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Predicting the clinical management 
of skin lesions using deep learning
Kumar Abhishek*, Jeremy Kawahara & Ghassan Hamarneh 

Automated machine learning approaches to skin lesion diagnosis from images are approaching 
dermatologist-level performance. However, current machine learning approaches that suggest 
management decisions rely on predicting the underlying skin condition to infer a management 
decision without considering the variability of management decisions that may exist within a single 
condition. We present the first work to explore image-based prediction of clinical management 
decisions directly without explicitly predicting the diagnosis. In particular, we use clinical and 
dermoscopic images of skin lesions along with patient metadata from the Interactive Atlas of 
Dermoscopy dataset (1011 cases; 20 disease labels; 3 management decisions) and demonstrate 
that predicting management labels directly is more accurate than predicting the diagnosis and 
then inferring the management decision ( 13.73± 3.93% and 6.59± 2.86% improvement in overall 
accuracy and AUROC respectively), statistically significant at p < 0.001 . Directly predicting 
management decisions also considerably reduces the over-excision rate as compared to management 
decisions inferred from diagnosis predictions (24.56% fewer cases wrongly predicted to be excised). 
Furthermore, we show that training a model to also simultaneously predict the seven-point criteria 
and the diagnosis of skin lesions yields an even higher accuracy (improvements of 4.68± 1.89% and 
2.24± 2.04% in overall accuracy and AUROC respectively) of management predictions. Finally, we 
demonstrate our model’s generalizability by evaluating on the publicly available MClass-D dataset and 
show that our model agrees with the clinical management recommendations of 157 dermatologists as 
much as they agree amongst each other.

Until a few years ago, the computer-aided diagnosis of skin lesions from images involved extracting the lesion 
boundary to distinguish it from the surrounding healthy skin (i.e., skin lesion segmentation), followed by calcu-
lating features based on rules developed by dermatologists such as the ABCD rule and the CASH rule1,2 based on 
the obtained segmentation, and ultimately using these features to train classical machine learning models (e.g., 
support vector machines and random decision forests3–8) to recommend diagnoses. Since skin lesion segmenta-
tion is an intermediate task in the dermatological analysis pipeline, the use of deep learning to predict diagnosis 
directly from the images, bypassing the segmentation, is now commonplace9–12 and is evident in other imaging 
modalities as well13–17. We project a similar trend where the model deemphasizes predicting the diagnosis and 
instead prioritizes producing accurate predictions of the ultimate clinical task (e.g., clinical management).

While deep learning based diagnoses of dermatological conditions from images are reaching the performance 
levels of medical professionals9,10,18,19, no work has been published to directly predict the management of the dis-
ease. Even in scenarios where the diagnosis is decided by an automated prediction model, the general physician 
or the dermatologist must still decide on the disease management (be it the treatment plan or some other course 
of action, e.g., requesting other exams or future follow-ups). Moreover, in some cases, accurately diagnosing 
the underlying skin condition may not be possible from an image alone. For example, a recent study evaluating 
the ‘majority decision’ obtained from over a hundred dermatologists for melanoma classification resulted in a 
sensitivity of 71.8% with respect to the ground truth diagnosis20. Thus, in the case where the visual presentation 
of a lesion is ambiguous, rather than diagnosing the condition, the correct action may be to perform a biopsy 
to gain further information. Machine learning-based approaches that classify the underlying skin condition 
and use the predicted skin condition to directly decide on a disease management (e.g., Han et al.21) may not 
well distinguish among different management decisions that exist within a single class. A management decision 
(e.g., scheduling a follow-up visit to monitor the skin lesion progression) may even be necessary to confirm a 
diagnosis (when there is insufficient information within the image), and therefore must precede it. For example, 
the clinical management decision for a nevi without atypical characteristics may be that no further action is 
required, whereas for a nevi with atypical characteristics, a dermatologist may opt for a clinical follow up or an 
excision, which may depend on the severity of the atypical characteristics. Therefore, it is desirable to explore 
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the performance of an artificial intelligence based automatic skin disease management prediction system. Such 
a system can suggest management decisions to a clinician (i.e., as a second opinion) or directly to patients in 
under-served communities22. Moreover, when there are fewer management decisions to choose from than there 
are diagnosis classes (since multiple subsets of disease classes may be prescribed the same course of action), 
predicting the management decisions is likely a simpler computational problem to address than predicting the 
diagnosis and then inferring the management.

Previous work on clinical management prediction for skin lesions includes comparing management pre-
dictions made by MelaFind (a handheld imaging device developed by MELA Sciences Inc. which acquires 10 
spectral bands) to histologic slides as the reference labels23 and to decisions made by dermatologists23,24. Carrara 
et al.25 used shallow artificial neural networks to predict whether a skin lesion should be excised based on lesion 
descriptors extracted from their multispectral images (15 spectral bands). Marchetti et al.26 compared the diag-
nostic accuracy of an ensemble of automated diagnosis prediction methods (including 2 machine learning-based 
methods) to the management decisions made by 8 dermatologists for a set of 100 dermoscopic images, but did not 
directly predict the management decisions using a learning-based approach. To the best of our knowledge, we are 
the first to predict management decisions, without relying on explicit diagnosis predictions, using machine learn-
ing (shallow or deep) using only RGB images of skin lesions and, in fact, using a deep learning-based approach 
for any skin lesion imaging modality. We evaluate our proposed method on the Interactive Atlas of Dermoscopy 
Dataset27–29, the largest publicly available database containing both dermoscopy and clinical skin lesion images 
with the associated management decisions, and show that predicting management decisions directly is more 
accurate than inferring the management decision from a predicted diagnosis. We also validate our model on the 
publicly available Melanoma Classification Benchmark (MClass-D)18,30 and show that our model exhibits excel-
lent generalization performance when evaluated on data from a different source, and that our model’s clinical 
management predictions are in agreement with those made by 157 dermatologists.

