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Synonymous mutations that regulate
translation speed might play a non-
negligible role in liver cancer development
Qun Li, Jian Li, Chun-peng Yu, Shuai Chang, Ling-ling Xie and Song Wang*

Abstract

Background: Synonymous mutations do not change the protein sequences. Automatically, they have been
regarded as neutral events and are ignored in the mutation-based cancer studies. However, synonymous mutations
will change the codon optimality, resulting in altered translational velocity.

Methods: We fully utilized the transcriptome and translatome of liver cancer and normal tissue from ten patients.
We profiled the mutation spectrum and examined the effect of synonymous mutations on translational velocity.

Results: Synonymous mutations that increase the codon optimality significantly enhanced the translational velocity,
and were enriched in oncogenes. Meanwhile, synonymous mutations decreasing codon optimality slowed down
translation, and were enriched in tumor suppressor genes. These synonymous mutations significantly contributed
to the translational changes in tumor samples compared to normal samples.

Conclusions: Synonymous mutations might play a role in liver cancer development by altering codon optimality
and translational velocity. Synonymous mutations should no longer be ignored in the genome-wide studies.
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Key message
Synonymous mutations play a role in liver cancer devel-
opment by altering codon optimality and translational
velocity.

Background
By definition, synonymous mutations are those muta-
tions that do not change amino acids, and they usually
take place at the third codon positions [1, 2]. Classic
evolutionary theories only consider the functional conse-
quence of missense mutations, and the synonymous mu-
tations are regarded as neutral sites and are used as
“control group” to test the selection force on missense
mutations [3–5]. Based on this notion that only missense

mutations could have functional impacts s (among point
mutations, not including Indels or structural changes),
researchers tend to automatically ignore the synonymous
mutations and only put efforts in studying the protein-
changing variations [6, 7]. The best example could be
seen in the recent outbreak of COVID-19 pandemic,
where many mutation-based functional studies only fo-
cused on missense mutations in the SARS-CoV-2 gen-
ome [8], while the synonymous mutations/codons in
SARS-CoV-2 were much less noticed [9, 10].
Recently, molecular evidence showed that synonymous

mutations actually have their functional impact. This
idea challenged the classic evolutionary theory. As we
know, synonymous codons are not equally used by the
genome. An organism tends to favor a particular set of
synonymous codons [11], and these favored codons usu-
ally have higher frequencies in the genome [12–14],
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termed optimal codons [15, 16]. Synonymous mutations
could switch a rarely used codon to a frequently used
codon, changing the codon optimality. If the optimal co-
dons are advantageous, then the synonymous mutations
would be subjected to natural selection as they alter the
codon optimality [17]. In silico, in vitro, and in vivo evi-
dence all showed that optimal codons have faster trans-
lational velocity compared to the non-optimal codons
[18–23]. These striking findings indicated that although
the synonymous codons encode the same amino acid,
they differ in translational speed. In other words, pro-
teins translated from different synonymous codons are
qualitatively equal but quantitatively different.
Given the functional impact of synonymous mutations,

there is no reason to exclude these mutations from the
studies related to human diseases including cancer.
There are already a bunch of studies reporting the
disease-related synonymous mutations. These studies
could be classified into the following categories based on
their methodology and themes. (1) Bioinformatic ana-
lyses studying the global patterns of the collective effect
of synonymous mutations. For example, genome-wide
analysis revealed that a part of synonymous mutations
could affect mRNA splicing and might contribute to
cancer progression [24]. Evolutionary study indicated
that synonymous mutations in oncogenes were also sup-
pressed due to undetermined selection pressure [25].
The synonymous codon usage in cancers tends to avoid
expensive and low-efficiency codons and prefers to use
cheap and high-efficiency counterparts [26]. (2) Investi-
gation or experimental verification of a particular or a
few synonymous mutation(s) related to particular
phenotype. For example, a single synonymous mutation
observed in fragile X patient could alter the host gene
expression and eventually lead to the syndrome [27],
synonymous mutations in PKD1 gene caused autosomal
dominant polycystic disease [28], synonymous mutations
in ATP7B gene was associated with Wilson disease [29],
and somatic synonymous mutations contributed to mel-
anoma [30, 31].
The above descriptions have connected the genotype

