Skip to main content
. 2021 Apr 8;11:7769. doi: 10.1038/s41598-021-87064-7

Table 2.

Comparing skin lesion management prediction results obtained using MGMTinfr,all and MGMTpred,all. All the prediction models have been trained using all the input data modalities (i.e., clinical image, dermoscopic image, and patient metadata). Mean ± standard deviation reported for all the metrics for the 3-fold cross validation.

Management labels MGMTinfr,all MGMTpred,all
Sensitivity Specificity Precision AUROC Overall accuracy Sensitivity Specificity Precision AUROC Overall Accuracy
NONE 0.2 0.9718 0.4444 0.8039 0.5 0.9831 0.7692 0.9159
CLNC 0.0 1.0 0.0 0.7668 0.7143 0.7456 0.5263 0.8090
EXC 0.9835 0.0921 0.634 0.7515 0.7243 0.7303 0.8111 0.8079
Average 0.3945 0.6880 0.3595 0.7741 0.6253 0.6462 0.8196 0.7022 0.8443 0.6987
3-Fold cross validation 0.3943 ± 0.0025 0.6871 ± 0.0018 0.3829 ± 0.0172 0.7758 ± 0.0178 0.6139 ± 0.0198 0.6033 ± 0.0369 0.8107 ± 0.0093 0.7104 ± 0.0184 0.8266 ± 0.0126 0.6974 ± 0.0018