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Abstract
The coordinated action of DNA polymerases and DNA helicases is essential at genomic sites that are hard to replicate. Among 
these are sites that harbour G-quadruplex DNA structures (G4). G4s are stable alternative DNA structures, which have been 
implicated to be involved in important cellular processes like the regulation of gene expression or telomere maintenance. 
G4 structures were shown to hinder replication fork progression and cause genomic deletions, mutations and recombination 
events. Many helicases unwind G4 structures and preserve genome stability, but a detailed understanding of G4 replication 
and the re-start of stalled replication forks around formed G4 structures is not clear, yet. In our recent study, we identified that 
Mgs1 preferentially binds to G4 DNA structures in vitro and is associated with putative G4-forming chromosomal regions 
in vivo. Mgs1 binding to G4 motifs in vivo is partially dependent on the helicase Pif1. Pif1 is the major G4-unwinding 
helicase in S. cerevisiae. In the absence of Mgs1, we determined elevated gross chromosomal rearrangement (GCR) rates 
in yeast, similar to Pif1 deletion. Here, we highlight the recent findings and set these into context with a new mechanistic 
model. We propose that Mgs1’s functions support DNA replication at G4-forming regions.
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Introduction

Precise replication of the genome is essential for most eukar-
yotic cells, as it determines the fate of the daughter cells. 
Failure of precise replication can lead to genome instabil-
ity, cancerous transformation or apoptosis. The continuous 
movement of the replication fork is often stalled by various 
obstacles, like different hard-to-replicate alterations on the 
template DNA strand, DNA-bound protein complexes, DNA 
damage or stable secondary structures (Aguilera and Garcia-
Muse 2013). The stalled replication fork can be rescued by 

different pathways, including a direct bypass of the lesion or 
template switching where the newly synthesised DNA strand 
serves as a template (Unk et al. 2010). Post-translational 
modifications of PCNA, a homotrimer ring-like protein, 
regulates the re-start/repair of the stalled fork (Moldovan 
et al. 2007; Arbel et al. 2020; Ripley et al. 2020). Ubiq-
uitylation of PCNA by the Rad6/Rad18 complex activates 
the DNA damage tolerance pathway (Hoege et al. 2002) 
whereas PCNA SUMOylation inhibits unwanted recombi-
nation events at the stalled fork (Papouli et al. 2005; Pfander 
et al. 2005; Motegi et al. 2006; Burkovics et al. 2013).

DNA can adopt alternative secondary structures in addi-
tion to the standard B-DNA conformation. The G-quadru-
plex (G4) structure is a stable, alternative DNA or RNA 
structure, which can form in specific guanine-rich sequences. 
The core of this structure is a G-quartet: four guanines form 
a planar cyclic arrangement which is stabilized by Hoogs-
teen base pairing. Stacking of G-quartets leads to a higher 
ordered structure that is stabilized by monovalent cations, 
most frequently potassium (Lipps and Rhodes 2009; Boch-
man et al. 2012; Chen and Yang 2012). Genomic regions 
with a high potential to fold into G4 structures can be deter-
mined experimentally as well as computationally (Hup-
pert and Balasubramanian 2007; Todd and Neidle 2011; 
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Hansel-Hertsch et al. 2017; Marsico et al. 2019). G4s were 
identified at telomeres and many endogenous sites (intra-
chromosomally) in all eukaryotic cells tested so far. It is 
assumed that depending on the cell cycle, developmental 
phases, exogenous or endogenous stimuli different G4 struc-
tures form within the cell and mediate alternative events 
(Juranek and Paeschke 2012; Spiegel et al. 2020). Because 
of their high stability, the formation of G4 structures needs 
to be tightly regulated. Misregulated G4 structures or G4 
structures formed at the wrong time or location can lead to 
genome instability. Different experimental approaches have 
shown that G4 formation can alter transcription, translation 
and the activity of polymerases and telomerase (Bochman 
et al. 2012; Rhodes and Lipps 2015; Muellner and Schmidt 
2020; Varshney et al. 2020). In summary, misregulated 
G4 structures lead to a stalled or slowed DNA replica-
tion machinery and increase the number of chromosomal 
mutations, deletions and recombination events (Valton and 
Prioleau 2016; Bryan 2019; Lerner and Sale 2019). Based 
on these data, it would be expected that these sequences 
disappear during evolution. However, the situation is the 
opposite. During the evolution, the amount of potentially 
G4-forming sequences increased and the regions that could 
form G4 structures are more evolutionary conserved than 
neighbouring regions (Nakken et al. 2009; Capra et al. 2010; 
Marsico et al. 2019). This indicates a positive function of 
G4 structures at these regions, most likely in fine-tuning 
of cellular processes. To counteract the negative genome 
instability effects, but still benefit from the positive regula-
tory potential of G4 structures, cells must have developed 
machinery to control G4 structure formation.