Results and discussion
The Interactive Atlas of Dermoscopy dataset was used to test the performance of a model trained to predict the 
clinical management decisions ( MGMTpred ) compared with inferring the management decisions based on the 
outputs of a diagnosis prediction model ( MGMTinfr ). This dataset contains 1,011 lesion cases spanning 20 diag-
nosis labels (Table 1) grouped into 5 categories28: basal cell carcinoma (BCC), nevus (NEV), melanoma (MEL), 
seborrheic keratosis (SK), and others (MISC), and 3 management decisions: ‘clinical follow up’ (CLNC), ‘excision’ 
(EXC), and ‘no further examination’ (NONE). The MClass-D dataset30 was used to compare the diagnosis and 
the management prediction performance of our model with that of dermatologists. This dataset contains 100 
dermoscopic images comprising of 80 benign nevi and 20 melanomas, as well as the responses of 157 dermatolo-
gists when asked to make a clinical management decision to each of these 100 images: ‘biopsy/further treatment’ 
(EXC) or ‘reassure the patient’ (NOEXC).

Interactive atlas of dermoscopy dataset.  Predicting whether a lesion should be excised or not.  The 
outputs of the diagnosis prediction model are mapped to a binary management decision ( MGMTinfr,binary ; 
Fig. 1a1 of whether a lesion should be excised (EXC) or not (NOEXC). All malignancies (MEL and BCC) are 
mapped to EXC and all other diagnoses to NOEXC. Similarly, the outputs of the management prediction model 
are mapped to a binary decision ( MGMTpred,binary ; Fig. 1b1) by retaining the EXC class from MGMTpred as is 
and grouping CLNC and NONE to form NOEXC. These binary mapping-based approaches serve as our base-
lines, and we observe that MGMTinfr,binary correctly predicts 218 of the 395 cases (overall accuracy = 55.19%), 
whereas MGMTpred,binary yields a superior classification performance of 289 correct predictions (overall accu-
racy = 73.16%), outperforming the inference-based management decision by 17.97%.

A data‑driven approach to inferring management decision from diagnosis predictions.  Since cases belonging to a 
disease label can be managed in multiple ways, a data-driven approach using conditional probabilities (Interac-
tive Atlas of Dermoscopy Dataset section, Equation (3)) can be adopted to infer the probabilistic management 
decisions from the diagnosis predictions, and this does not have to be restricted to a binary management. These 
inferred management decisions ( MGMTinfr,all ; Fig. 1a2) can then be compared to the probabilistic outputs of the 
management prediction model ( MGMTpred,all ; Fig. 1b2).

Figure 2a shows the distribution of the four sets of distance measures for examining the correctness of 
the probabilistic MGMTinfr,all and MGMTpred,all predictions with respect to the target labels, where each dot 

Table 1.   Breakdown of the seven-point criteria evaluation dataset29 by management and diagnosis labels and 
the train-valid-test splits used to train the model.

Management labels

Diagnosis labels Split

TotalBCC NEV MEL MISC SK Training Validation Testing

CLNC 0 268 0 24 4 133 51 112 296

EXC 42 278 252 23 10 235 127 243 605

NONE 0 29 0 50 31 45 25 40 110

Total 42 575 252 97 45 413 203 395
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represents a test case. For (1—cosine similarity), the mean [95% CI] distance is lower for MGMTpred,all as com-
pared to MGMTinfr,all (0.3584 [0.3260–0.3909] versus 0.4703 [0.4490–0.4915]; Cohen’s d = 0.4033). We observe 
similar patterns for the Jensen-Shannon divergence (0.3551 [0.3320–0.3783] versus 0.4397 [0.4249–0.4544]; 
Cohen’s d = 0.4311), the Wasserstein distance (0.1358 [0.1246–0.1469] versus 0.2687 [0.2581–0.2793]; Cohen’s d = 
1.2064), and the Hellinger distance (0.4131 [0.3868–0.4394] versus 0.5111 [0.4944–0.5278]; Cohen’s d = 0.4404).

The final management predictions from the two approaches ( MGMTinfr,all and MGMTpred,all ) are obtained 
by extracting the most likely label over the probabilistic predictions, and their quantitative results are presented 
in Table 2. The ROC curves for the two approaches are shown in Fig. 2b,c and their respective confusion matri-
ces, with each cell in the confusion matrices also indicating a diagnosis-wise breakdown of the test samples, are 
shown in Fig. 2d,e.

