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a b s t r a c t 

In recent years, deep learning-based image analysis methods have been widely applied in computer-aided 

detection, diagnosis and prognosis, and has shown its value during the public health crisis of the novel 

coronavirus disease 2019 (COVID-19) pandemic. Chest radiograph (CXR) has been playing a crucial role 

in COVID-19 patient triaging, diagnosing and monitoring, particularly in the United States. Considering 

the mixed and unspecific signals in CXR, an image retrieval model of CXR that provides both similar 

images and associated clinical information can be more clinically meaningful than a direct image diag- 

nostic model. In this work we develop a novel CXR image retrieval model based on deep metric learning. 

Unlike traditional diagnostic models which aim at learning the direct mapping from images to labels, 

the proposed model aims at learning the optimized embedding space of images, where images with the 

same labels and similar contents are pulled together. The proposed model utilizes multi-similarity loss 

with hard-mining sampling strategy and attention mechanism to learn the optimized embedding space, 

and provides similar images, the visualizations of disease-related attention maps and useful clinical in- 

formation to assist clinical decisions. The model is trained and validated on an international multi-site 

COVID-19 dataset collected from 3 different sources. Experimental results of COVID-19 image retrieval 

and diagnosis tasks show that the proposed model can serve as a robust solution for CXR analysis and 

patient management for COVID-19. The model is also tested on its transferability on a different clinical 

decision support task for COVID-19, where the pre-trained model is applied to extract image features 

from a new dataset without any further training. The extracted features are then combined with COVID- 

19 patient’s vitals, lab tests and medical histories to predict the possibility of airway intubation in 72 

hours, which is strongly associated with patient prognosis, and is crucial for patient care and hospital 

resource planning. These results demonstrate our deep metric learning based image retrieval model is 

highly efficient in the CXR retrieval, diagnosis and prognosis, and thus has great clinical value for the 

treatment and management of COVID-19 patients. 

© 2021 Published by Elsevier B.V. 
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. Introduction 

In recent years, thanks to the combined advancement of 

omputational power, accumulated high-quality medical image 
∗ Corresponding author. 

E-mail address: li.quanzheng@mgh.harvard.edu (Q. Li). 
1 These authors contribute equally to this work 

l

a

l  

o

ttps://doi.org/10.1016/j.media.2021.101993 

361-8415/© 2021 Published by Elsevier B.V. 
atasets, and the development of novel deep learning-based ar- 

ificial intelligence (AI) algorithms, there has been a widespread 

pplication of AI in radiology and clinical practice ( Thrall et al., 

018 ). Various studies have shown superior performance of deep 

earning methods in extracting low- to high-level image features 

nd learning discriminative representations (i.e. embeddings) from 

arge amounts of data ( Li et al., 2019 ; Litjens et al., 2017 ). As one

f the most common imaging modalities for diagnostic radiology 
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xams, chest radiograph (CXR) has been receiving enormous atten- 

ions in the field of artificial intelligence-based image analysis be- 

ause of its importance for public health, wide utilization and rel- 

tively low cost ( Kallianos et al., 2019 ). There has been a range of

maging processing studies for CXR using deep learning, including 

iagnosis of thoracic diseases ( Lakhani and Sundaram, 2017 ; Qin et 

l., 2018 ), novel methodology development ( Ellis et al., 2020 ; Pesce 

t al., 2019 ), and the establishment of open CXR image databases 

 Wang et al., 2017c ). 

.1. Computer-aided diagnostic methods on chest radiograph images 

n COVID-19 

The pandemic of the novel coronavirus disease 2019 (COVID-19) 

s rapidly spreading throughout the world with a high mortality 

ate in certain populations. Chest imaging including computer to- 

ography (CT) and CXR has been playing a crucial role in patient 

riaging, diagnosing and monitoring the disease progression. For 

nstance, when the supply and accuracy of COVID-19 polymerase 

hain reaction (PCR) testing could not meet the clinical need, chest 

T has been recommended as a screening tool in the guideline on 

OVID-19 management during the early outbreak in Wuhan, China 

 China, 2020 ). Particularly, the medical image analysis commu- 

ity has quickly responded by developing novel COVID-19 diagnos- 

ic and segmentation solutions, including works by ( Wang et al., 

020 c) where very high specificity were obtained by a 3D Resnet, 

orks by ( Kang et al., 2020 ) to incorporate multi-view features 

rom CT into diagnosis, works by ( Ouyang et al., 2020 ) to overcome

he challenge of imbalanced distribution of lesion regions, works 

y ( Han et al., 2020 ) which utilizes a generative approach for bet-

er scalability and flexibility, works by ( Wang et al., 2020 a) for si-

ultaneous pneumonia detection and lesion type classification, as 

ell as works by ( Fan et al., 2020 ) for lesion region segmentation.

n contrast, under the guideline of American College of Radiology 

2020) , CT imaging is less commonly used in the U.S. due to the 

ack of specificity in diagnosis as well as logistic/resource/infection 

oncerns ( Hope et al., 2020 ). On the other hand, chest radiogra- 

hy especially portable radiography units, are considered medically 

ecessary in ambulatory care facilities since they do not require 

atient transfer to the imaging department and are easier to steril- 

ze. With more evidence on CXR imaging of COVID-19 coming out 

ince January, consistent findings, such as ground glass opacities 

istributed in both lungs, can be observed and summarized ( Ng 

t al., 2020 ). These findings suggest the potential of using CXR for 

everity assessment (based on total lung involvement), monitoring 

isease progression and predicting patient prognosis. However, it is 

till challenging even for experienced radiologists to interpret these 

on-specific findings with confidence, especially on CXR ( Choi et 

l., 2020 ), since there are a lot of unknowns about the novel in-

ectious disease. Therefore, an AI system that can learn from top 

adiologists and provide consistent results would be very valuable 

n clinical practice. In response to the shortage of radiologists in 

andling CXR images especially in developing countries, AI-assisted 

OVID-19 diagnostic tools have been developed in multiple stud- 

es. For example, the CAD4COVID-XRay system introduced in works 

f ( Murphy et al., 2020 ), trained and validated on a dataset of

2,184 images, can perform COVID-19 detection on posteroante- 

ior chest radiographs with averaged accuracy of 81%. Works of 

 Yoo et al., 2020 ) can achieve 98% accuracy in identifying abnor- 

al (TB or COVID) CXR images, and 95% accuracy for diagnosing 

he abnormal image as COVID. For analyzing portable CXRs, the 

ransfer learning-based deep learning system introduced in ( Zhu et 

l., 2020 ) can achieve the correlation (measured in R 

2 ) of 0.90 for

redicting opacity scores, trained and tested on a relatively small 

ataset (131 portable CXRs from 84 COVID-19 patients). The deep 

earning model developed in works of ( Apostolopoulos and Mpe- 
2 
iana, 2020 ), trained on 1,428 CXR images, can achieve diagnostic 