DNA helicases are needed for G4 replication

In the past years, several different G4-unwinding helicases 
have been identified (Mendoza et al. 2016; Sauer and Pae-
schke 2017). They differ from each other based on their 
directionality as well as their processivity at G4 structures. 
It is interesting to note that although these helicases unwind 
G4 structures in vitro they are specific for only a certain set 
of G4 structures in vivo. It is not clear, yet, how they gain 
specificity for specific target G4 structures. In Saccharo-
myces cerevisiae at least three DNA helicases can unwind 
G4 structures in vitro (Pif1, Sgs1 and Hrq1) and have been 
implicated to function at G4 regions in vivo (Sun et al. 1999; 
Ribeyre et al. 2009; Piazza et al. 2010; Paeschke et al. 2011, 
2013; Byrd and Raney 2015; Hou et al. 2015; Rogers et al. 
2017; Dahan et al. 2018; Sparks et al. 2019). Pif1 seems 
to be the primary G4-unwinding helicase in yeast (Ribeyre 
et al. 2009; Paeschke et al. 2013). Pif1 is a highly conserved 
5′–3′ DNA helicase, which belongs to the SF1 superfam-
ily (Bochman et al. 2010). Pif1 has a mitochondrial and a 

nuclear isoform (Foury and Dyck 1985; Schulz and Zakian 
1994) and multiple functions in the cell. All of these func-
tions are linked to the preservation of genome stability: 
(I.) Pif1 activity is essential for the maintenance of the mito-
chondrial genome (Foury and Dyck 1985), (II.) Pif1 cooper-
ates with proteins of the replication machinery (Dna2 and 
PCNA) (Budd et al. 2006; Buzovetsky et al. 2017) and sup-
ports Okazaki-fragment maturation (Stith et al. 2008; Pike 
et al. 2009), (III.) Pif1 co-localizes with DNA repair foci 
and suppresses the accumulation of toxic DNA recombina-
tion intermediates (Wagner et al. 2006; Wilson et al. 2013), 
(IV.) Pif1 maintains the replication fork barrier at the ribo-
somal DNA loci, (Ivessa et al. 2000), (V.) Pif1 negatively 
regulates telomerase (Schulz and Zakian 1994; Boule et al. 
2005; Phillips et al. 2015) and (VI.) Pif1 is associated with 
putative G4-forming regions in the yeast genome. Pif1 binds 
and unwinds G4 structures and supports DNA replication 
(Paeschke et al. 2011, 2013). The strand specificity of Pif1 
is not clear yet, but most likely it can act on both leading 
and lagging strand template DNA (Lopes et al. 2011; Dahan 
et al. 2018). It is assumed that Pif1’s function is supported 
by additional proteins. It has been shown that Mms1 sup-
ports Pif1-binding to a subset of G4 motifs located on the 
lagging strand template DNA at replication (Wanzek et al. 
2017). Surprisingly, Pif1 can unwind G4 structures in an 
ATP-dependent and ATP-independent manner (Byrd et al. 
2018). The current model of the mechanism of Pif1 function 
at G4 structures during replication is that Pif1 slides on the 
single-stranded template DNA in 5′–3′ direction in an ATP-
dependent manner and resolves G4 structures as a monomer. 
After the unfolding of the G4 structure, Pif1 is stalled at the 
primer-template junction of the replication fork. At this point 
Pif1 is dimerising and the dimer can efficiently unwind the 
dsDNA after the junction point. Additionally, Pif1 can re-
anneal at the junction point the complementary strand of the 
G4-forming sequence via its strand-annealing activity, which 
could be a potential way to prevent the re-formation of the 
unfolded G4 structure (Galletto and Tomko 2013; Zhou et al. 
2014; Duan et al. 2015; Li et al. 2016; Zhang et al. 2016).