We observe that the overall accuracy and AUROC of MGMTinfr,all (62.53% and 0.7741) are considerably 
lower than those of MGMTpred,all (69.87% and 0.8443), indicating that predicting the management decisions 
directly leads to a better accuracy than predicting the diagnosis and then inferring the management. Another 
interesting observation is that MGMTinfr,all predictions tend to favor EXC (excision) more than other labels (as 
can be observed by the dominant blue colored cells in the rightmost column of Fig. 2b), which although leads to 
an excellent sensitivity (0.9835) for the EXC class, yields unacceptable classification performance for the other 
two classes (0.2 and 0.0, for NONE and CLNC respectively). For example, none of the clinical follow-up cases 
were predicted correctly by MGMTinfr,all , and 106 cases (94.64%) were predicted to be over-treated by excision. 
Similarly, the algorithm wrongly predicted excising 32 cases (40%) that, in fact, needed no further examination. 
On the other hand, MGMTpred,all yields a higher overall accuracy without favoring any particular class. Finally, 
three-fold cross validation results show that this improvement in performance holds true for all metrics across 
multiple training, validation, and testing partitions of the dataset, with sufficiently low standard deviations 
across all folds.
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Figure 1.   An overview of the three prediction models. All the models take the clinical and the dermoscopic 
images of the skin lesion and the patient metadata as input. Note that we also perform an input ablation 
study (A multi-task prediction model section; Table 4). (a) The first model predicts the lesion diagnosis 
probabilities, DIAGpred . (b) The second model predicts the management decision probabilities, MGMTpred . 
(c) The third is a multi-task model and predicts the seven-point criteria ( Criterion{1, 2, . . . , 7}pred,multi ) in 
addition to DIAGpred,multi and MGMTpred,multi . The argmax operation assigns 1 to the most likely label and 0 
to all others. For (a), DIAGpred diagnosis is used to arrive at a management decision either using (a1) binary 
labeling, MGMTinfr,binary , or (a2) prior based inference, MGMTinfr,all . Similarly, the outputs of (b) can be 
used to directly predict a management decision using either (b1) binary labeling, MGMTpred,binary , or (b2) all 
the labels, MGMTpred,all . As explained in the text, the diagnosis labels are basal cell carcinoma (BCC), nevus 
(NEV), melanoma (MEL), seborrheic keratosis (SK), and others (MISC), and the management decision labels 
are ‘clinical follow up’ (CLNC), ‘excision’ (EXC), and ‘no further examination’ (NONE). In the case of binary 
management decisions, we predict whether a lesion should be excised (EXC) or not (NOEXC).
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A multi‑task prediction model.  It has been shown that models optimized to jointly predict related tasks perform 
better than models trained on individual tasks separately31. As such, we expect to observe an improvement in 
the management prediction accuracy of our multi-task model trained to simultaneously predict the seven-point 
criteria32 of the lesions ( Criteria1pred,multi · · ·Criteria7pred,multi ), the diagnosis label ( DIAGpred,multi ), and the 
management decision ( MGMTpred,multi ). We plot the confusion matrix and the ROC curves for MGMTpred,multi 
for this multi-task model in Fig. 3a. As expected, we improve the overall management prediction accuracy by 
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Figure 2.   Quantitative evaluation of the MGMTinfr,all and MGMTpred,all predictions. (a) Violin plots of the 
distance measures of the probabilistic predictions show that the MGMTpred,all predictions are closer (statistically 
significant) to the target labels for test data. (b, c) ROC curves and (d, e) confusion matrices of MGMTinfr,all and 
MGMTpred,all respectively along with cell-wise diagnosis breakdown. Note that MGMTinfr,all has a tendency to 
over-excise lesions.
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3.8% (from 69.87% to 73.67%). Moreover, since we have fairly imbalanced classes (see Table 1; for example, there 
are 243 EXC cases as compared to only 40 NONE cases in the test partition) where ROC curves can indicate 
an “overly optimistic view” of the algorithm’s performance33, we also plot the precision-recall curves for the 
multi-task model in Fig. 3b. A detailed analysis of class-wise performance is presented in Table 3. Three-fold 
cross validation results show the robustness of this multi-task model to different training, validation, and testing 
partitions of the dataset. In addition to its higher management prediction accuracy, this multi-task model may 

Table 2.   Comparing skin lesion management prediction results obtained using MGMTinfr,all and 
MGMTpred,all . All the prediction models have been trained using all the input data modalities (i.e., clinical 
image, dermoscopic image, and patient metadata). Mean ± standard deviation reported for all the metrics for 
the 3-fold cross validation.

Management 
labels

MGMTinfr,all MGMTpred,all

Sensitivity Specificity Precision AUROC
Overall 
accuracy Sensitivity Specificity Precision AUROC

Overall 
Accuracy

NONE 0.2 0.9718 0.4444 0.8039 – 0.5 0.9831 0.7692 0.9159 –

CLNC 0.0 1.0 0.0 0.7668 – 0.7143 0.7456 0.5263 0.8090 –

EXC 0.9835 0.0921 0.634 0.7515 – 0.7243 0.7303 0.8111 0.8079 –

Average 0.3945 0.6880 0.3595 0.7741 0.6253 0.6462 0.8196 0.7022 0.8443 0.6987

3-Fold cross 
validation

0.3943 ± 
0.0025

0.6871 ± 
0.0018

0.3829 ± 
0.0172

0.7758 ± 
0.0178

0.6139 ± 
0.0198

0.6033 ± 
0.0369

0.8107 ± 
0.0093
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0.0184

0.8266 ± 
0.0126
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Figure 3.   Evaluating the multi-modal multi-task model. (a) ROC curve and (b) precision-recall curve for the 
management prediction task. Confusion matrices for (c) the management prediction task and (d) the diagnosis 
prediction task along with the diagnosis-wise breakdown for the management labels.
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be regarded as less opaque and more trustworthy as its final management prediction was linked to clinically 
meaningful predictions, i.e., the seven-point criteria and the diagnosis. Finally, an input data ablation study for 
estimating the importance of each input modality (i.e., clinical image, dermoscopic image, and patient meta-
data) was conducted where six prediction models were trained using various combinations of input data modali-
ties. Their quantitative results presented in Table 4 and the p-values for pairwise comparison of their predictions 
using mid-p McNemar’s test are as shown in Fig. 4. We draw the following key observations: 

Table 3.   Skin lesion management prediction results MGMTpred,multi obtained using a multi-modal multi-task 
model. All the prediction models have been trained using all the input data modalities (i.e., clinical image, 
dermoscopic image, and patient metadata). Mean ± standard deviation reported for all the metrics for the 
3-fold cross validation.

