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Abstract
Quantifying the complexity of the EEG signal during prolonged wakefulness and during sleep is gaining interest as an 
additional mean to characterize the mechanisms associated with sleep and wakefulness regulation. Here, we characterized 
how EEG complexity, as indexed by Multiscale Permutation Entropy (MSPE), changed progressively in the evening prior to 
light off and during the transition from wakefulness to sleep. We further explored whether MSPE was able to discriminate 
between wakefulness and sleep around sleep onset and whether MSPE changes were correlated with spectral measures 
of the EEG related to sleep need during concomitant wakefulness (theta power—Ptheta: 4–8 Hz). To address these questions, 
we took advantage of large datasets of several hundred of ambulatory EEG recordings of individual of both sexes aged 
25–101 years. Results show that MSPE significantly decreases before light off (i.e. before sleep time) and in the transition 
from wakefulness to sleep onset. Furthermore, MSPE allows for an excellent discrimination between pre-sleep wakefulness 
and early sleep. Finally, we show that MSPE is correlated with concomitant Ptheta. Yet, the direction of the latter correlation 
changed from before light-off to the transition to sleep. Given the association between EEG complexity and consciousness, 
MSPE may track efficiently putative changes in consciousness preceding sleep onset. An MSPE stands as a comprehensive 
measure that is not limited to a given frequency band and reflects a progressive change brain state associated with sleep 
and wakefulness regulation. It may be an effective mean to detect when the brain is in a state close to sleep onset.
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Statement of Significance

Quantifying the complexity of the EEG signal during prolonged wakefulness and sleep is an additional mean to understand the mechan-
isms associated with sleep and wakefulness regulation. We computed EEG signal complexity, using Multiscale Permutation Entropy (MSPE) 
analysis, over the 2 h preceding light-off and in the transition to sleep. We find that EEG complexity decreases progressively prior to light-off 
and during the transition from wakefulness to sleep. Furthermore, EEG signal complexity allows for an excellent discrimination between 
pre-sleep wakefulness and early sleep. MSPE stands as a comprehensive measure that is not limited to a given frequency band and reflects 
a progressive change brain state associated with sleep and wakefulness regulation. It may be an effective means to detect when the brain 
is in a state close to sleep onset.
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Introduction

Sleep is determined by the interaction between homeostatic and 
circadian processes [1]. The neuroanatomy, neurochemistry, and 
neurophysiology of the changes associated with this interaction 
have been partly elucidated [2–4]. The aspect that may appear 
best characterized may be the electrophysiology of sleep–wake 
regulation and its link with the need for sleep.

Fourier transformations of the electroencephalography (EEG) 
signal are typically used to characterize sleep–wake regulation. 
During wakefulness, the build-up of sleep need can be cap-
tured in the power of EEG theta rhythm [5], which encompasses 
EEG components in the frequency range of 4–8 Hz [6–8]. Theta 
rhythm of EEG is associated with a variety of psychological 
states including hypnagogic imagery, low levels of alertness, or 
vigilance and drowsiness [9]. It has, for instance, been widely 
investigated in drowsy driving detection [10–14].

However, the EEG signal is nonlinear and non-stationary 
with a high degree of complexity, so that it may not be fully ap-
propriate for Fourier transformation [15]. In recent years, with 
increased awareness of complexity theories, entropy-based ap-
proaches have been used as nonlinear analyses of EEG to provide 
independent and complementary measures to conventional 
EEG spectral analysis [16, 17]. Permutation Entropy (PE) has re-
ceived substantial attention [18]: its low computational cost 
and robustness to observational noise [19], trends [20] and even 
common blink and eye-movement artifact in EEG [21], makes 
it an interesting approach for large datasets that could, other-
wise, require long processing, as well as for, potential noisier, 
ambulatory recordings. PE was found to be useful in detecting 
epileptic seizure [22–25], assessing the effects of anesthesia [26–
28], understanding cognitive brain activity [29, 30] and assessing 
disorders of consciousness [31, 32] Moreover, PE was found to 
progressively decrease during slow wave sleep [33, 34]. How PE 
changes during wakefulness over the few hours preceding sleep 
and in the transition from wake to sleep is not established. In 
addition, its ability to discriminate between wakefulness and 
sleep states around sleep onset has not yet been investigated 
as well as whether pre-sleep PE is related to typical spectral EEG 
measures.

As an outcome of the brain with its complex self-regulation 
and inputs from multiple spatial and temporal scales, EEG ac-
tivity in a healthy human brain possesses scale-free structure 
over multiple time scales [35, 36]. Multiscale entropy analysis, 
proposed by Costa et  al. [37, 38], was widely used to quantify 
the complexity of physiologic time series, such as EEG [39–41] 
and heart rate [42–44]. The application of multiscale approach 
could account for the multiple time scales inherent in healthy 
physiologic dynamics and thus provide a more comprehensive 
tool to capture the dynamical characteristics of physiological 
time series than single-scale analysis does. Take PE for example, 
Li et  al. found that measurement of multiscale PE (MSPE) be-
haves much better than the single-scale PE to track the effect of 
sevoflurane anesthesia on the central nervous system [45].

Here, we characterized the changes in EEG signal complexity, 
using MSPE, during the 2 h wakefulness period preceding light-
off and in the transition from wake to sleep. We further explored 
whether MSPE could discriminate wakefulness and sleep around 
sleep onset and whether pre-sleep MSPE was significantly cor-
related to simultaneous theta power. We took advantage of large 
datasets of several hundred of ambulatory EEG recordings to 

address these questions. We hypothesized that MSPE would de-
crease in the evening as well as after light-off, during the transi-
tion from wake to sleep.