with phenotype. At molecular level, the effects of syn-
onymous mutations could be exerted via various ways
[32] including (1) splicing changes [28, 29], (2) RNA
structural changes [33–35], (3) altered translational
speed [36], and (4) miRNA binding gain or loss [37]. Of
note, in some systems or software the mutations related
to splicing changes are listed separately although they
belong to synonymous mutations [38].
The effect of synonymous mutations on translational

speed is of our interest. More specifically, the mechan-
ism underlying how synonymous mutations affect trans-
lational speed might be the alteration of tRNA
concentration decoding the codon, which usually

changes from tissue to tissue [39], differs between malig-
nant and non-malignant cells [40], varies from species to
species [41].
Based on our own field of liver cancer, there is urgent

need for us to elucidate whether synonymous mutations
play a role in liver cancer development. So far, the exon
sequencing of patients only focused on a few missense
variations in candidate genes. If synonymous mutations
really contribute to liver cancer progression, then the
existing exon sequencing methodology could omit a
large number of causal mutations on synonymous sites.
Obviously, the human genome has one third of syn-
onymous mutations in coding regions, and therefore, the
omission of synonymous mutations would be a great loss
to the cancer field, and meanwhile misleading the
diagnosis.
We aim to systematically verify the notion that syn-

onymous mutations are not silent due to the ability to
change codon optimality and translational speed. By
using the tumor samples, where mutations are supposed
to be more prevalent than randomly picked healthy pop-
ulations, the observation of synonymous mutation-
mediated translational changes would be of greater func-
tional impact and biological significance. Moreover, the
associations between the codon features (synonymous
mutations, codon optimality, and translational speed)
and the gene enrichment (oncogene or tumor suppres-
sor gene) would increase the confidence that these syn-
onymous mutations might play a non-negligible role in
tumorigenesis.
In this article, we utilized the transcriptome (RNA-

seq) and translatome (ribosome profiling) of liver cancer
and normal tissue from ten patients (GSE112705) [42].
We found that synonymous mutations that increase the
codon optimality could significantly enhance the transla-
tional velocity, and are enriched in oncogenes. The syn-
onymous mutations that decrease codon optimality slow
down translation, and are enriched in tumor suppressor
genes.

Methods
Data collection
The human and macaque reference genomes were
d own l o a d e d f r om En s emb l w e b s i t e ( h t t p : / /
ensemblgenomes.org/). The sequencing data (RNA-seq
and ribosome profiling) of normal/tumor tissues from
ten patients were downloaded from NCBI via accession
number GSE112705 [42]. According to the original lit-
erature, the ten patients suffered from hepatocellular
carcinoma (HCC). The liver tumor tissues and their ad-
jacent normal liver tissues were collected.
The lists of oncogenes and tumor suppressor genes

(TSG) were downloaded from the cancer gene consor-
tium website (CGC, https://cancer.sanger.ac.uk/census/).
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Totally 240 oncogenes and 242 TSG were obtained. This
final gene list did not include the ambiguously annotated
genes, for example, some genes were annotated as both
oncogene and TSG. These genes were not included in
our list.
The SNP data of the 1000 genome project were down-

loaded from official website (ftp://ftp.1000genomes.ebi.
ac.uk/). The genome version is “phase2 reference assem-
bly sequence hs37d5”.