Mgs1 preserves genome stability 
at the replication fork

S. cerevisiae Mgs1 (Maintenance of genome stability 1) is a 
multifunctional protein which belongs to the conserved AAA​
+ ATPase family (Hishida et al. 2001). The exact biochemi-
cal mechanism of its action is not known, but its function 
in genome maintenance was clearly demonstrated: (I.) Its 
absence leads to an elevated rate of mitotic recombination 
(Hishida et al. 2001), (II.) overexpression of Mgs1 results in 
increased DNA damage sensitivity of yeast cells (UV, HU, 
and MMS) (Hishida et al. 2001, 2002; Branzei et al. 2002a, 
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b) and (III.) mgs1 is synthetically lethal with rad6Δ and 
shows a synergistic growth defect with rad18Δ (Hishida et al. 
2002). This data suggests a Rad18-independent, replication-
associated function of Mgs1. Mgs1 might be involved in the 
rescue of stalled replication forks (Barbour and Xiao 2003; 
Hishida et al. 2006; Vijeh Motlagh et al. 2006). Mgs1Δ sgs1Δ 
yeast cells show a slow-growing phenotype (Branzei et al. 
2002a, b), Mgs1 stimulates the activity of the DNA poly-
merase δ (Branzei et al. 2002a, b) and Mgs1 is required to 
inhibit a recombination salvage pathway at stalled replication 
forks (Jimenez-Martin et al. 2020). Additionally, Mgs1 may 
also act in Okazaki-fragment maturation via stimulation of 
the Fen1 endonuclease (Kim et al. 2005). Mgs1 has a UBZ 
domain, located at the N-terminal part of the protein and an 
ATPase domain at the central region (Lehmann et al. 2020). 
Mgs1 exhibits a DNA-dependent ATPase and single-strand 
annealing activity (Hishida et al. 2001). These functions are 
connected to its ATPase domain. Mgs1 interacts with PCNA 
and exhibits a preference for the association with polyubiqui-
tylated PCNA (Saugar et al. 2012).

The synthetic lethal phenotype of the mgs1Δ rad6Δ strain 
can be rescued by overexpression of Mgs1 lacking the UBZ 
domain (Saugar et al. 2012). This suggests that the Mgs1-
dependent rescue of the stalled fork is independent of the 
DNA damage tolerance pathway and PCNA ubiquitylation. 
We recently performed an in vivo yeast-one hybrid screen 
and identified novel G4 interacting proteins. We identified 
over 100 protein candidates including Slx9 and Zuo1 (Gotz 
et al. 2019; De Magis et al. 2020). Their G4-binding was 
already confirmed in vivo and in vivo. We also identified 
novel G4 structure-binding candidate proteins. The Y1H 
has the advantage that the screen is done in vivo—protein 
folding and G4 formation are not altered because of puri-
fication steps or biochemical changes. Among these new 
proteins was Mgs1. It caught our interest due to its role in 
DNA replication. We confirmed that Mgs1 specifically binds 
G4 structures in vivo. The binding affinity to G4 structures 
was 3-to-10-fold higher compared to unstructured DNA. 
Although the binding affinity of Mgs1 was specific for G4 
DNA, we could not monitor a change in ATPase activity 
upon G4 structure binding (Zacheja et al. 2020).