Methods

Datasets

Data analyzed in this study were obtained from two datasets: 
the PhysioNet and the Sleep Heart Health Study (SHHS) datasets. 
Subjects and recordings of the PhysioNet dataset were described 
in reference [46]. Briefly, two polysomnograms (PSGs) of about 
20  h each were recorded during two subsequent day–night 
periods at the subjects’ homes. Subjects were of both sexes 
and aged between 25 and 101 years and continued their normal 
activities but wore a modified Walkman-like cassette-tape re-
corder. Two channel of EEGs, Fpz/Cz and Pz/Oz, sampled at 100 
Hz, were included.

The SHHS is a multi-center cohort study that was imple-
mented by the American National Heart, Lung, and Blood 
Institute to determine cardiovascular and other consequences 
of sleep-disordered breathing, and its characteristics have been 
described in detail elsewhere [47, 48]. One overnight PSG was 
obtained at home using an unattended setting placed by trained 
and certified technicians in individuals of both sexes aged 
39–90 years. Two EEG channels, C3/A2 and C4/A1, were included 
and sampled at 125 Hz.

In the current study, Pz/Oz and C4/A1 derivations were using 
in PhysioNet and SHHS datasets, respectively. For both datasets, 
sleep stages were visually scored per 30-s EEG epoch based on 
Rechtschaffen and Kales (R&K) rules [49] by trained sleep tech-
nologists, including wakefulness, rapid eye movement (REM) 
sleep and stage 1–4 of non-REM sleep (NREM).

Included subjects

Seventy-eight participants who were free of any sleep-related 
medication intake were recruited for two consecutive day–night 
PSGs in the PhysioNet dataset. However, one participant was ex-
cluded due to the loss of PSG data in the second night. Therefore, 
77 participants were included and their EEG data of the second 
night were involved in further analysis.

Three hundred and seventy-eight healthy adults from SHHS 
were considered based on the following inclusion criteria: (1) 
no benzodiazepines, tricyclic, or non-tricyclic antidepressants 
intake within 2 weeks of the SHHS visit; (2) no history of stroke; 
(3) apnea–hypopnea index, representing the number of apnea 
and hypopnea events with ≥3% oxygen desaturation per hour 
of sleep, <5; (4) no major trouble falling asleep (the frequency of 
trouble falling asleep <16 x/month); (5) night time wake up or 
difficulty resuming sleep <16 x/month; (6) waking up too early 
or unable to resume sleep <16 x/month; (7) no chronic use of 
sleeping pills or other medication intake to help sleep (the fre-
quency <16 x/month); (8) entire recording was scored; scoring 
stared before light-off and ended after light-on; (9) sleep la-
tency (SL), defined as the duration from light-off to sleep-onset, 
≥10 min. Each participant in SHHS has one-night PSG recording, 
leading to 367 EEG recordings for further analysis. A study code 
varying from outstanding to fair was given to each recording 
in SHHS based on the quality and duration of EEG, respiratory 
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and oximetry signals [50]. Such a code was used as a measure of 
signal quality in the statistical analyses of the present study. For 
the 378 recordings included, 20.4% rated as outstanding, 23.8% 
as excellent, 24.1% as very good, 23% as good, and 8.73% as fair.

Table 1 illustrated the demographics and sleep structures for 
the included subjects from both datasets.

MSPE algorithm

There are two main steps in the MSPE algorithm, one is a coarse-
graining process and the other is the calculation of PE for each 
coarse-grained time series.

The coarse-graining process
Given a time series with N data points {x1, x2, · · · , xN}, a con-
secutive coarse-grained time series, {y(s)}, can be constructed ac-
cording to the equation (1), where s represents the scale factor.

y(s)j =
1
s

js∑
i=( j−1)s+1

xi, 1 ≤ j ≤ N/s

 
(1)

The length of {y(s)}, denoted as Ns in the following, is equal to the 
length of the original time series N divided by s. When s equals 
to 1, the coarse-grained time series {y(1)} is exactly the original 
time series. Figure  1, A illustrated the construction of {y(3)} of 
time series {x1, x2, · · · , xN}.

The calculation of PE for each coarse-grained series
According to the algorithm proposed by Bandt and Pompe [19], 
PE values can be calculated for each coarse-grained time series 
{y(s)} with length Ns. {y(s)} is the first embedded in a m-dimensional 
space with a lag τ , leading to Ns− (m− 1) τ vectors. The con-
struction of the ith vector is shown in equation (2).

Yi =
î
y(s)i , y(s)i+τ

, y(s)i+2τ , · · · , y(s)i+(m−1)τ

ó
, i = 1, 2, . . . , Ns− (m− 1)τ

 (2)

Each vector Yi is then mapped into an ordinal pattern, that 
is, a permutation, based on the rankings of its elements after 
sorting them in an ascending order. For example, the vector [7, 
8, 12, 15] in a 4-dimensional space can be mapped to the ordinal 
pattern [1–4]. In the case of two or more equal elements, the 
equal values will be ordered by their time of appearance within 
the vector. Therefore, the vector [11, 13, 15] will be mapped to 
the ordinal pattern [1–4]. Figure  1, B indicates how the map-
ping is developed, in which Ns, τ , and m are set as 20, 1, and 4, 
respectively.