ccuracy of 94% on an imbalanced testing set. Similar performance 

96.8%) was achieved by works of ( Nayak et al., 2021 ) using a pre-

rained network on the ChestX-ray8 dataset, and works of ( Brunese 

t al., 2020 ) with accuracy of 98%. The patch-based network devel- 

ped by ( Oh et al., 2020 ) can perform 5-classes diagnosis (normal, 

acterial, tuberculosis, viral and COVID-19) of the patients with av- 

raged accuracy of 88.9% and provides interpretable saliency maps. 

.2. Content-based Image Retrieval (CBIR) in medical image analysis 

In addition to direct diagnosis and lesion detection, there exists 

nother commonly adopted scheme for analyzing medical images 

hich is the content-based image retrieval (CBIR) system. Based on 

he idea of using image itself to perform query on a large database 

f images, rather than query by keyword or database structure 

 Mohd Zin et al., 2018 ), CBIR has also been widely investigated 

or its potential in clinical applications, such as content-based ac- 

ess for pathology images where pathologists can reach diagnosis 

y searching reference specimen slides from the existing database; 

s well as radiologists’ reading of digital mammography where 

he mammogram retrieval system can provide them with intuitive 

isual aids for easier diagnosis ( Müller et al., 2004 ; Müller and 

nay, 2017 ). We thus hypothesize that a CBIR system, which can 

chieve near real-time medical image retrieval from massive and 

ulti-site databases for both physician/radiologist examination and 

omputer-aided diagnosis, could be very helpful in dealing with 

OVID-19 pandemic. The CBIR system can provide visually and se- 

antically relevant images from a database with labels matching 

he query image. Thus, the label or diagnosis of the matched im- 

ge can provide a clue for the queried image. The key component 

f a CBIR system is the embedding of images i.e. transformation of 

mages from native (Euclidean) domain to a more representative, 

ower-dimension manifold, as effective image representation can 

nable more accurate and faster retrieval. Various image embed- 

ing methodologies specifically tailored to biomedical images have 

een proposed, including kernel methods such as hashing ( Zhang 

t al., 2014 ), hand-crafted image filters such as filter banks ( Foran 

t al., 2011 ) and SIFT ( Kumar et al., 2016 ). Recent advancement of

eep learning has also inspired CBIR systems developed based on 

eep neural networks ( Wan et al., 2014 ), such as CNN for classifi-

ation ( Qayyum et al., 2017 ) and deep autoencoder ( Çamlica et al., 

015 ) which has shown superior performance than other methods. 

owever, current deep learning-based schemes of directly learn- 

ng image representations (i.e. embeddings) based on the relation- 

hip between image features and image labels might not be the 

ptimized approach for image retrieval tasks. As pointed out in 

 Khosla et al., 2020 ), comparing with cross-entropy loss which is 

idely adopted in current deep learning methods, pair-wise con- 

rastive loss can be more effective in leveraging label information. 

hus, in recent years, metric learning based CBIR systems for an- 

lyzing histopathological images have been developed ( Yang et al., 

019 , 2020 ). Traditional (non-deep learning) metric learning meth- 

ds have also been proposed for analyzing CT ( Wei et al., 2017 ) and

agnetic resonance imaging (MRI) images ( Cheng et al., 2016 ). To 

he best of our knowledge, there are no such metric learning stud- 

es for CXR images in a clinical setting. 

To this end, we propose a deep learning-based CBIR system for 

nalyzing chest radiographs, specifically for images from potential 

OVID-19 patients. The core algorithm of the proposed model is 

eep metric learning with multi-similarity loss ( Wang et al., 2019 ) 

nd hard-mining sampling strategy to learn a deep neural net- 

ork that embeds the CXR images into a low-dimensional feature 

pace. The embedding module has the backbone network structure 

f Resnet-50 ( He et al., 2016 ). In addition, the proposed CBIR model 

eatures an attention branch using spatial attention mechanism to 
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Fig. 1. Computational pipeline of CXR image retrieval model in a COVID-19 diagnosis context. 

Table 1 

Number of hospitals and number of images involved in each data site, with break-down of patient types, average age and gender 

ratio. 

Number of Hospitals Total Images Control Non-COVID Pneumonia COVID-19 Age Gender 

COVIDx N/A 13,970 8,066 5,551 353 N/A N/A 

Partners 5 823 107 212 504 58.03 56.6% Male 

Korean 4 3,262 N/A N/A 3,262 57.31 35.8% Male 
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xtract localized embeddings and provide local visualization (i.e. 

ttention map) of the disease labels, in order to provide visual 

uidance to the readers and improve model performance. This de- 

ign allows us to ensure both content- and semantic-similarity be- 

ween the query images and the returned images. 

The model is trained and validated on a multi-site COVID- 

9 dataset, consisting of totally 18,055 CXR images from three 

ources: the public open benchmark dataset COVIDx ( Wang et al., 

020 b), 5 hospitals from the Partners HealthCare system in MA, 

.S., and 4 hospitals in Daegu, South Korea. Performance of the 

odel is evaluated by its capability of retrieving the correct im- 

ges and diagnosing the correct disease types. The proposed model 

s further evaluated by transferring it to a different task, where it 

s utilized to extract informative features from new, independently 

ollected CXR images. Extracted features are then combined with 

he electronic health record (EHR) features to predict the need of 

ntervention within 72 hours, which serves as a clinical decision 

upport tool for COVID-19 management in the emergency depart- 

ent. 

Key contributions of this work are summarized as follows: 1) 

e develop a CBIR system that includes a novel embedding model 

ith spatial attention mechanism which is trained with adjusted 

ulti-similarity loss and hard-mining sampling strategy; 2) in both 

mage retrieval and diagnosis tasks, the model achieves state-of- 

he-art performance, and shows superior performance than the 

esnet-50 network which is a widely-applied method in medical 

mage analysis; 3) the model shows high accuracy in prognosis 

ask, and demonstrate its potential clinical values for many tasks 

n clinical decision support. 

