To test the linearity of the 16 highly predictive dosage-based dependencies, we subjected 

them to relaxed-lasso linear regression models. A leave-one-out cross-validation (LOOCV) 
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was used as a test strategy, and the LOOCV root-mean-square error (RMSE) and R-squared 

(R2) were used to measure performance. FOXA1, SOX10, and PAX8 displayed significant 

R2 and RMSE performances (Figure 2b). Interestingly, features selected by this model 

demonstrated the linear “SEESAW” pattern (Figure S2). The remaining 13 dosage based 

dependencies were characterize by predictors with over- and under-expression profiles.

3.3 Most dosage-based dependencies are related to transcriptional activities

We next examined the functional categories of these 16 dosage-based dependencies. Half of 

these dependencies were functionally related to transcriptional regulation activities including 

transcription factors (FOXA1, HNF1B, PAX8, SOX10, ZEB2), transcriptional regulator 

(MDM4), and chromatin remodeling (PRMT5, SMARCA2). Other functional categories 

were purine metabolism (ADSL), MAPK signaling (BRAF), calcium ion binding (CABS1, 

STRN4), immune responses (FCGR2B, HLA-J), integrin signaling and cytoskeleton 

(FERMT1), and electron transfer activities (TXNDC17). This indicates that dosage-based 

dependencies in cancer cells are most often related to transcriptional activities. Several 

of the non-transcriptionally functions associated to dosage-based dependencies were also 

related to tumorigenesis.

3.4 Dosage-based dependencies are tissue specific

After broad characterization, we then analyzed the tissue specificity of dosage-based 

dependencies. We found that each tissue showed a preference for certain dosage-based 

dependencies. (Figures 2c and S4). The most obvious example was SOX10 which was 

dependent in >80% of skin cancer cell lines (Figure 2c). This is consistent with prior studies 

demonstrating SOX10 as a marker and promotor of invasiveness in melanomas [14, 15]. 

BRAF was also enriched by skin cancer cell lines (Figure 2c) which was unsurprising 

because BRAF mutations occur in nearly 70% of cutaneous melanomas [16]. Kidney 

derived cell lines were dependent on transcription factors HNF1B and PAX8. PAX8 is a 

known activator of metabolic genes in renal cell carcinoma [17]. HNF1B has not been 

described in kidney cancer, but dysfunction in HNF1B is known to cause developmental 

kidney diseases and renal cysts [18, 19].

3.5 Dosage dependent predictors were enriched in cancer related molecular pathways

The 16 gene dependencies were significantly predicted by 1,162 DDPs. Using WebGestalt 

and the KEGG database, we again found that DDPs were enriched in cancer related 

pathways (Figure 3 and Data S2) [13, 20]. Transcriptional misregulation was most 

significantly enriched in DDPs which agrees with the functional analysis of dependencies 

of which half were related to transcription. Lysosome, phagosome, and ECM-receptor 

interaction were the next three pathways that DDPs were enriched in. Lysosmal and 

phagosomal dysregulation is a known aberration in many cancer types, and ECM-receptor 

interaction changes can promote cancer invasion and metastasis [21, 22]. Other DDP 

enriched pathways were focal adhesion and tight junctions which are also related to 

invasion, growth, and metastasis. A substantial number of DDPs were enriched in 

melanogenesis which is due to the contribution of large number of SOX10’s DDPs and 

SOX10’s high level of dependency in skin cancers.
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3.6 Antisense and non-coding RNA transcripts contribute to dosage-based dependencies

Noncoding RNAs have recently been implicated in cancer therapeutic response and 

progression, but they have not been described to have a role in gene dependency [23, 

24]. Surprisingly, we found 51 antisense transcripts acted as DDPs (Data S1). Not all 

of the protein-coding counterparts of these transcripts were DDPs which suggests that 

in the case of gene dependency these antisense RNAs may be playing roles other than 

regulating the level of their protein-coding counterparts. A number of antisense transcripts 

whose counterparts were DDPs displayed similar modes of expression (Data S3). We 

investigated the predictive power of these protein-coding and antisense pairs by comparing 

the mean decrease in Gini index [25]. A substantial number of antisense transcripts showed 

similar importance as a model feature to their protein coding analogs (Figure 4). Notably, 

the antisense transcripts of some genes like GNG12 and PRR7 ranked higher than their 

protein coding counterparts (Figure 4 and Data S3). This may suggest that under certain 

circumstances anti-sense RNA transcripts rather than the protein-coding transcripts play a 

more important role in shaping gene dependencies. Non-coding RNAs were also found to 

be DDPs in our models (Data S1). We detected 46 non-coding RNAs as DDPs, and some 

of them appeared as predictors for multiple dependencies. For example, LINC00473 was a 

DDP for FCGR2B and SOX10 dependencies. Long non-coding RNAs have recently been 

reported to act as predictors of anticancer drug sensitivity [23], but to our knowledge, no 

study has yet reported the role of long non-coding RNAs as predictor of gene dependencies 

in cancer cells.