As aforementioned, there will be Ns− (m− 1) τ vectors after 
embedding {y(s)} in a m-dimensional space with lag τ , and each 
vector corresponds to an ordinal pattern. For a m-dimensional 
vector, the number of its possible ordinal patterns equals the 
factorial of m (denoted as m!). For each ordinal pattern πi, we can 
count its occurrence on all the m-dimensional vectors and then 
obtain its probability, denoted as p(πi), by calculating the ratio of 
its occurrence to Ns− (m− 1) τ. Take the time series shown in 
Figure 1, B as an example, the pattern [1–4] occurs three times in 
all the 17 vectors, resulting in a probability of 3/17 for this pat-
tern. Therefore, the PE of the coarse-grained time series {y(s)} in 
m-dimensional embedding space can be defined as the Shannon 
entropy associated to the distribution of all possible ordinal pat-
terns and normalized as shown in equation (3).

PE =
−
∑m!

i=1 p(πi)log(p(πi))

log(m!) (3)

In simple words, PE estimates the complexity of a time series by 
taking into account the temporal order of the values. As similar 
fluctuations can be identified as the same pattern, it is possible 
to derive information about the dynamics of the underlying 
system by assessing probabilities of the ordinal patterns em-
bedded in a time series. In order to assess the quantity of infor-
mation encoded by such distribution, the logarithm is usually 
in base 2. PE value will be 1 when all patterns have equal prob-
ability, that is, when the signal contains a variety of likely pat-
tern. Conversely, PE will be small if the time series is regular, 
that is, when a single or few pattern have higher probably than 
most others. Thus, the more regular the time series, the smaller 
the PE value.

The measurement of MSPE
In this study, the coarse graining process was conducted at 10 
scales, that is, scale factor ranging from 1 to 10, with steps of 
1.  PE for each coarse-grained time series was computed and 
averaged as the final measurement of the MSPE analysis. In 
agreement with the R&K rules, MSPE analysis was performed on 
each 30 s EEG epoch from both datasets.

The calculation of PE of a time series depends on the selec-
tion of the data length Ns, embedding dimension m and lag τ
. For the EEG recordings in PhysioNet dataset, the maximal Ns 
is 3000 (30  s *100 Hz at scale one) and the minimal is 300 (at 
scale 10). For the EEG recordings in SHHS dataset, the maximal 
and minimal Ns are 3750 and 375, respectively. As far as the 
embedding dimension m is considered, Bandt and Pompe [19] 
recommended m = 3 to 7 in practice. Since there is a neces-
sary condition m! < Ns, here we only considered and compared 
the results obtained with m = 3, 4, or 5. In the literature, τ = 1 was 

Table 1. Demographics and sleep structures of the included subjects

Dataset Subjects
Sex male/ 
female Age SL

Stage (%)

S1 S2 S3 S4 REM Wakefulness

PhysioNet 77 36/41 57 10 6.1 23 3.2 0.2 8.8 57
[46,73] [5,22] [4.5,9.4] [19,26] [0.8,4.8] [0,2] [6.4,11] [54,62]

SHHS 378 130/248 58 21 3 39 12 0 15 28
[50,66] [15,33] [1.9,4.6] [31,45] [7.6,17] [0,0.1] [11,18] [21,36]

Values are expressed as median [lower quartile, upper quartile].

Abbreviations: REM, Rapid Eye Movement; S1, stage 1 of NREM sleep; S2, stage 2 of NREM sleep; S3, stage 3 of NREM sleep; S4, stage 4 of NREM sleep; SHHS, the Sleep 

Heart Health Study; SL, sleep latency.
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often chosen for EEG signals while other values of τ were sug-
gested to possibly provide additional information related with 
the intrinsic time scales of the system [18]. Considering that 

multiscale approach has been adopted, we only considered τ = 1 
in the present study.

The computational complexity of MSPE algorithm
Theoretically, the computational complexity of MSPE on a time 
series with N data point depends on the maximal scale S, the 
embedding dimension m, and the lag τ. According to Table 2, the 
time complexity of the MSPE (TMSPE) can be evaluated as,

TMSPE = O (1) +
S∑

i=1

(O (m ∗ log2m) + O (1)) ∗
Å
N
i
− (m− 1) ∗ τ

ã

+ O (m!) + O (1) < O (N ∗ S ∗m ∗ log2m) + O(m!)
 

Considering the requirements m! < N/S, m << N and S << N in the 
practice of MSPE algorithm, TMSPE can be further simplified as O(N), 
suggesting a superior performance (especially when N is large) 
than the FFT algorithm as its time complexity is O(Nlog2N) [51].

Spectral analyses

For each 30 s EEG epoch, theta (4–8 Hz) power, denoted as Ptheta 
in the following, was computed and averaged on successive 5-s 

Table 2. A pseudocode of the MSPE algorithm

[Entropy] = MSPE(N, S, m, tau) 
% N is the data length of the original signal, S is the maximal scale, 

m is the embedding dimension, and tau is the lag
 Entropy = 0
 for (i = 1: S) % treat the ith coarse-grained time series
  for (j = 1: (N/i – (m − 1)) * tau)) % process the jth m-dimensional 

vector
   % sort the vector with a lowest computational complexity of 

O(mlogm)
   % increase the count for its corresponding pattern with a 

computational complexity of O(1)
  PE = 0 % the PE value of the ith coarse-grained time series
  for (k = 1: m!) % calculate the Shannon_entropy of all the pos-

sible patterns
   % calculate − p(k) * log(k) and add it to PE with a computa-

tional complexity of O(1)
  % normalize PE with a computational complexity of O(1)
  Entropy = Entropy + PE
 Entropy = Entropy / S % multiple-scales average

Figure 1. (Color online) Illustration of the MSPE algorithm. (A) The coarse-graining procedure for scale factor of 3. Each black dot represents a data point in the original 

time series. (B) The ordinal patterns in MSPE calculation with embedding dimension of 4 and time lag of 1. The circle dots in (B) represent the data points in a time 

series, and the combination of four numbers under a rectangle or a horizontal line stands for an ordinal pattern of the segment in the rectangle or right above the line. 