. Materials and methods 

.1. Overview 

In the workflow of our proposed CBIR system, for an incoming 

uery CXR image, we will first extract its low-dimensional feature 

mbedding using a deep neural network, which is trained using 

eep metric learning. After that, top- k images which are closest 

o the query image in the embedding space will be retrieved and 

isplayed together with associated electronic health record (EHR). 

OVID-19 diagnosis of the query image can be then inferred by 

abels from the retrieved images. Embeddings of CXR images can 

e also used for other purposes such as clinical decision support. 
3 
n overview of the model pipeline is illustrated in Fig. 1 , details of

ach step especially notations for network structures can be found 

n Sections 2.3 and 2.4 . 

.2. Multi-site data collection and description 

In this study, we collected CXR images from 9 hospitals of 2 

ountries (5 hospitals from Partners HealthCare system in U.S, 4 

ospitals from South Korea), and combined them with the public 

OVIDx dataset to form a multi-site dataset for training and val- 

dation. In all the three data sites, CXR images other than in the 

nterior-posterior (AP) or posterior- anterior PA view (e.g. in lateral 

iew), or images with significant distortion because of on-board 

ostprocessing (e.g. strong edge-enhancement), are excluded. De- 

criptions of the three data sites can be found below. It should 

e noted that the definition of “control” in this study includes pa- 

ients with no diagnosed pneumonia nor positive PCR test results. 

e specifically include the type of “non-COVID pneumonia”, which 

an be caused by a wide spectrum of reasons including bacteria, 

irus and fungi into this study, because it leads to similar pat- 

erns on CXR images with COVID-19, e.g. both demonstrate ground 

lass opacities and consolidation ( Jacobi et al., 2020 ). In addition 

o the non-COVID pneumonia images in COVIDx dataset, CXR im- 

ges from totally 212 patients with diagnosis of non-COVID pneu- 

onia admitted to Partners HealthCare system during the study 

eriod were collected and included in the dataset. A brief sum- 

ary and basic demographic information of this multi-site dataset 

an be found in Table 1 . 

Data site 1 “COVIDx”: This public benchmark dataset is intro- 

uced in works of ( Wang et al., 2020 b), where CXR images were

ollected and modified from five open access data repositories. 

n the COVIDx dataset, we use 353 COVID-19 images (labeled as 

COVID-19”), 5,551 images with non-COVID19 pneumonia (labeled 

s “non-COVID pneumonia”), and 8,0 6 6 images from controls. 

Data site 2 “Partners”: CXR scans of 5 hospitals within the Part- 

ers HealthCare system, including Massachusetts General Hospital 

MGH), Brigham and Women’s Hospital (BWH), Newton-Wellesley 

ospital (NWH), Martha’s Vineyard Hospital (MVH) and Nantucket 

ottage Hospital (NCH) were collected. Patients who have received 

XR imaging and had COVID-19 PCR testing in the emergency de- 

artment from Dec 1 st , 2019 through March 29 th , 2020 were in- 

luded, consisting of 107 CXR images from controls, 212 from non- 

OVID pneumonia, and 504 from COVID-19 patients. 
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Data site 3 “Korean”: CXR scans from 4 hospitals in Daegu, 

outh Korea, including hospitals affiliated to Kyungpook National 

niversity, Yeungnam University College of Medicine, Keimyung 

niversity school of Medicine and Catholic University of Daegu 

chool of Medicine were collected, during the period from Febru- 

ry 25 th to April 2 nd . These hospitals are all in Daegu, a city of 2.5

illion people which has been identified as the epicenter of the 

outh Korean COVID-19 outbreak ( Shim et al., 2020 ). There are to- 

ally 3,262 CXR images from hospitalized COVID-19 patients in this 

ataset. 

.3. Image preprocessing 

Preprocessing steps of CXR images in this study includes 

nonymization, image cropping, resizing, windowing and lung seg- 

entation. The major reason for including lung segmentation in 

he preprocessing is to prohibit the model from learning to dis- 

inguish the source of the data by features such as letters put 

nto CXRs, since the data collected from different sites have im- 

alanced label distribution. The whole lung region is automatically 

egmented by an ensemble of five deep neural networks. These 

etworks have the same backbone structure of EfficientNet ( Tan 

nd Le, 2019 ), but with different architectures and parameters. 

he ensemble segmentation model is trained on one MGH dataset 

ith 100 annotated CXRs and two public datasets: the tuberculo- 

is CXRs from Montgomery County ( Jaeger et al., 2014 ), and the 

henzhen and JSRT (Japanese Society of Radiological Technology) 

XRs ( Shiraishi et al., 20 0 0 ). Data augmentation techniques are 

mployed for training the ensemble model, including horizontal 

ip, Gaussian noise, perspective, sharpness, blurring, random con- 

rast, random gamma correction, random brightness, contrast lim- 

ted adaptive histogram equalization, grid distortion, affine trans- 

orm, and elastic transformation. Training parameters for the en- 

emble segmentation model are determined through grid-search 

n the validation dataset, which are as follows: Adam optimizer 

learning rate = 0.0 0 01), epochs = 20 0, and batch size = 8. The model

s validated on an independent 122 CXRs test set with manual an- 

otation of lung by experts. It achieved a Dice coefficient of 0.95 

or segmentation on the test set. 