Management labels

Metrics

Sensitivity Specificity Precision AUROC Overall accuracy

NONE 0.6500 0.9747 0.7429 0.9225 –

CLNC 0.6071 0.8375 0.5965 0.8065 –

EXC 0.8107 0.6776 0.8008 0.8226 –

Average 0.6893 0.8299 0.7134 0.8505 0.7367

3-Fold cross validation 0.6528 ± 0.0477 0.8215 ± 0.0094 0.7123 ± 0.0114 0.8449 ± 0.0135 0.7301 ± 0.0150

Table 4.   Input data modality ablation study for skin lesion management prediction results MGMTpred,multi 
obtained using a multi-task model. Each experiment is named so as to denote the input data modalities it uses 
to make the management predictions, and ‘C’, ‘D’, and ‘M’ refer to clinical image, dermoscopic image, and 
patient metadata, respectively.

Experiment 
name

Input data Metrics

Clinical image
Dermoscopic 
image

Patient 
metadata Sensitivity Specificity Precision AUROC

Overall 
accuracy

C ✓ ✗ ✗ 0.5997 0.7911 0.5466 0.7781 0.6051

CM ✓ ✗ ✓ 0.6050 0.7983 0.5684 0.7852 0.6405

D ✗ ✓ ✗ 0.6935 0.8384 0.6265 0.8630 0.6962

DM ✗ ✓ ✓ 0.7126 0.8424 0.6622 0.8644 0.7215

CD ✓ ✓ ✗ 0.5830 0.8060 0.7393 0.8335 0.7342

CDM ✓ ✓ ✓ 0.6893 0.8299 0.7134 0.8505 0.7367

Figure 4.   Evaluating the statistical significance of each input data modality’s contribution in improving 
the management decision prediction MGMTpred,multi . ‘C’, ‘D’, and ‘M’ refer to clinical image, dermoscopic 
image, and patient metadata respectively, and the row and the column names refer to the experiments in the 
ablation study presented in Table 4. For each pair of experiments (i) and (j), the cell (i, j) contains the p-value 
corresponding to the McNemar’s test performed on the corresponding pair of predictions.



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7769  | https://doi.org/10.1038/s41598-021-87064-7

www.nature.com/scientificreports/

1.	 Dermoscopic images may be more useful than clinical images for predicting management decisions. We compare 
the experiments where dermoscopic images and clinical images are used without (‘D’ versus ‘C’) and with 
(‘DM’ versus ‘CM’) the patient metadata. When not using the metadata (‘D’ versus ‘C’), using dermoscopic 
images over clinical images significantly improves all the metrics by 7.94± 1.87% ( p = 2.49e − 03−03). 
Similarly, in the presence of metadata (‘DM’ versus ‘CM’), using dermoscopic images significantly improves 
all the metrics by 8.11± 2.36% ( p = 4.98e−03) as compared to when using clinical images.

2.	 The value of adding a clinical image is questionable when a dermoscopic image is already present. We compare 
the experiments where clinical images are added in addition to a dermoscopic image, both in the absence 
(‘CD’ versus ‘D’; p = 1.25e−01) or presence (‘CDM’ versus ‘DM’; p = 4.57e−01) of patient metadata and 
observe no consistent pattern of either improvement or degradation in the metrics.

3.	 The inclusion of patient metadata may improve the management prediction accuracy. When using only clinical 
images (‘CM’ versus ‘C’), only dermoscopic image (‘DM’ versus ‘D’), or both (‘CDM’ versus ‘CD’), all but 
one metrics improved with the inclusion of metadata by 2.23± 2.68% , with the most impactful contribu-
tion of metadata being in the 10.63% improvement of sensitivity in ‘CDM’ versus ‘CD’, and the only metric 
which decreased was the precision in ‘CDM’ versus ‘CD’ ( 2.59% decrease). However, these improvements 
are not statistically significant with p = 1.67e − 02 (‘CM’ versus ‘C’), p = 6.14e − 02 (‘DM’ versus ‘D’), and 
p = 8.94e − 01 (‘CDM’ versus ‘CD’).

While predicting management decisions, we posit that the clinical penalty of misclassifying certain manage-
ment decisions is more severe than others. For example, consider a lesion where the correct management decision 
is for the lesion to be excised. Incorrectly predicting a management decision of ‘no further examination’ when 
the lesion should be excised is a more severe mistake than predicting a management decision of ‘clinical follow 
up’, since the decision to excise may be corrected in a future examination. We can extend this assumption to also 
include cases where the model predicts NONE when the target label is CLNC. For example, an EXC or a CLNC 
misclassified as a NONE is a more severe mistake than a NONE misclassified as an EXC or a CLNC, because in 
the latter scenario, the best course of action can ultimately be determined by the dermatologist in the clinical visit.