The segments in the rectangles have the same pattern [1–4].
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bins by using the period-gram procedure method with direct 
current filtering and Hamming windowing. Theta band defin-
ition varies slightly in the literature [52–57] and 4–8 Hz is very 
common [6–8].

The exclusion of artifacts and outliers

If the MSPE value or Ptheta of a 30 s epoch was extremely high, that 
is, larger than the third quartile (of each included 30 s epochs at 
each acquisition period) plus 1.5 times of interquartile ranges, 
or was extremely low, that is, lower than first quartile minus 1.5 
times of interquartile ranges, it was considered as an artifact in 
this study and excluded from the statistical analysis of MSPE or 
Ptheta. If all the epochs in a subject were determined as artifacts, 
the subject was excluded as outliers.

Framework of the current research

The framework of the current research is illustrated in Figure 2. 
In all the analyses, sleep-onset was defined as the first presence 
of two consecutive sleep epochs (i.e. Stage 1/2).

Analysis on the PhysioNet dataset
Including at least 2 h pre-light-off data is the most appealing 
advantage of the included PhysioNet dataset compared 
with the SHHS dataset. Thus, EEG recordings obtained from 
PhysioNet dataset (on Pz/Oz channel) were employed first to 
assess whether MSPE changed over the 2  h preceding light 
off and whether this change was correlated to concomitant 
theta power. Furthermore, we investigated the alteration of 
MSPE during three different periods, that is, the 2 h preceding 
light off, the transition of wake to sleep after light-off, and 
the first sleep cycle (Figure 2, A). For each subject, MSPE and 
Ptheta were calculated on 30  s EEG epochs acquired in those 
periods.

The definition of sleep cycle used corresponded to Feinberg’s 
criteria [58], that is: (1) each sleep cycle contains a continuous 
NREM and a continuous REM period except for the first cycle, 
in which there is no requirement for the REM sleep; (2) for 
each NREM period in a sleep cycle, it must start with stage 2 

and last no <15  min. If wakefulness interrupts NREM sleep, it 
should be last <5 min for the cycle not to be interrupted; (3) REM 
period should last more than 5 min with possible wakefulness 
interruption(s) ≤1 min.

Analysis on the SHHS dataset
We further tested the hypothesis that MSPE is significantly al-
tered in the transition from wakefulness to sleep with SHHS 
dataset, because it includes many more subjects than the 
PhysioNet dataset. For each EEG recording, MSPE was thus 
computed over each 30  s epoch within the 10  min immedi-
ately preceding sleep onset (Figure  2, B). During this period, 
the participants were still awake and most likely eyes closed. 
Furthermore, concomitant Ptheta was computed and whether pre-
sleep MSPE was correlated to pre-sleep theta power on SHHS 
dataset (C4/A1 channel) was assessed.

Moreover, with the help of the large sample included in 
SHHS dataset, we estimated the ability of MSPE to discriminate 
between wakefulness and sleep around sleep onset by using 
the area under the receiver operating characteristic (ROC) 
curve (AUC). AUC is an effective way to summarize the overall 
accuracy of the test with values ranging from 0 to 1. A value of 
0 indicates a perfectly inaccurate test and a value of 1 reflects 
a perfectly accurate test. In general, an AUC of 0.5 suggests no 
discrimination, 0.7–0.8 is considered acceptable, 0.8–0.9 is con-
sidered excellent, and more than 0.9 is considered outstanding 
[59]. Furthermore, the optimal cutoff value, below which sleep 
possibly initiates, was calculated at the ROC through Youden 
index analysis [60]. Here, for each participant included in 
SHHS dataset, ROC was computed on the MSPE of 20 consecu-
tive 30 s epochs immediately before and after sleep onset, re-
spectively. We also calculated the ROC, AUC, and cutoff values 
for Ptheta in a similar way for comparison.

Statistical analyses

MATLAB (Mathworks Inc., Natick, MA) and SAS® (SAS® Institute 
Inc., Cary, NC) were used for statistical analyses. Descriptive 
statistics were reported as number or percentage for categor-
ical data, and for continuous data, presented as median (lower 
quartile, upper quartile) as the data violates the normality. 
Generalized linear mixed models (GLMMs) were employed to in-
vestigate changes in MSPE over the period of interest and its 
association with Ptheta. GLMMs first included MSPE as dependent 
variable with lognormal distribution and fixed effects included 
in the models consisted of acquisition period, sex, age, and re-
cording quality (only in Analysis of SHHS dataset). To assess the 
link between sleep need marker and MSPE, GLMMs included 
MSPE, acquisition period, sex, age, and recording quality as fixed 
effects and Ptheta as dependent variable with lognormal distribu-
tion. When present as factor, period of acquisition was included 
as repeated measure in all GLMMs. For completeness, we com-
puted Spearman’s rho between MSPE and Ptheta [61], however, 
only GLMM output was considered for statistical considerations. 
Moreover, two-tailed Mann–Kendall test [62] was employed to 
test the null hypothesis of trend absence in the vector of MSPE or 
Ptheta across different acquisition period, that is, 2 h before light-
off or 10 min before sleep-onset in the transition from wake to 
sleep. A one-way analysis of variance (ANOVA) was adopted to 

Figure 2. Schematic diagram of the timeline in the analyses. (A) The timeline 

for the analysis on PhysioNet dataset. MSPE and Ptheta were evaluated in three 

different periods, that is, 2 h pre-light-off, the sleep transition from light-off to 

sleep onset, and the first sleep cycle. (B) The timeline for the analysis on SHHS 

dataset. The included subjects must have a sleep latency more than 10  min. 