.4. Content-based image retrieval and metric learning model 

Denote a set of data ( x i , y i ) , where x i is the CXR image of one

atient, y i is the label of the patient. In this work, the label is 

 ternary value indicating whether the patient is from the con- 

rol group, has non-COVID pneumonia or COVID-19. Our goal is to 

earn a function f θ : x → R 

d that embeds the given CXR image into 

 d -dimensional embedding feature space, which ensures: 1) se- 

antically same images (i.e. with the same label) shall be closer 

n the embedded space, and vice versa; 2) patients with similar 

mage content, especially around lesion regions related to the dis- 

ase, shall be closer in the embedded space. We employ the con- 

rast learning scheme to find such non-linear embedding, which is 

 deep neural network parameterized by θ . It has been reported 

n previous literatures that learning representations by contrasting 

ositive pairs against negative pairs can be more advantages than 

earning the direct mapping from data to its label for improved 

obustness and stability ( Hadsell et al., 2006 ). To achieve these 

wo goals, we adopt a metric learning scheme to train the net- 

ork with paired input images as input and multi-similarity loss 

etween the image pairs as loss. We also exploit the spatial at- 

ention mechanism to focus the model on potential lesion regions. 

ttention mechanism allows salient features to be dynamically lo- 

alized to the forefront as needed ( Xu et al., 2015 ) and has been

idely used in many applications such as image segmentation ( Fu 

t al., 2019 ) and classification ( Wang et al., 2017a ). 
4 
.4.1. Loss function and sampling strategy 

In this work, we use the cosine similarity S between embed- 

ed features to measure the similarity between pairs of images, 

amely: 

 i, j = 

〈 f ( x i ) , f 
(
x j 

)〉 
‖ f ( x i ) ‖ 2 ‖ f 

(
x j 

)‖ 2 

, (1) 

here f is the embedding function we aim to learn. Following the 

ommon practice in metric learning, we will normalize the embed- 

ings at the end, letting ‖ f (x ) ‖ 2 = 1 for all x . 

We employ the multi-similarity loss ( Wang et al., 2019 ) for the 

paired metric learning” step in Fig. 1 , which has achieved state- 

f-the-art performance on several image retrieval benchmarks. The 

oss function L is adjusted to our setting by: 

 = 

1 

m 

m ∑ 

i =1 

1 

α
log 

[ 

1 + 

∑ 

j∈ P i 
e −α( S i, j −λ) 

] 

+ 

1 

β
log 

[ 

1 + 

∑ 

j∈ N i 
e β( S i, j −λ) 

] 

, (2) 

here P i and N i are the indices set of selected “same type” (i.e. 

mages with the same label) and “different types” (i.e. images with 

ifferent labels) pairs of samples regarding to the anchor image 

 i , m is the batch size and α, β , λ are hyperparameters. For each 

inibatch during training, we randomly select N samples from 

ach class, forming a minibatch of size T × N , where T is the num-

er of classes. Every two samples in the batch can be used as a 

air in the calculation of the loss function. 

Training with random sampling may harm the capacity of the 

odel and slows the convergence ( Wu et al., 2017 ), since pair- 

ased metric learning often generates large numbers of sample 

airs which can include informative easy or redundant pairs. We 

se a hard-mining strategy to improve model performance and 

peedup training convergence: each “same type”/”different types”

air will be compared to the hardest pairs in the whole batch to 

ine the hard pairs, as performed in ( Wang et al., 2019 ). 

.4.2. Spatial attention mechanism for localized feature extraction 

Spatial attention mechanism is adopted in our embedding 

odel to obtain disease-localized embeddings of the patients and 

o provide interpretable output at the stage of image retrieval. 

pecifically, an attention module is plugged into the network in 

arallel with the feature extraction route represented by α(·) , 
hich generates a mask with the value from 0 to 1 and the same 

patial dimension of the network’s intermedia feature map. The 

ttention route in Fig. 1 illustrates how the attention module is 

lugged into the backbone network. Element-wise multiplication 

ill be performed between the output attention mask and inter- 

edia feature map of the network to obtain a localized feature 

ap. This localized feature map is then sent to the projection head 

o get the final embedding. In other words, by writing the embed- 

ing function as: 

f ( x i ) = g ( f 2 ( f 1 ( x i ) ) ) (3) 

here f 1 and f 2 are different stages of the feature extractor 

i.e. convolutional layers) and g is the projection head which 

rojects the representations into lower-dimensional embedding 

pace, shown as the corresponding lettered blocks in Fig. 1 . As 

he embedding will be served as input to the later metric learning 

odule, the projection aims to reduce the dimension of embed- 

ing for improved performance. The final embedding with plugged 

patial attention module is: 

˜ f ( x ) = g ( α( f 1 ( x ) ) � f 2 ( f 1 ( x ) ) ) . (4) 
i i i 
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Table 2 

Sample sizes and splitting of training/validation data of the three (COVIDx, Partners and Korean) data sites used in 

this work. 

Train Validation 

Total COVIDx Partners Korean Total COVIDx Partners Korean 

Control 8,064 7,966 98 N/A 109 100 9 N/A 

Non-COVID Pneumonia 5,641 5,451 190 N/A 122 100 22 N/A 

COVID-19 3,746 253 453 3040 373 100 51 222 
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In Eq. (4) , output of the network f 1 ( x i ) goes through atten- 

ion module α(·) to generate the attention mask m ( x i ) = α( f 1 ( x i ) ) ,

hich localizes the intermediate feature map (i.e. f 2 ( f 1 ( x i ) ) ) in 

ig. 1 before feeding into the projection head g . This whole embed- 

ing model will be then optimized by the metric learning scheme 

s introduced previously. This design is inspired by the work in 

 Kim et al., 2018 ), in which attention modules enable computer vi- 

ion algorithms to attend to specific parts of the object. 

.4.3. Implementation details and source code 

We use Resnet-50 ( He et al., 2016 ) as the backbone architec- 

ure for the feature extraction. The first stage f 1 consisted of the 

rst part of Resnet-50 until conv3_4 (the 22 nd layer of Resnet- 

0), and the second stage f 2 consisted of the later part of Resnet- 

0 until conv4_6 (the 40 th layer of Resnet-50). The projection 

ead g includes the remaining part of the Resnet-50 and two 

ully connected layers that project the extracted features into a 

4-dimensional embedding space. Attention module is placed be- 

ween conv3_4 and conv4_6 following the similar practice in the 

orks of ( Kim et al., 2018 ). The attention module takes the output 

f block 3 of Resnet-50 as input. It then generates masks of size 

6 ∗16 which is later applied to the output of block 4 of the Resnet-

0. Architecture of the attention module we use consists of 3 “bot- 

leneck" building blocks in the Resnet, followed by a Squeeze-and- 

xcitation layer ( Hu et al., 2019 ), channel-wise averaging and sig- 

oid activation. All the CXR images are resized to 256 × 256 with 

he aspect ratio fixed for both training and testing. We randomly 

rop images to 256 × 256 during training but use the whole image 

uring testing. We used Adam optimizer with default parameters. 

he learning rate is set to 3e −5 . We trained our model for 2,0 0 0 it-

rations with batch size T × N = 3 × 16 = 48, which is roughly equiv-

lent to 5 epochs, using a pretrained model from ImageNet ( Deng 

t al., 2009 ) as initialization. Parameters in the loss function are 

et as λ= 0.5, α= 2 and β= 20, derived from grid-search. For the 

urpose of classification, we employ the K-nearest Neighbor (KNN) 

lassifier (i.e. returning k nearest images based on distance in the 

mbedding space) with distance weighting (i.e. closer neighbors of 

 query point have larger weight). In this work we set k = 10, that

s, for each query image 10 neighbor images will be retrieved by 

he model, which then make the weighted majority vote to de- 

ermine the label of the query image. Label of the query image 

s then determined by the weighted majority vote from the label 

f returned k images. The weighted voting also avoids a tie. Source 

ode of the model, also including trained network and CXR prepro- 

essing modules, will be published on a public repository (GitHub), 

vailable to be downloaded and used by the public. Images from 

he COVIDx dataset used in this work will be shared along with 

he codes for easy replication and testing. 