Since the multi-task model has also been trained to predict lesion diagnosis, the confusion matrix for the 
diagnosis prediction task is shown in Fig. 3d. Looking at the relationship between the diagnosis and the man-
agement labels (Table 1), we notice that all the malignant skin lesions, namely melanomas (MEL) and basal cell 
carcinomas (BCC), map to the same management label, i.e., excision (EXC). This means that if we can accurately 
predict a lesion to be either BCC or MEL, we can infer that it has to be excised. Therefore, if we were to first 
diagnose skin lesions and then infer their management, we would misclassify 46 malignant cases (the number 
of BCC or MEL misclassified as neither BCC nor MEL; Fig. 3c), and thus incorrectly predict their management. 
On the other hand, if we directly predict the management decisions, we only misclassify 3 malignant cases (1 
BCC and 2 MEL; Fig. 3a).

MClass‑D dataset.  Next, we validate our trained prediction model on the publicly available MClass 
benchmark30. For this, we use the multi-task prediction model from  A multi-task prediction model section to 
simultaneously predict the diagnosis labels (DIAG) and the clinical management decisions (MGMT) for the 100 
dermoscopic images in the MClass-D dataset. We use the multi-task model trained on the Interactive Atlas of 
Dermoscopy as is and do not fine-tune on the MClass-D dataset.

The prediction classes for DIAG are benign (BNGN) or malignant (MLGN), whereas those for MGMT are 
excision (EXC) or not (NOEXC). While the diagnosis ground truth labels from the ISIC Archive are available for 
the lesions, there are multiple ways of choosing a target label for the clinical management decision. Therefore, 
we look at two possible ways of assigning the “ground truth” management decision: using the aggregated recom-
mendations of the 157 dermatologists present in the dataset ( MGMTGT,agg ), or using the the diagnosis ground 
truth to derive the “true” management decision ( MGMTGT,true ) (where “true” indicates the ideal management 
decision if the underlying diagnosis was known). For each of the two scenarios, we compare the performance 
of the directly predicted management decision ( MGMTpred ) to that of a scenario when the predicted diagnosis 
is used to infer the management decision ( MGMTinfr ), similar to Predicting whether a lesion should be excised 
or not section.

The confusion matrices and the ROC curves for these two sets of predictions ( MGMTinfr and MGMTpred ) as 
compared to both methods of choosing the “ground truth” management labels are presented in Fig. 5a,b respec-
tively. When we set MGMTGT,agg as the target labels, as shown in the left column and red curves of Fig. 5a,b 
respectively, we observe that predicting the management decision directly ( MGMTpred ) performs well for both 
the management classes without favoring any single particular class and achieves a notable improvement in the 
area under the ROC curve, as compared to when inferring the management decision ( MGMTinfr ) based on 
the model’s diagnosis prediction. Additionally, as discussed in A multi-task prediction model section , not all 
misclassification errors are equal, and the clinical penalty of misclassifying an EXC as NOEXC is much more 
than other errors. While an ROC curve shows the performance over all probability thresholds, the AUROC does 
not consider the actual decision of the model. When using a default probability threshold of 0.5, we note that 
directly predicting the management decisions incurs far fewer such mistakes than inferring the management 
(16 versus 36). Similarly, when setting MGMTGT,true as the target management labels, we observe that although 
the area under the ROC curves are similar (Fig. 5b green curves), the confusion matrix (Fig. 5a right column) 
reveals that the MGMTpred leads to better overall performance across both the classes and fewer instances of 
EXC being misclassified as NOEXC (6 versus 12).

For evaluating the agreement between the model’s predictions and those of the 157 dermatologists, we cal-
culate two agreement measures—Cohen’s kappa and Fleiss’ kappa. The Cohen’s kappa between our model’s 
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predictions and that of the aggregated recommendations of the 157 dermatologists is 0.5424. This is higher 
than that of the agreement between all pairs of dermatologists ( 0.4124± 0.1032 ), and is comparable to the 
agreement between one dermatologist and the aggregated recommendations of all the others, repeated for all 
dermatologists ( 0.5497± 0.0899 ). Next, the Fleiss’ kappa for agreement among the recommendations of 157 der-
matologists is 0.4086. To calculate the Fleiss’ kappa for capturing the agreement between our model’s predictions 
with those of the dermatologists, we calculate the agreement among a set of 156 dermatologists’ recommenda-
tions and the model’s predictions, and repeated by leaving out one dermatologist at a time, yielding a score of 
0.4080± 0.0006 . To address concerns that the recommendations of 156 dermatologists might overshadow the 
model’s predictions in the score calculated above, we repeat this experiment for a set of 10 predictions, comprising 
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Figure 5.   Evaluating the multi-task model on the MClass-D dataset. (a) Confusion matrices and (b) ROC 
curves for MGMTpred and MGMTinfr predictions with both MGMTGT,agg and MGMTGT,true as target clinical 
management labels.
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of 9 dermatologists’ recommendations and the model’s predictions, and repeat this 1000 times, yielding a score 
of 0.3961± 0.0301 . These results indicate that our model’s clinical management predictions agree with those 
made by dermatologists as much as they do amongst each other.

Although Brinker et al.18 achieve a better performance at classifying melanomas than our model, we believe 
this can be attributed to multiple factors. First, Brinker et al. trained their prediction model on over 12,000 
images and reported the mean of the results obtained from 10 trained models. Our model, on the other hand, 
is trained on considerably fewer images (413) and the reported results are from a single training run. Second, 
the training, validation, and testing partitions for Brinker et al. all come from the same data source, i.e., the 
ISIC Archive, whereas our model was trained on the Interactive Atlas of Dermoscopy and evaluated on images 
from the ISIC Archive, leading to a domain shift. CNNs have been shown to exhibit poor generalizability for 
skin lesion classification tasks when trained and evaluated on separate datasets34. Despite this, our multi-task 
prediction model is able to adapt to the new domain and exhibits strong generalization performance for clinical 
management predictions.