MSPE and Ptheta were computed over each 30 s epoch within the 10 min immedi-

ately preceding and following sleep onset.
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evaluate the effect of state (wakefulness during 2 h before light-
off, sleep transition in the sleep latency after light-off, and the 
first sleep cycle) on MSPE or Ptheta.

The GLMM evaluation was conducted in SAS while the 
Spearman correlation analysis and Mann–Kendall test were per-
formed in MATLAB. In all GLMMs, subjects were used as random 
factors and a p-value <0.05 was considered statistically signifi-
cant. Moreover, the Kenward and Roger (KR) approach [63] was 
used to estimate degrees of freedom and to obtain standard 
errors and associated statistical significance.

Results
For each subject, we calculated MSPE and Ptheta on each 30  s 
epoch during the periods of interest for both datasets (Figure 2). 
Artifacts and outliers were detected and excluded based on 
MSPE or Ptheta before further analysis. Table 3 summaries the arti-
facts and outliers excluded.

Analysis on PhysioNet dataset: MSPE gradually 
decreases and correlates with concomitant theta 
power toward light off

We first wondered whether MSPE would vary over the 2 h pre-
ceding light off and correlate with concomitant Ptheta. To address 
this question, we used PhysioNet dataset as it contains >2 h of 
data preceding light-off.

Figure 3, A illustrates the average PE value (for all the parti-
cipants) of each scale across the acquisition period before light 
off with embedding dimension m = 3 (the display obtained with 
m = 4 or 5 is similar; not shown here). Intuitively, the PE values 
at most of the scales fluctuate with a tendency of decreasing to-
wards light-off. Figure 3, B illustrated the MSPE values (mean ± 
standard errors) obtained with m = 3, 4, or 5 and the lines were 
fitted with the averaged MSPE values across the acquisition 
periods. Progressive decline of MSPE towards light-off can be ob-
served regardless of the value of m (Figure 3, B; Mann–Kendall 
test, z = −10.9, −11.9, and −12.8 for m = 3, 4, and 5, respectively, 
with p < 0.0001). GLMMs also show a significant change of MSPE 
with time (Table 4; main effect of acquisition period, p = 0.0002, 
0.002, and 0.022 for m = 3, 4, and 5, respectively). Moreover, at 
each time bin, MSPE value consistently decreases as m increases 
from 3 to 5 because the larger the embedding dimension, the 
more details are obtained from the signal; thus, less random the 
signal becomes and the smaller its MSPE value [64].

Similarly, an increase tendency toward light-off was ob-
served in Ptheta (Mann–Kendall test, z  =  5.88 and p  <  0.0001; 
Figure  3, C). After controlling for all confounding factors in a 

GLMM, no significant effect of acquisition period on Ptheta was 
found (Table  4; GLMM, main effect of acquisition period, p > 
0.05). Moreover, in line with the literature [65], sex and age were 
significantly associated with Ptheta with women showing higher 
theta power and theta power declining with age (Table 4; GLMM, 
for sex and age, p < 0.0001 and p = 0.01, respectively, regardless of 
m). Importantly, Spearman’s correlation analyses over time bins 
indicate that Ptheta shows a significant positive link with MSPE for 
most time bins within 2 h before light off (occurs at 227, 234, and 
235 out 240 time bins for m = 3, 4, and 5, respectively) (Figure 3, 
D). Such a positive association is surprising given that, overall, 
both metrics evolve in opposite direction. GLMMs confirm, how-
ever, the significant positive association (Table 4; main effect of 
MSPE, p < 0.0001 regardless of m) after controlling for the effects 
of age and sex.

Furthermore, for each participant, we computed and com-
pared the median values of MSPE during three periods of 
interest (Figure 2, A), that is, 2 h before light-off, sleep transition 
after light-off, and the first sleep cycle. As the results obtained 
with m  =  3, 4, or 5 are similar, only these with m  =  3 are dis-
played in Figure 4 which shows that MSPE gradually decrease 
from wakefulness to sleep transition and then to the first sleep 
cycle (Figure  4, A). The results of ANOVA further indicate that 
period is a main effect of MSPE (F  =  332, p  <  0.0001) and post 
hoc analysis suggests there is significant difference between the 
MSPE values of each two periods. As for the concomitant Ptheta, 
although ANOVA also indicates a significant effect of period 
(F = 35, p < 0.0001), only significant difference between the pre-
light-off state and the sleep state was revealed (Figure 4, B).

Analysis on SHHS dataset: MSPE decreases in wake-
to-sleep transition and predicts sleep-onset

We then asked whether MSPE would vary during the transi-
tion from wake to sleep preceding sleep-onset (Figure 2, B). To 
address this question, we switched to SHHS datasets as it in-
cludes many more subjects.

