Table 10. Statistical summary of 12 DNN models trained to distinguish Abs from a specific family lineage using the Robust Convolutional Autoencoder one-class classification method.
DNN model | Training and Validation Image Set Sizes | Testing Image Set & Results | ||||||
---|---|---|---|---|---|---|---|---|
Ntraininga | Mvalidationb | AUROC Trainc | Ntestd | AUROC Teste | normal Ab Id | |||
normal | normal | anomalous | normal | anomalous | ||||
1 | 765 | 135 | 5700 | 0.84 | 300 | 1500 | 0.95 | ADI-15841 |
2 | 765 | 135 | 5700 | 0.72 | 300 | 1500 | 0.65 | ADI-15916 |
3 | 765 | 135 | 5700 | 0.74 | 300 | 1500 | 1.00 | ADI-15925 |
4 | 765 | 135 | 5700 | 0.84 | 300 | 1500 | 0.79 | ADI-15785 |
5 | 765 | 135 | 5700 | 0.99 | 300 | 300 | 0.45 | ADI-15935 |
6 | 765 | 135 | 5700 | 0.89 | 300 | 300 | 0.81 | ADI-15772 |
7 | 765 | 135 | 5700 | 0.94 | 300 | 300 | 0.14 | ADI-15780 |
8 | 765 | 135 | 5700 | 0.61 | 300 | 300 | 1.00 | ADI-15784 |
9 | 442 | 78 | 3800 | 1.00 | 200 | 1000 | 0.99 | ADI-15843 |
10 | 510 | 90 | 3800 | 1.00 | 120 | 1000 | 0.89 | ADI-15912 |
11 | 442 | 78 | 3800 | 1.00 | 200 | 1000 | 1.00 | ADI-15978 |
12 | 442 | 78 | 3800 | 0.84 | 200 | 1000 | 0.98 | ADI-15861 |
Average (SD) | 0.87 (0.13) | 0.80 (0.27) |
a Ntraining; number of fingerprints from normal Abs selected for training of the model.
b Mvalidation; number of fingerprints from normal and anomalous Ab classes selected for validation.
c AUROC Train is computed on the training set using the Python Scikit-learn library for machine learning and statistical modeling [25].
d Ntest; number of fingerprints from normal and anomalous Ab classes in the testing sets.
e AUROC Test is computed on the testing set using the Python Scikit-learn library for machine learning and statistical modeling [25].