Limitations.  Although this study provides a proof of concept of the potential advantages of using deep 
learning to directly predict the clinical management decisions of skin lesions over inferring management deci-
sions based on predicted diagnosis labels, it suffers from some limitations. First, the dataset that our model is 
trained on, the Interactive Atlas of Dermoscopy, only contains 20 diagnosis labels and 3 management labels and 
is not an exhaustive list of all diagnosis and management decisions. Second, although we trained the models on 
the Interactive Atlas of Dermoscopy with a reasonable effort on hyperparameter tuning and fine tuning, we did 
not pursue maximizing the classification accuracy. This means that even though our trained prediction model 
performs well on a held-out test set and is also able to generalize well when evaluated on data coming from a 
different source than the one it was trained on, better classification performance may be achievable with careful 
optimization of the prediction models. Finally, we acknowledge that unlike a dermatologist who has access to 
richer and non-image patient metadata such as patient history, demographics, patient preferences, and difficulty 
of diagnosis, our model only makes predictions based on the attributes present in these two datasets. However, 
this is not a technical limitation of our approach and rich multi-modal patient information can be incorporated 
as and when such attributes become available.

Conclusion
In this work, we proposed a model to predict the management of skin lesions using clinical and dermoscopic 
lesion images and patient metadata. We showed that predicting the management decisions directly is significantly 
more accurate than predicting the diagnoses first and then inferring the management decision. Moreover, we 
also observed a considerable increase in the management prediction accuracy with a multi-task model trained 
to simultaneously predict the seven-point criteria, the diagnoses, and the corresponding management labels.

Furthermore, evaluation of our model on another dataset showed excellent cross dataset generalizability and 
strong agreement with the recommendations of dermatologists.

Our goal with this work is not to propose a method that overrides the dermatologists, rather to provide a 
second opinion. Deep learning-based approaches for diagnosis, although commonplace as a clinical tool now35–37, 
were far from it a decade ago, and we predict a similar shift towards automated algorithms recommending the 
clinical management of diseases. Since we have proposed a learning-based approach, the model’s predictions can 
be made more robust and similar to dermatologists’ predictions by leveraging more complex patient attributes. 
Future research directions would include collecting and testing on other datasets with other skin conditions 
and treatments to assess the value of directly predicting management labels and deemphasizing the latent tasks 
such as diagnosis prediction.

Materials and methods
Dataset.  We have adopted the Interactive Atlas of Dermoscopy dataset28, a credible and extensively vali-
dated dataset that has been widely used to teach dermatology residents38–40, to train and evaluate our prediction 
models. The dataset contains clinical and dermoscopic images of skin lesions, patient metadata (patient gender 
and the location and the elevation of the lesion), the corresponding seven-point criteria32 for the dermoscopic 
images, and the diagnosis and the management labels for 1011 cases with mean [standard deviation] age of 
28.08 [18.70] years; 489 males (48.37%); 294 malignant cases (29.08%); skin lesion diameter of 8.84 [5.39] mm. 
Following Kawahara et al.28, we split the dataset into training, validation, and testing partitions in the ratio of 
approximately 2 : 1 : 2 (413 : 203 : 395 to be precise) and maintain a similar distribution of the management labels 
across all the three subsets. A breakdown of the dataset according to the management and the diagnosis labels 
along with the details of the three splits is presented in Table 1, and more detailed breakdowns of the dataset 
according to the diagnosis classes and the patient metadata is presented as Supplementary Information (Sup-
plementary Tables 1 and 2 respectively). We also present the evaluation of the multi-task prediction model on 
the MClass-D dataset18, a collection of 100 dermoscopic images from the ISIC Archive with the corresponding 
diagnosis labels and the clinical management decision of 157 dermatologists surveyed. The dermatologists came 
from 12 university hospitals in Germany and 43.9% of them were board-certified. The melanomas in the dataset 
were histopathology-verified and the nevi were diagnosed as benign either by expert consensus or by a biopsy.

The prediction models.  In this section, we present three management prediction models, a detailed break-
down of which is presented in Fig. 6. In order to train prediction models that leverage both the clinical and the 
dermoscopic images as well as the patient metadata available in the dataset, we use a multi-modal framework28 
and train two models: the first to predict the diagnosis and the second to predict the management decision. For 
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both of these models, we adopt an InceptionV341-backbone pretrained on the ImageNet dataset42 as the feature 
extraction model and drop the final output layer. We combine the extracted features from both clinical and der-
moscopic images and compute the global average pooled responses, to which we then concatenate the patient 
metadata as a one-hot encoded vector. Next, we add a 1× 1 convolutional layer for the prediction task (either 
the diagnosis or the management) as the final classification layer with the associated loss. We use the categori-
cal cross-entropy loss to train the model, and they are denoted by LDIAG and LMGMT for the diagnosis and the 
management prediction models respectively. Since there is an inherent class imbalance in the dataset, we adopt a 
mini-batch sampling and weighting approach28. The loss function used to train these two single prediction task 
models is as follows:

where xc , xd , xm denote the clinical image, the dermoscopic image, and the patient metadata, respectively, |b| 
denotes the size of the mini-batch, ‘task’ denotes either the diagnosis or the management prediction task, and 
y〈task〉 and n〈task〉 denote the target variable and the number of classes for the corresponding tasks respectively. wj 
denotes the weight assigned to the jth class (calculated similar to Kawahara et al.28), and φ