Figure 5, A illustrates the average PE value for all the parti-
cipants (m = 3; the display is similar in the situation of m = 4 
and 5; not shown) over each time bin within 10  min imme-
diately before sleep onset. A  progressive decline of PE to-
ward sleep can be observed at scale one and two (Figure  5, 
A). Although Mann–Kendall test only indicates significant de-
cline of MSPE toward sleep in the situation of m = 3 (Figure 5, 
B; z  =  −3.34 and p  <  0.0001), GLMM analysis (Table  5) shows 
significant effect of acquisition period on MSPE (p < 0.05) re-
gardless of m used. Likewise, significant decrease of Ptheta with 
time was found (Figure 5, C; Mann–Kendall test, z = −2.11 and 

Table 3. Artifacts and outliers detected for the periods of interest in both datasets, based on MSPE or Ptheta values

Dataset Period

Artifacts (%) Outliers

MSPE

Ptheta

MSPE

Pthetam = 3 m = 4 m = 5 m = 3 m = 4 m = 5

PhysioNet 2 h pre-light-off 5.67 ± 2.34 4.03 ± 1.77 3.67 ± 1.63 5.30 ± 2.32 0 0 0 0
Sleep transition 3.37 ± 11.9 3.21 ± 11.5 3.28 ± 11.6 9.22 ± 24.5 0 0 0 3
The 1st sleep cycle 2.82 ± 8.43 2.58 ± 7.83 2.29 ± 7.03 5.85 ± 16 0 0 0 0

SHHS 10 min before sleep onset 3.88 ± 1.19 4.35 ± 1.00 4.46 ± 1.08 7.99 ± 1.18 2 2 2 5
10 min after sleep onset 1.27 ± 0.85 1.3 ± 0.94 1.43 ± 0.95 5.11 ± 1.34 0 0 0 5
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p  =  0.035; Table  5, GLMM, main effect of acquisition period, 
p  <  0.05, regardless of m). Spearman’s correlation analyses 
over each time bin indicated significant negative association 
between Ptheta and MSPE for most of the time bins and for all 
the embedding dimensions considered (Figure  5, D). GLMMs 
confirmed that Ptheta was significantly negatively associated to 

MSPE (Table  5; main effect of MSPE, p  <  0.001, regardless of 
m) including sex and age as covariates. The negative associ-
ation comes again as a surprise given that, overall, both met-
rics evolve in the same direction in the transition to sleep (i.e. 
they both decrease).

Figure 3. (color online) Variations in MSPE and Ptheta values before light off. (A) Average value of PE for all the participants in PhysioNet datasets using different scale 

factors. For the calculation of PE, the embedding dimension m was set as 3. (B) Average MSPE at m = 3, 4, or 5 at each time bin; shade areas represent the standard errors 

of the mean. (C) Average Ptheta at each time bin; shade areas represent the standard errors of the mean. (D) p-values of the Spearman correlation between MSPE (with m 

set as 3, 4, or 5) and concomitant Ptheta over each time bin.

Table 4. Results of GLMM evaluating the association between acquisition periods preceding light off and MSPE or Ptheta

Dependent variable Factors

m = 3 m = 4 m = 5

Estimate p R2 Estimate p R2 Estimate p R2

MSPE Period  0.0002 0.019  0.002 0.018  0.022 0.017
Age <0.0001 0.343 0.012 <0.0001 0.362 0.011 <0.0001 0.318 0.014
Sex −0.004 0.021 0.075 −0.007 0.017 0.081 −0.01 0.016 0.083

Ptheta Period  0.429 0.015  0.642 0.014  0.7 0.014
MSPE 3.771 <0.0001 0.004 2.55 <0.0001 0.005 2.02 <0.0001 0.005
Age −0.008 0.01 0.096 −0.008 0.010 0.094 −0.008 0.01 0.094
Sex −0.654 <0.0001 0.313 −0.65 <0.0001 0.316 −0.652 <0.0001 0.312
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To investigate further the switch in correlation direction 
from pre-light-off wakefulness to the transition to sleep, we 
assesses the association between MSPE (m = 3) and the ratio 
of EEG power in theta band and the fast beta frequency band 
(beta, 13–30 Hz; theta/beta ratio, TBR). The analyses indicates 
that both during the 2 h preceding light-off (PhysioNet dataset) 
and during the transition toward sleep (SHHS dataset), the 
more theta, relative to faster frequencies, the lower the EEG 
signal complexity (Figure 6, A and B, significant negative cor-
relation between TBR and MSPE; Table 6, GLMM, main effect of 
MSPE, p < 0.001).

We finally focused on the ability of PE measures to discrim-
inate between sleep and wakefulness around sleep onset. PE 
at different scales was found to have different ability to dis-
criminate epochs before or after sleep onset (i.e. wake or sleep 
stages; Figure 7, A) and excellent AUCs (more than 0.8) can be 
obtained at scales from 2 to 5 for all the embedding dimensions 
considered. Moreover, PEs calculated with a parameter m  =  3 
outperforms those obtained with m  =  4 or 5 at all the scales. 
In the situation of m = 3, PE of the original time series yielded 
to an acceptable AUC of 0.753, while the highest AUC, 0.870, 
was achieved at scale 4 (Figure 7, A). We can also conclude from 
Figure 7, B that MSPE with a parameter m = 3 serves as the most 
discriminative method while the ROC of Ptheta is nearest to the di-
agonal line. The AUC and cutoff values of the ROCs obtained by 
MSPE, PE of the original time series and Ptheta are further shown 
in Table 7, which indicates an obvious promotion of discrimina-
tive ability with the application of multiscale analysis. In con-
sistence with Figure 7, B, an excellent AUC of 0.856 was achieved 
by MSPE with m = 3. However, the AUC was 0.730 when Ptheta was 
used (Table 7), even less than those obtained by the PE values of 
the original time series.

Discussion
Quantifying the complexity of the EEG signal during prolonged 
wakefulness and during sleep is gaining interest as an additional 

mean to characterize the mechanisms associated with sleep 
and wakefulness regulation.Here, we report significant changes 
in EEG complexity, as indexed by MSPE, immediately prior to 
light off and during the transition from wakefulness to sleep. 
We further report that MSPE can reach excellent (AUC > 0.8) dis-
crimination between wakefulness and sleep around sleep onset 
and that MSPE changes are correlated with concomitant Ptheta 
spectral measures.

