Skip to main content
. 2021 Mar 29;17(3):e1008864. doi: 10.1371/journal.pcbi.1008864

Table 10. Statistical summary of 12 DNN models trained to distinguish Abs from a specific family lineage using the Robust Convolutional Autoencoder one-class classification method.

DNN model Training and Validation Image Set Sizes Testing Image Set & Results
Ntraininga Mvalidationb AUROC Trainc Ntestd AUROC Teste normal Ab Id
normal normal anomalous normal anomalous
1 765 135 5700 0.84 300 1500 0.95 ADI-15841
2 765 135 5700 0.72 300 1500 0.65 ADI-15916
3 765 135 5700 0.74 300 1500 1.00 ADI-15925
4 765 135 5700 0.84 300 1500 0.79 ADI-15785
5 765 135 5700 0.99 300 300 0.45 ADI-15935
6 765 135 5700 0.89 300 300 0.81 ADI-15772
7 765 135 5700 0.94 300 300 0.14 ADI-15780
8 765 135 5700 0.61 300 300 1.00 ADI-15784
9 442 78 3800 1.00 200 1000 0.99 ADI-15843
10 510 90 3800 1.00 120 1000 0.89 ADI-15912
11 442 78 3800 1.00 200 1000 1.00 ADI-15978
12 442 78 3800 0.84 200 1000 0.98 ADI-15861
Average (SD) 0.87 (0.13) 0.80 (0.27)

a Ntraining; number of fingerprints from normal Abs selected for training of the model.

b Mvalidation; number of fingerprints from normal and anomalous Ab classes selected for validation.

c AUROC Train is computed on the training set using the Python Scikit-learn library for machine learning and statistical modeling [25].

d Ntest; number of fingerprints from normal and anomalous Ab classes in the testing sets.

e AUROC Test is computed on the testing set using the Python Scikit-learn library for machine learning and statistical modeling [25].