3.7 Distinct modes of expression of dosage-dependent predictors confer unique 
mechanisms of dependencies

In order to find distinct modes of expression within our DDPs, we combined these 

results with differential expression analysis. Our model previously found 1,162 DDP-

dependency pairs with discernable modes of expression (Data S1 and see Figure S1–S3 

for selected examples). The vast majority of DDPs were grouped as over- expression 

(including separable over expression) and under-expression (separable and suppressed 

under-expression). These modes of expression were essentially non-linear which are easily 

identified by the random forest methods used in this study. We then searched for DDPs 

who exhibit linear relations with dependency scores which we termed “SEESAW” as 

described above. Only three dependencies, FOXA1, SOX10, and PAX8, had SEESAW 

expression modes in their respective DDPs (Data S1). SSX1, a transcriptional repressor and 

potential immunotherapy target [26], was a SEESAW DDPs for SOX10 and PAX8. IL-4I1 

(interleukin-4 induced 1), which is involved in catabolism of several aromatic amino acids 

[27], was a SEESAW-like DDP to PAX8 dependency. Interestingly, we found transcription 

factors FOXA1 and PAX8 were SEESAW-like DDPs to their own dependencies. These 

“SEESAW” DDPs represent a distinct mode of action in dependent cell lines, suggesting a 

unique functional role of the respective gene in dependent cells.
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3.8 DDP- dependency network analysis revealed the core triad of SOX10, HLA-J, and 
ZEB2 for dosage based gene dependencies

Having dependent genes and their respective DDPs relations (Data S1) obtained from our 

machine learning models, we then construct dependent-predictor networks and utilized 

the constructed network to explore the degree and mode of shared dependencies. To 

do this we began by exploring the characteristics of DDPs which were involved in at 

least two dependencies. SOX10 was predicted by the most genes (962 DDPs). FOXA1, 

HLA-J, and ZEB2 were also highly populated with DDPs although to much less extent 

compared to SOX10. The remaining 12 dependencies had only a handful of DDPs, implying 

dependencies for these genes are modulated by other molecular factors such as genetic 

mutations and epigenetics. We found the triad of SOX10, HLA-J, and ZEB2 was the 

core for dosage-based dependencies in our models. Hierarchical clustering on the DDP 

modes of expression for each dependency revealed that HLA-J and SOX10 were most 

closely associated with 57 shared DDPs (Figure 5). The shared DDPs between these two 

dependencies were primarily in the over-expression categories. In contrast, the DDPs shared 

by SOX10 and ZEB2, 36 in total, were primarily under-expression categories (Figure 5). 

As shown in Figure 2c, the vast majority of cancer cell lines that contributed to SOX10 

dependency were derived from skin cancers. In contrast, HLA-J and ZEB2 dependencies 

contained substantial dependent cell lines derived from other types of cancer such as 

pancreas, lung, and liver in addition to a substantial population of skin cells. Cell lines 

dependent on FOXA1 were derived from multiple types of cancer cells, including breast, 

large intestine, liver, lung, stomach, and urinary tract suggesting that FOXA1 is a more 

conserved dependency. These tissues distributions are reflected by the similarity in DDPs 

between SOX10, ZEB2, and HLA-J and the discrepancy between SOX10 and FOXA1. 

While FOXA1 shared a number of DDPs with SOX10, the DDP modes were opposite.

We then construct dependent-predictor network from these 1,162 pairs to examine the 

interactions of DDPs between dependencies (Figure 6). SOX10 acted as a hub linking 

all dependencies but ADSL through shared DDPs. We found that SOX10 interestingly 

displayed overlapping modes of DDP expression with other dependencies like BRAF, 

RAB15, ZEB2, HLA-J, and FCGR2B (Figures 5 and 6). FOXA1 interestingly defied 

this paradigm with two SEESAW and three over-expressed category DDPs that were 

under-expressed categories in SOX10. Notably, our results suggest connections between 

SOX10 and BRAF in the etiology of skin cancer and modulating their shared DDPs via 

chemotherapeutics might open a new avenue to rescue resistance to BRAF/MEK inhibitors 

in melanoma patients [28].