. Results 

Here we present our results of CBIR-based modelling and pro- 

essing of COVID-19 CXR images in three perspectives: validity of 

he model by its capability of performing correct image retrieval 

nd comparison with baseline method; clinical value of the model 

y its multi-site diagnostic performance; and finally transferability 
5 
f the model by using its embedding function for a different clini- 

al decision support task. 

.1. Image retrieval performance and comparison with baseline 

ethod 

The multi-site dataset is split into training and validation parts 

ccording to Table 2 . Patient types are varying across different data 

ites, so we performed the splitting to ensure that maximum num- 

er of sites are presented in both training and validation data, to 

emove potential site-wise bias. As there is no label of “non-COVID 

neumonia” in the Partners data site (labels are determined based 

n PCR test), and no “control” nor “non-COVID pneumonia” in the 

orean data (all COVID-19 patients), there are several “N/A (not 

vailable)” entries in Table 2 . 

After training the proposed model to learn the feature embed- 

ings, we performed the image retrieval task using a neighbour- 

ood size k = 10 (i.e. ten images will be returned by the model 

or each query). Due to the space limit, we only demonstrate 

nd analyze the results using the top 4 returned images. Sam- 

le query/return CXR images and clinical information of the re- 

urned images are visualized in Fig. 2 . Because of limited space, 

e only show important clinical information here, including pa- 

ient gender, age, Radiographic Assessment of Lung Oedema (RALE) 

core ( Warren et al., 2018 ), SpO2 (oxygen saturation), WBC (white 

lood cell count), admission to ICU (intensive care unit). RALE is 

riginally designed for evaluating CXRs of acute respiratory dis- 

ress syndrome (ARDS). As COVID-19 is similar and will potentially 

ead to ARDS, we are using RALE here to roughly assign COVID- 

9 images to “mild” cases as in Fig. 2 (a), and “severe” cases as 

n Fig. 2 (b). It should be noted that RALE scores of each CXR im-

ge are manually assessed by two senior radiologists in Partners 

ealthcare group, thus they are only available in the “Partners”

nd “Korean” data for the purpose of validating our results. In the 

uture, an AI based model will be used to automatically estimate 

ALE score in the EHR system so that the score also appears in the 

etrieved clinical information. Also, there is no clinical information 

vailable in the public “COVIDx” data site. From the returned CXR 

mages it can be found that: 1) CXR images from different data 

ites with the query image but of the same label can be correctly 

etrieved, indicating that there is little site-wise bias of the learned 

mbedding; 2) The model can handle image with heterogeneous 

atient characteristics e.g. varying sizes of the lung and varying lo- 

ations of lesion regions, as well as heterogenous imaging condi- 

ions; and 3) We can observe a strong similarity of patient’s sever- 

ty among the retrieved images, as shown in panel (a) and (b) in 

ig. 2 . Specifically, both the RALE score and patient’s admission to 

CU indicate that the four returned images in Fig. 2 (b) are consis- 

ently more severe than the returned images in Fig. 2 (a). As the 

ALE score of the query images in Fig. 2 (a) and (b) are 2 and 34

espectively, we find the severity of returned images are also re- 

ated to the patient’s condition of the query image. Considering 

he fact that the model is trained without the patient’s severity of 

isease (i.e. only based on three types of image labels), its ability 

n retrieving severity-associated images shows that it can correctly 
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Fig. 2. (a) Sample visualizations of the returned CXR images by the proposed model with query CXR image from a mild COVID-19 patient. Possible lesion regions are marked 

by red bounding boxes, with zooming in to detailed textures in the lesion region. (b) With query CXR image from a severe COVID-19 patient. (c) With query CXR image from 

non-COVID pneumonia patient, note that only COVIDx dataset contains this type of images. (d) With query CXR image from control, note that about 99% of the controls are 

from COVIDx dataset. 
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xtract CXR features that are sensitive to COVID-19’s disease pro- 

ression. 

In order to investigate the effectiveness of the attention module 

s introduced in Section 2.4 , attention maps generated by the pro- 

osed model of three sample images are visualized in Fig. 3 . We 

elect images from COVID-19 patients with different RALE scores 

ndicating their severity of disease. In Fig. 3 , for the image to the

eft (RALE score = 2), its opacities are mainly on bilateral lower 

uadrants with extent < 25%, where its attention map also shows 

hat the majority of model attentions are at both lower lung re- 

ions. For the image at the middle (RALE score = 8), it has opaci-
6 
ies with moderate density occupy 25-50% of bilateral lower quad- 

ants. Its attention map is focused on the same lower quadrants of 

oth left and right lung with higher coverage. For the image to the 

ight (RALE score = 25), there are moderate to dense opacities in 

ll four quadrants of the lung: extent of consolidation is 25-50% in 

he right lung and upper quadrant of the left lung, 50-75% in lower 

eft quadrant. Attention map of this image covers all areas of the 

ung, especially focuses on the right lower quadrant. Such corre- 

pondence between human observation study through RALE score 

nd attention maps shows that the attention mechanism employed 

y the proposed model can correctly localize potential lesion re- 
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Fig. 3. Visualization of CXR images and the corresponding attention maps from COVID-19 patients with different RALE scores, which indicates their severity of disease. 

Fig. 4. Top panel: pipeline of the image retrieval process implemented by the baseline direct classification network (raw Resnet-50). Bottom panel: comparison of retrieved 

top four images between the baseline model and proposed model, using the same sample query image (COVID-19 from Partners). Images retrieved by the proposed model 

(the same as in Fig. 2 ) are also listed here for reference. 