(
x(i)|�

)

j
 denotes the 

predicted probability for the jth class given an input x(i) by the model parameterized by �.
It has been shown that models optimized to jointly predict related tasks perform better on the individual tasks 

than models trained on each individual tasks separately31,43. Therefore, we train a third model by extending the 
multi-modal multi-task framework28 to simultaneously predict the seven-point criteria, the diagnosis, and the 
management decision. The architecture remains the same as the two models described above, except for the last 
layer, where we add a 1× 1 convolutional layer for each prediction task as the final classification layer with the 
multi-task loss. The multi-task loss, denoted by Lmulti , accounts for all the 9 prediction tasks, namely: the seven-
point criteria, the lesion diagnosis, and the lesion management, and is the sum of prediction losses for each of 
the tasks. As with the previous two models, we adopt the same mini-batch sampling and weighting approach. 
The loss function used to train this multi-task prediction model is defined as:
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Figure 6.   A breakdown of the inputs, outputs, loss functions, and architecture of the three prediction models. 
Global average pooled feature responses from the clinical and the dermoscopic images are extracted and 
concatenated (denoted by the plus symbol) with one-hot encoded patient meta-data, and the three models are 
trained with LDIAG , LMGMT , and Lmulti respectively. The first model predicts the diagnosis labels ( DIAGpred ) 
which are then used along with the management priors to obtain inferred management decisions ( MGMTinfr ), 
whereas the second model predicts the management decisions directly ( MGMTpred ). Finally, the last model is 
a multi-task one and is trained to predict the seven-point criteria, the diagnosis, and the management (outputs 
enclosed in the dashed box).
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where L(·) denotes the categorical cross entropy loss (as described in Equation (1)) and � denotes the parameters 
of the multi-task model. The model outputs are yDIAG , yMGMT , and zk ∈ Z

7 , which denote, respectively, the 
diagnosis label, the management label, and the integer score for each of the seven-point criteria.

Making management predictions.  Interactive atlas of dermoscopy dataset.  Since we ultimately seek 
the management decision for each patient, we evaluate all the models based on their management prediction 
performance. We examine two types of management decisions: predicting whether a lesion should be excised 
or not (our baseline) and predicting all the management decisions. The first model (Fig. 1a) is trained to predict 
the diagnosis, and so we infer the management decisions MGMTinfr from its diagnosis predictions ( DIAGpred ) 
either by predicting the binary management decision MGMTinfr,binary : EXC versus NOEXC (Fig. 1a1), or by 
predicting all management decisions MGMTinfr,all , which for our dataset are EXC, CLNC, and NONE (Fig. 1a2). 
The second model is trained to predict the management decisions MGMTpred , either binary MGMTpred,binary 
(Fig. 1b1) or all decisions MGMTinfr,all , directly (Fig. 1b2). As for the third model, since it is trained to predict 
the diagnosis and the management along with the 7-point criteria (Fig. 1c), we follow the same approach as the 
first two models to obtain management predictions. For all the prediction models, we also perform a three-fold 
cross validation to support the robustness of our results. The dataset was partitioned into three folds while ensur-
ing that the class-wise proportions of the different categories (7-point criteria, diagnosis labels, and management 
decisions) remain similar across the training, validation, and testing partitions28. Moreover, in order to study the 
contribution of the three input data modalities (clinical image, dermoscopic image, and patient metadata) to the 
final management prediction, we also carry out an input ablation study on the multi-task prediction model (i.e., 
the third model; Fig. 1c), where we train and evaluate six multi-task prediction models with different combina-
tions of the three input modalities.

The binary management decisions, MGMTinfr,binary (Fig. 1a1) and MGMTpred,binary (Fig. 1b1), are obtained 
using a binary mapping as described in Results and Discussion. Next, given that there are multiple ways to man-
age a disease category (e.g., in Table 1, NEV cases are managed using all three management labels), we adopt 
a data-driven approach (Fig. 1a2) to calculate the likelihood of all management decisions given a diagnosis 
prediction. We use the distribution of the management decisions across diagnosis classes in the training data to 
estimate the priors for assigning a management class mi to a patient assigned the diagnosis class dj . This can be 
denoted as p(MGMT = mi|DIAG = dj) . At inference time, given a patient’s data x, we estimate the probability 
of management mi by marginalizing over all possible diagnosis classes:

MClass‑D dataset.  The multi-task model used to evaluate the images from MClass-D predicts both the lesion 
diagnosis ( DIAGpred ) and the clinical management ( MGMTpred ). The management labels inferred ( MGMTinfr ) 
from the diagnosis predictions are obtained by the binary mapping described in Predicting whether a lesion 
should be excised or not section. To recap, a lesion predicted to be malignant (MLGN) is mapped to the ‘excise’ 
(EXC) label and a lesion predicted to be benign (BNGN) would be mapped to ‘do not excise’ (NOEXC), meaning 
that the inferred management decision ( MGMTinfr ) would have a direct mapping from the predicted diagnosis 
( DIAGpred).