Standard Fast Fourier transformations (FFT) assume that 
the measured EEG signal consists in a linear combination of 
fluctuations of different frequencies. Brain oscillations are, 
however, not a linear combination of frequency components 
that could be added up. In other words, they are intrinsically 
nonlinear [17]. Two main types of non-linear methods have 
been proposed to enrich the characterization of the (sleep) EEG, 
fractal-based and entropy methods. Here, we used the latter 
type which measures the uncertainty about the information 
source and the probability distribution of the samples drawn 
from it, so that entropy can be an indicator of the complexity 
of the EEG signal [17]. By utilizing the recurrence of ordinal pat-
terns in the signal, the calculation of PE takes into account time 
causality between the values of the time series and reflects the 
time characteristics of the underlying dynamics [19]. A high PE 
value of scalp EEG signal was reported as a direct reflection of 
a more active cortex with an EEG output which is less regular 
and exhibits higher frequency content [33]. Entropy of the sleep 
EEG has consistently been reported to gradually decrease from 
wake to sleep stage N1, N2, and N3, indicating that brain ac-
tivity becomes less complex, more coherent, and periodic, 
while entropy increases during REM as compare to NREM sleep 
[17, 64, 66, 67]. Entropy likely decreases during sleep because 
neurons are more synchronized (i.e. regular interactions within 
the neuronal network) [68]: frequency content slows down and 
amplitude increases, generating a less complex signal. The en-
tropy decrease during NREM sleep could also arise from the 
fact that fewer neurons are involved in information processing. 
There are indeed several reports that brain signal remains more 
local during sleep with less interaction between distant brain 

Figure 4. The values of MSPE (A) and Ptheta (B) during pre-light-off wakefulness, pre-sleep wakefulness and first sleep NREM-REM cycle. Each dot represents the median 

value of MSPE or Ptheta for a participant during the corresponding period. The box-plots illustrate the distribution of these median values for all the participants in 

PhysioNet dataset. The symbol ‘*’ represents for a significant difference of median values between groups (post hoc tests of ANOVA, p < 0.05).
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regions [69, 70], and therefore potentially less neurons contrib-
uting to the EEG signal. Here, we report that there is a decrease 
in MSPE during the 2  h preceding light-off and in the transi-
tion from wakefulness to sleep, suggesting that, as for NREM 
sleep progression from N1 to N3 [71], falling asleep is a gradual 

process. This is reminiscent of previous intracranial recording 
in epileptic patients that detected spindles before sleep onset, 
particularly in the hippocampus [72]. As for sleep, lower MSPE 
likely arises from a progressively more synchronized neuronal 
activity. Whether reduced signal propagation also contributes 

Figure 5. (Color online) Variations in MSPE and Ptheta values within 10 min immediately before sleep-onset. (A) Average value of PE for all the participants in PhysioNet 

datasets using different scale factors. For the calculation of PE, the embedding dimension m was set as 3. (B) Average MSPE at m = 3, 4, or 5 at each time bin; shade areas 

represent the standard errors of the mean. (C) Average Ptheta at each time bin; shade areas represent the standard errors of the mean. (D) p-Values of the Spearman cor-

relation between MSPE (with m set as 3, 4, or 5) and concomitant Ptheta over each time bin.

Table 5. Results of GLMM evaluating the association between acquisition periods preceding sleep onset and MSPE or Ptheta

Dependent variable Factors

m = 3 m = 4 m = 5

Estimate p R2 Estimate p R2 Estimate p R2

MSPE Period  0.0001 0.008  0.016 0.006  0.02 0.005
Age <0.0001 0.116 0.007 <0.0001 0.072 0.009 0.0001 0.082 0.009
Sex −0.0004 0.598 0.001 −0.0009 0.494 0.001 −0.001 0.453 0.002
Quality <0.0001 0.969 <0.0001 −0.0001 0.762 0.003 −0.0004 0.521 0.001

Ptheta Period  0.039 0.005  0.012 0.006  0.007 0.006
MSPE −16.50 <0.0001 0.054 −10.76 <0.0001 0.063 −9.08 <0.0001 0.073
Age −0.001 0.575 0.001 −0.001 0.602 0.0008 −0.001 0.596 0.001
Sex 0.05 0.463 0.0014 0.046 0.492 0.001 0.044 0.513 0.001
Quality −0.024 0.33 0.003 −0.025 0.302 0.003 −0.026 0.28 0.003
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Table 6. Results of GLMM evaluating the association between MSPE (m = 3) and TBR during two periods

Dependent variable Factors

2 h pre-light-off 10 min before sleep onset

Estimate p R2 Estimate p R2

TBR Period  <0.0001 0.022  <0.0001 0.093
MSPE −23 <0.0001 0.131 −31.12 <0.0001 0.161
Age −0.001 0.685 0.002 0.001 0.578 0.001
Sex 0.169 0.176 0.025 −0.016 0.743 0.0003
Quality    0.012 0.467 0.002

TBR, the ratio of EEG power in theta band and beta band.

Figure 7. (Color online) The AUC values to differentiate states before and after sleep-onset. (A) AUC values of PE obtained with different scale factors and different 

embedding dimensions (3, 4, or 5). AUC values above the dashed line correspond to an excellent ability of the test. (B) ROC curves of Ptheta and MSPE obtained with m = 3, 

4, or 5.