4. Discussion

Gene dependency is a broad umbrella that covers important phenomena like synthetic 

lethality, gene essentiality, and oncogene addiction [29–31] which are caused by a range 

of molecular mechanisms, including genetic and epigenetic alterations, change of gene 

expression, RNA processing, and protein modifications [1–3]. Thus, understanding gene 

dependency is challenging but nevertheless important for identifying effective targets in 

therapeutics development. We approached this problem by combining machine learning 
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and systems biology, a combination that has previously revealed expansive new insights in 

disease biology as evidenced from our previous works [32–35].

Cancer cell lines are excellent models to understand gene dependency because they served 

as a general platform for omics data generation and screening experiments. Genome-wide 

screens using RNAi and CRISPR-Cas9 have provided unprecedented opportunities to 

quantify gene dependency. This screening data can in turn be used to build machine 

learning-based predictive models where features such as genetic mutations and gene 

expression levels predict the extent of gene dependency [2, 3, 36]. Such predictions can be 

additionally used to provide mechanistic insights as we have shown in this study. Previous 

analysis tackled this problem using a regression task rather than trying to dichotomize 

into dependent/non-dependent and uncover meaningful biological insights embedded in 

the machine learning models. We turned this into a classification problem to enhance 

interpretability. Furthermore, we focused on a specific mode of gene dependency, dosage-

based dependency where expression levels of genes were the sole predictive factors.

Our systems biology analysis elucidated biological properties of the 1,162 dependent-

predictor pairs identified in our machine learning models. Pathway analysis on dosage-based 

dependency predictors (DDPs) revealed transcription regulation played key roles in dosage-

based dependencies. Interestingly, we also found anti-sense RNAs and long-noncoding RNA 

transcripts acted as DDPs. To date, no study has reported non-coding RNAs playing a role in 

determining gene dependency in cancer cells, which suggests that further efforts should be 

dedicated to understanding non-coding RNAs in gene dependency.

Network analyses revealed SOX10, HLA-J, and ZEB2 was a gene triad that acted as hubs 

in the dependent-predictor network. Combined analyses of network, mode of expression of 

DDPs, and cellular context further unveiled the existence of distinct modes of dosage-based 

dependency for particular genes such as BRAF and FOXA1. In sum, our work shows that 

it is possible to unearth hidden biological knowledge of gene dependency using trained 

machine learning models and systems biology.

In summary, we illustrate the feasibility of harnessing the power of both machine learning 

and systems biology to decipher the biology of cancer gene dependency. We specifically 

focused on dosage-based gene dependency predictors (DDPs). We found robust evidence of 

their existence and association with gene dependency. Our results thus open several avenues 

of therapeutic investigation because we identified up- and downstream factors affecting 

gene dependency. This work only focuses on dosage-based dependencies and does not 

explore the full realm of gene dependency which involves other molecular factors such as 

genetic mutations and epigenetic modifications. Nonetheless, we are convinced that similar 

approaches will inspire the development of more sophisticated computational models to 

uncover the biology of gene dependency in the near future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Schematic illustration of Expression Dose Dependent Inferelator (EDDI). Using dependency 

screening and RNAseq data, our study uses machine learning methods to discriminate 

modes of dependency and allow for the identification of dosage-based dependency predictor 

genes (DDPs). DDPs gene expression patterns in dependent and non-dependent cancer cells 

were used to predict dependency to a given gene. Ensemble models corresponding to each 

gene dependency were constructed and evaluated. The resulting dependent-predictor pairs 

obtained across all trained models captured dosage-based dependencies which were used to 

construct networks for dependent and predictor genes. Our proposed methodology allows us 

to extract biological mechanisms of dependency.
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Figure 2: 
EDDI model performance. (a) Performance of random forest models with respect to 16 

identified dosage- based dependencies. Area under curve (AUC) was used as a metric to 

evaluate classification performance of the selected models; (b) Performance of relaxed-lasso 

linear regression models of SEESAW-like predictors using R- squared (R2) and root-mean-

square-error (RMSE) as performance metrics; (c) Proportions of tissue-type cancer cells that 

contribute for identified dosage-based dependencies.
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Figure 3: 
Enriched KEGG pathways of the 16 significant dosage-based dependent predictor genes 

performed using over-representation analysis from WebGestalt [13].
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Figure 4: 
Rank of coding and corresponding anti-sense RNA transcripts in their predictive power 

using Gini index.
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Figure 5: 
Heatmap of dosage-based dependent predictors (DDPs, bottom) and 10 dependent genes 

(right) with at least one shared DDPs. Hierarchical clustering was performed to cluster 

DDPs and dependent genes based on expression modes of DDPs.
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Figure 6: 
Network of dependent genes (represented as rounded rectangles) connected via shared DDPs 

(represented as circular nodes, color coded by the number of shared genes). See also Figure 

S5 for a detailed network representation. DDP: dosage-based dependent predictors.
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