Table 3 

Model performance comparison between the proposed and baseline model, evaluated by averaged recall 

rate across all validation samples under different parameter k . 

Proposed System Basline (Resnet-50) 

k = 1 k = 3 k = 3 k = 4 k = 1 k = 3 k = 3 k = 4 

Control 66.1% 81.7% 84.4% 93.6% 74.3% 89.0% 95.4% 97.2% 

Non-COVID Pneumonia ∗ 87.7% 91.8% 91.8% 94.3% 82.8% 87.7% 90.2% 93.4% 

COVID-19 83.6% 87.9% 90.1% 92.5% 80.4% 86.3% 89.8% 92.5% 
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ions of the lung. Thus, the attention module can offer improved 

iscriminability for the feature embeddings learnt by the model, 

y only keeping the most disease-related features. 

To quantitatively evaluate the performance of the proposed 

odel on this query by example task, we calculate the averaged 

ecall rate of the k returned images over all test samples. A query 

ample is defined as “successfully recalled” if at least one image 

n the k returned images has the same label of query image. For 

eference, as the dataset involved in this work has a single label of 

hree classes, a random retrieving model will have averaged recall 

ate of 33.3% when k = 1, 55.6% when k = 2, 81.0% when k = 4, and

5% when k = 10 on a balanced dataset. Recall rates of the proposed

odel with different parameter k are listed in Table 3 (left). 

For comparison, the baseline image retrieval model was devel- 

ped based on a raw Resnet-50 network following traditional clas- 

ification scheme. The network was trained using CXR images as 

nput and the ternary image labels as output, with cross-entropy 

oss. We then extract the intermediate output from the last global 

verage pooling layer and use it as feature embeddings for the 

nput images. The same cosine similarity in Eq. (1) is used to 

easure the similarity between embeddings, which is then used 

or image retrieval. Pipeline of this baseline image retrieval model 

ased on Resnet-50 is illustrated in the top panel of Fig. 4 , with

omparison of example retrieved images in the bottom panel of 

ig. 4 . As shown in the example retrieval task, our proposed model 
7 
an retrieve more similar images with the correct labels, compar- 

ng with the baseline model. Performance of the baseline model 

or the same image retrieval task is listed in Table 3 (right). The 

uantitative evaluation in Table 3 shows that our proposed model 

chieves a higher recall rate in the task of retrieving non-COVID 

neumonia and COVID-19 CXR images, which is a more impor- 

ant task for COVID-19 screening and resource management. For 

he task of retrieving normal control images, the proposed model 

erforms slightly worse than the baseline model. Investigation into 

odel outputs reveal that the baseline model is more likely to 

etrieve images from the same dataset to the query image. Be- 

ause the majority of normal control images come from a single 

COVIDx) dataset, the baseline model can achieve better recall rate. 

hat is also the reason why the proposed model has better perfor- 

ance for non-COVID pneumonia and COVID patients. 

.2. Classifying control, non-COVID pneumonia and COVID-19 

atients 

We further evaluate the potential clinical value of the proposed 

odel by its diagnostic performance. In the proposed model, the 

abel of the query image was determined by the majority vote of 

abels from the returned neighbour images. Diagnosis results are 

isted in Table 4 . Sensitivities and positive predictive values (PPVS) 

f non-COVID pneumonia and control are not available to the Part- 
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Table 4 

Model performance evaluated by the averaged accuracy, sensitivity and PPV for each type in the validation dataset. Left panel: 

performance of the proposed model. Right panel: performance of the baseline Resnet-50 model. Better performance between the 

two models are highlighted by bold text. 

Proposed System Basel ine (Resnet-50) 

Overal l COVIDx Partners Korean Overal l COVIDx Partners Korean 

Averaged Accuracy 83.9% 76.7% 72.0% 98.2% 81.5% 75.3% 61.0% 97.3% 

Sensitivity : Control 74.3% 75.0% 66.7% N/A 76.1% 77.0% 66.7% N/A 

PPV: Control 79.4% 90.4% 31.6% N/A 74.8% 86.5% 31.6% N/A 

Sensitivity:Non-COVID Pneumonia 89.3% 93.0% 72.7% N/A 82.8% 95.0% 27.3% N/A 

PPV: Non-COVID Pneumonia 64.5% 62.8% 94.1% N/A 61.6% 63.3% 54.5% N/A 

Sensitivity: COVID-19 85.0% 62.0% 72.5% 98.2% 82.6% 54.0% 74.5% 97.3% 

PPV: COVID-19 95.2% 89.9% 80.4% 100.0% 93.6% 88.5% 73.1% 100.0% 
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ers and Korean dataset as there are no images with the corre- 

ponding labels in these two sites. Overall, the proposed model can 

chieve > 83% accuracy in performing COVID-19 diagnosis. Most 

otably, it achieves very high sensitivity for non-COVID pneumo- 

ia and COVID-19 ( > 85%), indicating that the model can potentially 

erve as a screening and prioritization tool right after the chest 

adiography scan is performed. We also evaluate the performance 

f the baseline method, the raw Resnet-50 network described in 

ection 3.1 , by applying it on the validation data. Its performance 

s listed to the right panel of Table 4 . As the raw Resnet-50 net-

ork is trained for the very purpose of classifying images by their 

abels, it is expected that the baseline method can achieve good 

erformance on this diagnosis task. However, comparison between 

he two models shows that the proposed model outperforms base- 

ine Resnet-50 model in overall performance in all three types 

control, non-COVID pneumonia and COVID-19) of images. While 

n the COVIDx dataset the two models have very similar perfor- 

ance, the proposed model achieved better accuracy in classifying 

on-COVID pneumonia patients in Partners dataset. Such a task is 

pecifically difficult as data from non-COVID pneumonia patients 

ere acquired together with COVID patients using the same ma- 

hine and protocols, thus they are more homogenous and difficult 

o separate. On the contrary, non-COVID pneumonia population in 

he COVIDx dataset are acquired from separate sources than COVID 

atients. Also, it should be noted that while the images in Korean 

ata (totally 222 images, all COVID-19) for validation can be eas- 

ly diagnosed by both models, overall diagnosis of COVID-19 only 

y CXR images is still a difficult task, which has also been recog- 

ized by radiologists ( Murphy et al., 2020 ). In summary, the result 

ndicates that the proposed metric learning scheme has a higher 

evel of capability to learn a label-discriminative embedding from 

he input images. 

