Skip to main content
. 2020 Dec 11;53(1):53–62. doi: 10.3947/ic.2020.0104

Table 3. Diagnostic performances of various machine-learning algorithms for differentiating tuberculous from viral meningitis.

Machine-learning algorithm Matrix completion TP FP TN FN Sensitivity (% [95% CI]) Specificity (% [95% CI]) Accuracy (% [95% CI]) AUC (95% CI)
Artificial neural network IterativeImputer 46 11 132 14 76.7 (63.9 - 86.6) 92.3 (86.7 - 96.1) 87.7 (82.4 - 91.9) 0.85 (0.79 - 0.89)
SoftImputer 41 20 123 19 68.3 (55.0 - 79.7) 86.0 (79.2 - 91.2) 80.8 (74.7 - 86.0) 0.77 (0.71 - 0.83)
KnnImputer (K = 1) 43 11 132 17 71.7 (58.6 - 82.5) 92.3 (86.7 - 96.1) 86.2 (80.7 - 90.6) 0.82 (0.76 - 0.87)
KnnImputer (K = 2) 43 10 133 17 71.7 (58.6 - 82.5) 93.0 (87.5 - 96.6) 86.7 (81.2 - 91.0) 0.82 (0.76 - 0.87)
KnnImputer (K = 3) 42 12 131 18 70.0 (56.8 - 81.2) 91.6 (85.8 - 95.6) 85.2 (79.6 - 89.8) 0.81 (0.75 - 0.86)
KnnImputer (K = 4) 42 12 131 18 70.0 (56.8 - 81.2) 91.6 (85.8 - 95.6) 85.2 (79.6 - 89.8) 0.81 (0.75 - 0.86)
Random forest IterativeImputer 42 11 132 18 70.0 (56.8 - 81.2) 92.3 (86.7 - 96.1) 85.7 (80.1 - 90.2) 0.81 (0.75 - 0.86)
SoftImputer 38 9 134 22 63.3 (49.9 - 75.4) 93.7 (88.4 - 97.1) 84.7 (79.0 - 89.4) 0.79 (0.72 - 0.84)
KnnImputer (K = 1) 40 13 130 20 66.7 (53.3 - 78.3) 90.9 (85.0 - 95.1) 83.7 (77.9 - 88.5) 0.79 (0.73 - 0.84)
KnnImputer (K = 2) 41 11 132 19 67.8 (54.4 - 79.4) 91.3 (86.7 - 96.1) 85.2 (79.5 - 89.8) 0.80 (0.74 - 0.85)
KnnImputer (K = 3) 42 14 129 18 70.0 (56.8 - 81.2) 90.2 (84.1 - 94.5) 84.2 (78.5 - 89.0) 0.80 (0.74 - 0.85)
KnnImputer (K = 4) 40 11 132 20 66.7 (53.3 - 78.3) 92.3 (86.7 - 96.1) 84.7 (79.0 - 89.4) 0.80 (0.73 - 0.85)
Naïve Bayes IterativeImputer 36 11 132 24 60.0 (46.5 - 72.4) 92.3 (86.7 - 96.1) 82.8 (76.8 - 87.7) 0.76 (0.70 - 0.82)
SoftImputer 48 24 119 12 80.0 (67.7 - 89.2) 83.2 (76.1 - 88.9) 82.3 (76.3 - 87.3) 0.82 (0.76 - 0.87)
KnnImputer (K = 1) 38 13 130 22 63.3 (49.9 - 75.4) 90.9 (85.0 - 95.1) 82.8 (76.9 - 87.7) 0.77 (0.71 - 0.83)
KnnImputer (K = 2) 39 13 130 21 65.0 (51.6 - 76.9) 90.9 (85.0 - 95.1) 83.3 (77.4 - 88.1) 0.78 (0.72 - 0.84)
KnnImputer (K = 3) 38 13 130 22 63.3 (49.9 - 75.4) 90.9 (85.0 - 95.1) 82.8 (76.9 - 87.7) 0.77 (0.71 - 0.83)
KnnImputer (K = 4) 38 13 130 22 63.3 (49.9 - 75.4) 90.9 (85.0 - 95.1) 82.8 (76.9 - 87.7) 0.77 (0.71 - 0.83)
Logistic regression IterativeImputer 44 9 134 16 73.3 (60.3 - 83.9) 93.7 (88.4 - 97.1) 87.7 (82.4 - 91.9) 0.84 (0.78 - 0.88)
SoftImputer 43 15 128 17 71.7 (58.6 - 82.5) 89.5 (83.3 - 94.0) 84.2 (78.5 - 89.0) 0.81 (0.75 - 0.86)
KnnImputer (K = 1) 42 9 134 18 70.0 (56.8 - 81.2) 93.7 (88.4 - 97.1) 86.7 (81.2 - 91.0) 0.82 (0.76 - 0.87)
KnnImputer (K = 2) 42 7 136 18 70.0 (56.8 - 81.2) 95.1 (90.2 - 98.0) 87.7 (82.4 - 91.9) 0.83 (0.77 - 0.88)
KnnImputer (K = 3) 42 7 136 18 70.0 (56.8 - 81.2) 95.1 (90.2 - 98.0) 87.7 (82.4 - 91.9) 0.83 (0.77 - 0.88)
KnnImputer (K = 4) 41 7 136 19 68.3 (55.0 - 79.7) 95.1 (90.2 - 96.1) 87.2 (81.8 - 91.5) 0.82 (0.76 - 0.87)
Support vector machine IterativeImputer 34 6 137 26 56.7 (43.2 - 69.4) 95.8 (91.1 - 98.5) 84.2 (76.5 - 89.0) 0.76 (0.70 - 0.82)
SoftImputer 45 17 126 15 75.0 (62.1 - 85.3) 88.1 (81.6 - 92.9) 84.2 (78.5 - 89.0) 0.82 (0.76 - 0.87)
KnnImputer (K = 1) 33 4 139 27 55.0 (41.6 - 67.9) 97.2 (93.0 - 99.2) 84.7 (79.0 - 89.4) 0.76 (0.70 - 0.82)
KnnImputer (K = 2) 34 8 135 26 56.7 (43.2 - 69.4) 94.4 (89.3 - 97.6) 83.3 (77.4 - 88.1) 0.76 (0.69 - 0.81)
KnnImputer (K = 3) 34 8 135 26 56.7 (43.2 - 69.4) 94.4 (89.3 - 97.6) 83.3 (77.4 - 88.1) 0.76 (0.69 - 0.81)
KnnImputer (K = 4) 35 7 136 25 58.3 (44.9 - 70.9) 95.1 (90.2 - 98.0) 84.3 (78.5 - 89.0) 0.77 (0.70 - 0.82)

Testing was conducted using the leave-one-out cross-validation.

True positive means a correct diagnosis of tuberculous meningitis and true negative means a correct diagnosis of viral meningitis.

TP, true positive; FP, false positive; TN, true negative; FN, false negative; AUC, area under the receiver operating characteristics curve; 95% CI, 95% confidence interval.