Figure 6. (Color online) The Spearman’s rho and its p-value between MSPE and TBR during (A) the 2 h pre-light-off with PhysioNet dataset and (B) the 10 min before 

sleep-onset with SHHS dataset. Here, m was set as 3 in the calculation of MSPE and TBR represents the ratio of EEG power in theta band and beta band.



Hou et al. | 11

is unclear as previous reports suggest that signal scattering 
increases in the evening before decreasing during nighttime 
wakefulness [73–75].

Complexity measures have been used to differentiate con-
scious from unconscious states by quantifying the informa-
tion content of the spatiotemporal cortical activity. Compared 
to wakefulness, reduced complexity was recorded during an-
esthesia, sleep and disorders of consciousness [31, 76, 77], 
suggesting that complex brain activity is a prerequisite or a 
consequence of consciousness. Previous studies also dem-
onstrated PE is maximal during wakefulness while decreases 
during sleep [64] and tends to be greatest when the subjects are 
in fully alert states while falling in states with loss of aware-
ness or consciousness [78]. In line with these findings, we find 
that EEG complexity (or MSPE) can effectively differentiate pre-
sleep wakefulness, when computed over the 10 min preceding 
sleep-onset onset (defined as the first two consecutives epoch 
of N1 or N2 stages), from early sleep, when computed over the 
10 min following sleep onset. It outperforms in fact theta band 
power in doing so. Furthermore, we show that MSPE decreases 
over the 2 h preceding light off and over the 10 min preceding 
sleep (especially when m  =  3). Whether these changes reflect 
a progressive loss of consciousness remains an open question. 
While one can posit that it is the case over the transition be-
tween sleep and wakefulness, it may be more difficult to argue 
that our sample of healthy participants was progressively less 
conscious before light-off.

We stress that any settings of MSPE computation could be 
used to efficiently track pre-sleep signal complexity changes. 
However, the results obtained from an embedding dimension of 
3 and scale factor of 4 appear best for discriminating pre- and 
after- sleep-onset states. Future research will confirm whether 
the MSPE parameters (m  =  3, τ  =  1 and maximal scales  =  10) 
we used to be indeed the most effective to track pre-sleep EEG 
signal complexity alterations. We further emphasize that MSPE 
is an efficient method which is, in principle, more efficient than 
FFT. In computer science, an algorithm with a time complexity 
of O(N), as MSPE, is considered to be more efficient than that 
with a time complexity of O(NlogN), such as FFT. In this respect, 
the MSPE has less computational cost than FFT. In practice, 
however, especially when N, representing the length of an EEG 
signal, is small (e.g. <3000), the difference of the running times 
between both methods should be small.

Our explorations of the link with Ptheta show that this well-
accepted spectral measure of sleep need is significantly associ-
ated with MSPE. Yet, the link is puzzling. While MSPE and Ptheta 
evolve in overall opposite direction over the 2 h preceding light-
off, their values are positively associated. In contrast in the tran-
sition to sleep, both metrics are globally decreasing and yet they 
are negatively correlated. Faster frequencies are progressively 

dominated by slower theta power during pre-light-off wakeful-
ness as a reflection of the increase in sleep need [79]. Our results 
suggest that during this period, the more theta, relative to faster 
frequencies, the lower the EEG signal complexity. Following light-
off, in the eye-closed transition toward sleep, the EEG further 
slows downs so that the dominant frequency likely lies in the 
theta/delta. This likely explains why our results show that during 
transition to sleep, the link with theta power switches to being 
negative. From a frequency analysis point of view, MSPE covers 
the entire spectrum of oscillations included in a time series, so 
one could consider it as a comprehensive measure that is not 
limited to a given frequency band and yet reflects a progres-
sive change brain state associated with sleep and wakefulness 
regulation.

We acknowledge that our study bears some limitations. First, 
as stated above, recording was ambulatory, thus providing less 
control over the experimental condition. We do not have infor-
mation regarding the behavior of the participants, for example, 
when they went to bed relative to light-off or the type of ac-
tivities they were engaged in prior to going to bed. It is there-
fore unclear whether participants’ behavior may underlie part 
of the evolution of MSPE prior to light-off. This limitation may 
however constitute a strength: our findings are valid in real life 
situations. Second, artifacts in the data were not excluded fol-
lowing visual or validated automatic procedures, but were ra-
ther considered to be efficiently removed by excluding sudden 
variations in MSPE or Ptheta within each recording. In addition, 
while the current findings are based on large set of data in indi-
viduals devoid of sleep disorders (N = 378), providing relatively 
high statistical sensitivity, MSPE may come with the cost of re-
duced sensitivity for some individual differences such as sex 
and age which are typically associated to EEG spectral analyses. 
Yet, MSPE significantly varied close to light-off and sleep onset, 
particularly when setting the embedding dimension to 3. It may 
therefore constitute an entropy approach more sensitive than 
others that previously failed to identify significant changes 
during in-lab sleep deprivation protocols [34, 74].

Modern society lifestyle often leads to sleep loss [80–82] and 
chronic sleep restriction [83] that cause fatigue and impairment 
in vigilance, working memory, and cognitive throughput [84] 
and may lead to accidents [10]. MSPE is a low computation time 
method that may be an effective mean to detect when the brain 
is in a state close to sleep onset.
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Table 7. The AUC and cutoff values of MSPE and original PE obtained 
with m = 3, 4, or 5 and of Ptheta

MSPE Original PE

Ptheta m = 3 m = 4 m = 5 m = 3 m = 4 m = 5

AUC 0.856 0.846 0.84 0.753 0.737 0.736 0.73
Cutoff 0.968 0.947 0.921 0.848 0.780 0.741 18.33/uV2
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