.3. Ablation study 

.3.1. Effect of spatial attention mechanism 

As described in Section 2.4.2 , spatial attention mechanism is 

tilized in this work to focus the image embedding towards 

isease-specific regions. In order to investigate the effectiveness of 

he attention mechanism, we implement the CBIR-based model us- 

ng the identical model structure and hyperparameters and train 

t on the same dataset, but without the attention module α(·) 
nd the corresponding attention mask m ( x i ) . Comparison between 

he model with and without attention mechanism on the testing 

ataset shows that attention mechanism can lead to a near 1% per- 

ormance improvement in classification task (accuracy of 82.95% 

ithout, 83.94% with attention module). We also investigate how 

he cross-entropy based image retrieval model (i.e. baseline model) 

an benefit from the attention mechanism by similarly implement- 

ng and training a Resnet-50 network without attention module. 

esults show that the attention module can contribute to near 5% 

erformance improvement to the baseline model (classification ac- 
8 
uracy of 76.99% without, 81.46% with attention module). Finally, 

t is found that attention can improve the recall rate, as described 

n Section 3.1 . Using k = 4, the proposed model can achieve recall

ates of 84.4%, 91.8% and 90.1% for control, non-COVID pneumonia 

nd COVID, respectively (listed in Table 3 ), while the correspond- 

ng recall rates of the model without attention are 67.0%, 89.3% and 

1.4%. 

.3.2. Effect of different contrastive loss 

We utilize the multi-similarity loss ( Wang et al., 2019 ) in this 

ork for training the image retrieval network. As there exists other 

ype of contrastive loss functions, here we investigate the perfor- 

ance of an alternative model using the Noise-Contrastive Estima- 

ion (InfoNCE) loss ( Oord et al., 2018 ), which has been widely ap-

lied in both self-supervised and supervised contrastive learning. 

nfoNCE loss is based on optimizing categorical cross-entropy for 

lassifying one positive sample from N random samples consist- 

ng of N -1 negative samples, where these N samples were sampled 

rom a proposal noise distribution. Comparison between the pro- 

osed model and the model using InfoNCE loss (with everything 

lse remaining the same) show similar performance (accuracy of 

3.94% by proposed model, 82.78% by InfoNCE). 

.3.3. Ablation study of hyperparameter setting for KNN classifier 

As the CBIR-based model relies on KNN to obtain labels for the 

uery images, we investigate how the number of returned nearest 

eighbors to be considered in making the weighted majority vote 

i.e. value of k for KNN) can affect model performance. By trying 

ifferent values of k from 1 to 30, it is found that classification 

ccuracy is stable when the k is within a reasonable range (5 ∼20), 

s illustrated in Fig. 5 (a). This is mainly because we weight the 

eturned neighbors based on their distance to the query image for 

aking the majority vote, thus the increased neighbors because of 

 larger k will have reduced impact on voting results. Thus, we use 

 = 10 for the proposed model based on empirical experiment and 

fficiency. 

.3.4. Ablation study of hyperparameter setting for image embedding 

As introduced in Section 2.4.2 and 2.4.3 , we use the projection 

ead g to project the learned image representations into lower- 

imensional embedding space. As the feature extracted by Resnet- 

0 has dimension of 2048, the projection head will project this 

048-D feature into a smaller size, where we have investigated dif- 

erent possible sizes ranging from 32 to 512. Model performance 

y using different embedding sizes are illustrated in Fig. 5 (b). As 

here exists a trade-off between image information preserved af- 

er embedding (which prefers a larger embedding space) and the 

imensionality problem for later metric learning (which prefers a 

maller embedding space), the optimized size for embedding space 

s highly relied on the later task and data distribution thus can 

nly be determined empirically. In the current model setting we 
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Fig. 5. (a) Model performance (as measured in classification accuracy) with different value of k for KNN classifier. (b) Model performance with different sizes of image 

embedding, which is served as input to the metric learning module. 

Fig. 6. ROC curve of the 72-hours patient intervention prediction model using combined features (black), CXR-derived (blue) and EHR-derived (red) features as input. Mean 

ROC across the 5 cross-validation is illustrated as the solid curve, ±1 standard deviation is illustrated as area around the mean curve. 
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se the embedding size of 64, based on the consideration of both 

odel performance and efficiency. 

.4. Transferring embedded image features for clinical use 

As introduced in the methodology development section, the 

roposed model is developed with the aim of learning both 

ontent- and semantic-rich embeddings from the input images. 

hus, after training, the model can be also used as an effective im- 

ge feature extraction tool for other tasks based on the learned 

mbeddings. In order to test the feasibility of the proposed model 

n such premise, we employ the pre-trained model on a new 

ask of clinical decision making. The task is part of our Partners 

ealthcare institution’s goal of predicting the emergency depart- 

ent (ED) COVID-19 patient’s risk of receiving intervention (e.g. re- 

eiving oxygen therapy or under mechanical ventilator) within 72 

ours. Such prediction is strongly correlated to prognosis and is vi- 

al for the early response to patients and management of resources, 

hich can be beneficial for both patients and hospital. On one 

and, intervention measures especially ventilators have been rec- 

mmended as a crucial for the countering the hypoxia of COVID- 

9 patients ( Orser, 2020 ), where timely application of intervention 

as been considered as an important factor to patient’s prognosis 

 Meng et al., 2020 ). On the other hand, effective resource alloca- 

ion of oxygen supplement and mechanical ventilator has become 

 major challenge during COVID-19 epidemics, thus the knowledge 
9 
f equipment needs in advance will be helpful for the hospitals, 

specially in the emergency department. 

Electronic health record (EHR) data and CXR images were col- 

ected from 1,589 COVID-19 PCR test positive patients who had 

een admitted to the emergency department of the hospitals affil- 

ated with Partners group before April 28 th , 2020. In total 17 EHR- 

erived features were used in this study after a feature selection 

sing random forest. These features include patient’s demographic 

nformation (e.g. age), vitals (e.g. temperature, blood pressure, tem- 

erature, respiratory rate, oxygen saturation, etc.), and basic lab 

ests (e.g. glomerular filtration rate, white blood cell, etc.). 2048- 

imensional CXR-derived image features (i.e. features extracted by 

esnet-50 backbone with attention, before processed by projection 

ead g ) were extracted using the proposed model, which has been 

re-trained as in Section 3.1 without any further calibration to the 

ata in this task. Types of intervention the patients have received 

or breathing, including high flow oxygen through nasal cannula, 

on-invasive ventilation through face mask and mechanical venti- 

ators in 72 hours, were recorded as the prediction target. 