The binding specificity of Mgs1 to G4 structures in vitro 
was the first indication of a possible function at G4 struc-
tures also in vivo. It did not answer the questions if, when 
and why Mgs1 binds to G4 structures in vivo. Previous stud-
ies have shown that the timing of binding to G4 structures 
is particularly important. Slx9 only binds to G4 structures 
during DNA damaging conditions, whereas Pif1 binds to G4 
structures only during S phase (Paeschke et al. 2011; Gotz 
et al. 2019). Similarly to Pif1, Mgs1 binds to G4 structures 
in vivo even without the addition of DNA damage (Zacheja 
et al. 2020). The binding of Mgs1 is even stronger/enriched 
if G4 structures are stabilized by the G4-stabilizing ligand 

PhenDC3. The association of Mgs1 to the G4 structure 
depends on the presence of Pif1 but it is independent of 
Sgs1 (Zacheja et al. 2020). This data suggested that Pif1 
and Mgs1 act in the same pathway because Pif1’s function 
partially supports Mgs1-binding to G4 structures. We built 
a hypothetical model which describes the function of Mgs1 
in the replication of G4 structures in association with Pif1 
action, based on the available data. We demonstrated that 
Mgs1’s function at G4 structures is essential for genome sta-
bility and that G4 structures that lack Mgs1 (in mgs1Δ cells) 
caused increased GCR, accumulation of γH2A as well as 
slow growth. We did not observe any alteration in replication 
fork progression in mgs1Δ cells under normal conditions.

The current model is that G4 structures, which form dur-
ing DNA replication, lead to a slowing down of the replica-
tion fork as it approaches the G4 structure (Paeschke et al. 
2011). Pif1 is recruited and unwinds these G4 structures 
and suppresses genome instability at these sites (Paeschke 
et al. 2011). Another work has shown that G4 structures are 
unfolded or repaired in the next cell cycle (Lemmens et al. 
2015). Our data shows that without Mgs1 more DNA dam-
age and genomic rearrangement is observed at G4 structures 
(Zacheja et al. 2020). We predict that Mgs1 functions to 
protect the slowed/stalled replication fork at the G4 struc-
tures. The major question is how Pif1 binding is connected 
to Mgs1 binding at G4 structures. We did not observe any 
direct interaction of Pif1 and Mgs1, but assume that they are 
functionally connected. Based on published data we predict 
the following model (Fig. 1): (I.) G4 structures induce stall-
ing of the replication fork, (II.) Mgs1 protects stalled replica-
tion forks and anchors them to the G4 structure, (III.) Pif1 
resolves G4 structures and interacts with the replication 
complex via its interaction with PCNA. The unwinding of 
G4 structures and the re-start of the stalled replication fork 
stabilizes Mgs1 in the replication complex in concert with 
Pif1 binding. At this point, we cannot exclude that in the 
absence of PCNA protein, which is a binding partner of 
Mgs1 and Pif1, is modified or altered in such a manner that 
Mgs1 binding is reduced. In summary, we predict that Mgs1 
is recruited to G4 structures formed during DNA replication 
and that its major function is to protect the replication fork 
and prevent genome instability.

Further perspectives

How are the intrachromosomal G4 structure-forming 
sequences replicated? Several questions are still unan-
swered regarding this process. One of the main questions 
is the timing of G4-unwinding in wild type cells. Can the 
normal replication apparatus handle this situation or do all 
formed G4 structures lead to replication fork stalling? If 
stalling of the replication fork is induced at every formed 
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G4 structure, the rescue of the stalled replication fork 
must depend on PCNA ubiquitylation; this process is not 
examined, yet. Answering this question could also bring us 
closer to understand the involvement of the different DNA 
polymerases in intrachromosomal G4 replication. How-
ever, the exact biochemical mechanism of Mgs1’s function 
is still an open question. Identification of the amino acid 
residues of Mgs1 involved in G4-binding would be impor-
tant to allow deeper analysis of Mgs1 function at the G4 
structure. Analysis of genetic interactions between mgs1 
and pif1 in non-G4 structure-associated pathways would 
also be important to understand their connection.
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