Next, we look at the two different ways of obtaining the “ground truth” management labels. First, we aggre-
gate the recommendations of the 157 dermatologists by majority voting to obtain a single prediction for each 
image ( MGMTGT,agg ), and use these as one type of target labels to compare the directly predicted management 
decisions ( MGMTpred ) and the inferred management decisions ( MGMTinfr ). The second type of target labels 
are formed by generating the “true” clinical management labels by using a direct mapping from the disease 
diagnosis to clinical management. This is supported by the fact in an ideal world, we would want all malignan-
cies (MLGN) to be excised (EXC) and all the benign lesions (BNGN) to not be (NOEXC). As such, the “true” 
clinical management labels ( MGMTGT,true ) are obtained by directly mapping the ground truth diagnosis classes 
to the corresponding management labels.

Evaluation.  For comparing the performance of the baseline binary labeling approach, we compare the 
per-class sensitivity averaged over the two classes for the two sets of binary predictions, MGMTinfr,binary and 
MGMTpred,binary.

Next, for each of the two sets of management predictions ( MGMTpred,all and MGMTinfr,all ), we obtain proba-
bilistic predictions. To compare the performance of the two models, we choose to evaluate using two methods: 
(a) using the probabilistic management predictions, and (b) using the most likely label (i.e., choosing the single 
label with the highest predicted probability). While the evaluation for the latter is rather straightforward with 
accuracy values and confusion matrices, we formulate the following methodology for evaluating the quality of 
the probabilistic management predictions: given a set of predicted probability values (over management classes) 
and the corresponding target management labels, we report distance measures between the probabilistic predic-
tions and the one-hot encoded representations of the target management labels.

Statistical analysis.  The primary outcome measures are class-wise sensitivity, specificity, precision, 
AUROC and overall accuracy for the diagnosis and the management prediction tasks.

To compare the probabilistic predictions for the management decision obtained using MGMTinfr,all and 
MGMTpred,all , we use four distance measures to compare the similarity of these probability-vectors to the 

(3)
P(MGMT = mi|x) =

∑
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one-hot-encoded target labels: cosine similarity, Jensen-Shannon divergence, Wasserstein distance, and Hell-
inger distance. Since a lower value is better for all these metrics except the cosine similarity, we instead use the 
(1—cosine similarity) value for consistency across measures and visualize them using a swarm plot overlaid 
onto a box plot.

We use the two-sided Wilcoxon signed-rank test44 to compare the two sets of distance measures for each of 
the four measures since the differences between the two sets cannot be assumed to be normally distributed. We 
perform bootstrapping45 and sub-sampling 1000 times46 with a sample size of N/2 (where N is the size of the test 
set) with convergence criteria satisfied47. For all the distance measures, we report the means and the 95% confi-
dence intervals along with Cohen’s d values48. Results are considered statistically significant at p < 0.001 level. 
For the ablation study, we use the mid-p McNemar’s test49–51 to compare the management prediction accuracies 
of the six models, where each model is trained with a different combination of input data modalities, and the 
results are considered statistically significant at p < 0.05 level.

For evaluation on the MClass-D dataset, we use two inter-rater measures for assessing the similarity of our 
model’s predictions with those of the 157 dermatologists: Cohen’s kappa52 and Fleiss’ kappa53. For Cohen’s kappa, 
we calculate the agreement between the model’s prediction and the labels obtained by aggregating the recom-
mendations of all 157 dermatologists ( MGMTGT,agg ), and compare it with the average agreement between any 
two dermatologists. To account for the variability among the predictions of multiple dermatologists and how 
this might not be reflected in the aggregated recommendation, we also compare this with the agreement between 
one dermatologist and the aggregated recommendation of all others, repeating this over all 157 dermatologists 
in a leave-one-out fashion and report the average agreement. Unlike Cohen’s kappa, Fleiss’ kappa can assess 
the agreement among more than two raters, and therefore we first calculate the agreement among all the 157 
dermatologists. For calculating the agreement of the model’s predictions with those of the dermatologists, we 
first calculate the Fleiss’ kappa for a set of 157 predictions obtained from 156 dermatologists and our model, 
and repeat this 157 times in a leave-one-out fashion and report the average agreement. However, this could lead 
to concerns that the agreement among the 156 dermatologists might affect the kappa value, so we further carry 
out the same experiment but with a set of 10 management decisions obtained from the recommendations of 9 
dermatologists sampled at random from the dataset and our model’s predictions. We repeat this 1000 times and 
report the average agreement.

All statistical analyses were performed in Python using NumPy54, SciPy55, statsmodels56, PyCM57, and scikit-
learn58 libraries, and all visualizations were created in Python using matplotlib59 and seaborn60 libraries.

Implementation details.  The Keras framework61 was used to implement all the deep learning models. We 
follow a similar training paradigm as Kawahara et al.28. For all the models, the ImageNet-pretrained weights are 
frozen at the beginning and the models are fine-tuned with a learning rate of 10−3 for 50 epochs, followed by 
iteratively ‘un-freezing’ one Inception block at a time (starting from the Inception block closest to the output all 
the way to the second Inception block) and fine-tuning for 25 epochs with a learning rate of 10−3 . We use real-
time data augmentation using rotations, horizontal and vertical flipping, zooming, and height and width shifts 
for these initial 275 epochs. Lastly, we turn off data augmentation and fine-tune for 25 epochs. We use stochastic 
gradient descent with a weight decay of 10−6 and a momentum of 0.9 to optimize the weights.

Data availability
Both the datasets used in this article have been publicly released: (1) The Interactive Atlas of Dermoscopy 
dataset28,29 is available at https://​derm.​cs.​sfu.​ca/. (2) The MClass-D dataset18,30 is available at https://​skinc​lass.​
de/​mclass/.
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