We then trained 3 binary classifiers to predict whether the pa- 

ient will be receiving any types of interventions. The first clas- 

ifier uses only EHR-derived features as input for the prediction, 

he second classifier uses only CXR-derived features as extracted 

y the proposed model as input, and the third classifier uses the 

ombined CXR + EHR features as input. We tried different classi- 

cation methods including logistic regression, SVM, random for- 

st and the Deep & Cross network ( Wang et al., 2017b ) with dif-
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erent hyperparameter settings for this experiment, and only re- 

orted the results with best performance. Specifically, for Deep 

 Cross network we employ a Multilayer Perceptron (MLP) with 

wo 128-dimensional fully connected layers, and a two-layers Cross 

et. The network is trained with Adam optimizer using lr = 0.0 0 01

f 10 epochs. For the random forest model, we use a max depth 

f 5, with 50 number of estimators. For classification using only 

HR-derived features or CXR-derived features, we used the ran- 

om forest classifier. For the classification using combined fea- 

ures, we used the Deep & Cross network. Prediction models were 

valuated by their receiver operating characteristic (ROC) using 5- 

olds cross-validation, as shown in Fig. 6 . The averaged area under 

urve (AUC) of the CXR-only prediction model is 0.831, EHR-only 

rediction model is 0.887, and the CXR-EHR combined prediction 

odel is 0.913. This result validates the prediction model’s feasi- 

ility in providing estimation of patient’s condition upon his/her 

dmission, either using only CXR scan or using combined CXR-EHR 

eatures. As no calibration to the data is needed, our proposed 

mage retrieval model has shown its capability of image features 

xtraction, which can be universally applied to a wide spectrum 

f similar tasks in clinical decision support. In other words, any 

XRs collected in a COVID-19 related task can be potentially pro- 

essed by the proposed model to obtain their feature embeddings. 

n the other hand, we see that adding CXR features into the pre- 

iction can improve its performance especially for robustness: al- 

hough there shows no significant difference between the AUCs 

f CXR-EHR combined prediction and EHR-only prediction ( p = 0.1 

or two-sample t-Test of CXR-EHR > EHR in 5-folds cross valida- 

ion), prediction using only EHR-derived features results in higher 

tandard deviation of 0.025 (vs. 0.015 by CXR-EHR), indicating 

hat the combined model is more robust comparing to EHR-only 

odel. 

. Discussion and conclusion 

In this work we proposed a metric learning based CBIR model 

or analyzing chest radiograph images. Based on the experiments, 

e show that the proposed model can handle a variety of CXR- 

elated clinical problems in COVID-19, including but not lim- 

ted to CXR image feature extraction and image retrieval, diag- 

osis, and clinical decision support. Comparison with traditional 

lassification-based deep learning method shows that the metric 

earning scheme adopted in this work can help improving effec- 

iveness of image retrieval and diagnosis while at the same time 

roviding rich insights into the analysis procedure, thanks to the 

odel’s capability in learning both semantic and content discrim- 

native features from input images. In addition, the clinical infor- 

ation returned by the retrieval model, as illustrated in Fig. 2 , 

an provide reference for the radiologists and physicians in de- 

ermining the query patient’s condition to assist decision making. 

uch capability of linking image and clinical information through 

ontent-based retrieval will be extremely helpful for the radiolo- 

ists and physicians in facing the potential threat of a COVID-19 

esurgence. 

The superior performance of the proposed model in retrieving 

mages for radiologists and physicians, and its value in diagno- 

is/prognosis has motivated our Partners healthcare consortium to 

tart deploying the model into clinical workflow and integrating it 

n the EHR system (e.g. EPIC system as used in Partners health- 

are). Significant amount of engineering and integration work has 

een done in this effort. In addition to data routing, series se- 

ection and interface development for the system integration, we 

ave been specifically working on: 1) improving the model for 

 more comprehensive query strategy i.e. incorporating keyword- 

nd clause-based query; 2) establishment of a standardized defi- 
10 
ition of COVID-19 clinically relevant patient features, which will 

e identified from patient’s EHR data, extracted and routed by the 

ystem, and displayed to the human readers along with returned 

mages; 3) the development of institutional-level COVID-19 data 

arehouse to support large-scale, holistic coverage for COVID-19 

ata collection within the Partners healthcare system. 

In the current study, the proposed model is applied on a single- 

abel, three-classes task. As the multi-similarity loss enforced dur- 

ng the metric learning process is intrinsically designed for learn- 

ng from multi-labeled data, the model can be easily adapted 

o more challenging, multi-label tasks such as identifying lung- 

elated comorbidities in COVID-19 patients. As comorbidities such 

s chronic obstructive pulmonary disease (COPD) and emphysema 

an interfere with the severity assessment of COVID-19, correct 

dentification of those conditions during image retrieval will be 

ery important and useful. Towards this purpose, richer semantic 

nformation (i.e. more disease labels) and data collection from a 

arger population will be included in our future study. Further, we 

re extending the current patient types (control, non-COVID pneu- 

onia, COVID-19) into a wider range of definition. By incorporat- 

ng the severity level of COVID-19 as reported by the physicians 

nto analysis, we can develop an improved version of the model 

ith capability of discriminating and predicting patient severity. 

Another major challenge of the content-based image retrieval 

s the definition of “similarity”. As discussed in ( Smeulders et 

l., 20 0 0 ), there exists a “semantic gap” between information ex- 

racted by computer algorithms from an image and perception of 

he same image by a human observer. Such a gap is more promi- 

ent in the medical domain, as semantic disease-related features 

re usually localized with very specific texture definition, while vi- 

ual perception of the image is more focused on global shape and 

osition of the lung in CXR images. Thus, it will be difficult to in- 

erpret image retrieving results by the radiologists, especially when 

ultiple labels are involved in the reading. To address this chal- 

enge, we are working on the development of a more user-friendly 

ystem, in which human readers can obtain different outputs by 

djusting a hyperparameter to control the balance between seman- 

ic and visual similarities. 
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