Mapping and variant calling
We mapped the sequencing reads to the human refer-
ence genome by using STAR [43] with default parame-
ters (version 2.7.3a). The gene expression profile was
directly downloaded from the original article [42]. Muta-
tions were called by Samtools [44] with parameter -Q 30
-q 20 (version 1.10). The parameters require the base
quality to be higher than 30 and mapping quality higher
than 20. Higher base quality represents lower sequencing
error probability. Q > 30 means error probability <1e-3.
Mapping quality increases with the reliability of the se-
quence alignment. Mapping quality q > 20 almost en-
sures a read to be uniquely mapped to the reference
genome.
As we have defined in the main text, the direction of

mutations should be “from ancestral allele to derived al-
lele”. To obtain the tumor-specific SNP, we required the
mutations to have both the ancestral and derived alleles
in tumor RNAs. Meanwhile, this position in normal
sample should be covered by at least five reads (of ances-
tral allele) to prove that this site did not have mutation
in normal tissues. This pipeline was first applied to the
data of each of the ten patients to get the SNP profiles
of ten individuals. Next, these ten SNP sets were merged
to get a union of SNP sites, which is approximately 400,
000 unique sites. Functional annotation was done by
software SnpEff [38].
For the so-called tumor-specific mutations in this

study, there are two layers. In the section that displayed
the mutation landscape in RNA-seq, we only required
(1) sequencing coverage ≥5 in normal tissues and no
mutations were detected; (2) coverage ≥5 in tumor sam-
ples and mutations were detected. In the section that
compared translational speed of different alleles (which
is sensitive to low sequencing coverage), we further re-
quired the mutation sites to have (1) RNA-seq coverage
≥20 in normal tissues and no mutation was detected; (2)
RPF (A-site) coverage ≥20 in normal tissues and no mu-
tation was detected in A-site tri-nucleotide; (3) RNA-seq
coverage ≥20 in tumors and both two alleles were de-
tected with allele count ≥3; (4) RPF (A-site) coverage
≥20 in tumors and both two alleles were detected in A-
site tri-nucleotide with allele count ≥3; (5) absent in
1000-genomes. We have emphasized that we do not

intend to obtain an accurate list of tumor-specific muta-
tions. Instead, we just want to identify the bona fide ones
to perform translational analysis and prove the notion
that synonymous mutations could affect translational
speed.

Determining P-site offset and A-site RPF density
With similar idea and methodology to previous studies
[45, 46], we used the A-site tri-nucleotide to calculate
the ribosome density and translation elongation speed of
each codon. We obtained the RPF alignment file and ran
with software plastid [47]. The outcome of this pipeline
would tell us the P-site offset values for each length of
the RPF reads. By trimming the offset from the 5′ end,
one could determine the P-site tri-nucleotide in each
RPF read. The A-site tri-nucleotide is just located down-
stream the P-site in each RPF read. For the ribosome
density used to calculate translational speed and the mu-
tations detected in RPF reads, only the A-site tri-
nucleotide was used. Therefore, the RPF density on each
codon was also termed A-site density in this article.

Translation efficiency
The TE of genes was calculated as RPKMRPF/
RPKMmRNA. RPKM stood for “reads per kilobase per
million mapped reads”. The raw reads count of each
gene was accomplished by software package htseq [48].

Conservation analysis
For each mutation site in human, the orthologous nucle-
otides in macaque were transferred by liftOver chain
downloaded from Ensembl. The liftOver tool allows the
transfer of genomic coordinates of different species.
Command “liftOver human_sites human_to_macaque_
chain macaque_sites”. When the orthologous location in
the macaque genome is known, then we could extract
the corresponding nucleotide using Bedtools [49]. Com-
mand “bedtools getfasta -fi macaque.fa -bed macaque_
sites -fo macaque_nucleotide”. The dN (nonsynonymous
substitution rate) was calculated by software yn00 [50].
When running yn00, first we need to have the ortholo-
gous gene table between human and macaque. This
could be obtained by transferring the genomic coordi-
nates of the two species and retrieve the gene ID with
the help of the genome annotation file (gft format).

Graphic works and statistics
The graphic works and statistics were realized in the R
environment (version 3.5.2). KS tests were realized with
command “ks.test()”. Correlation tests were performed
with command “cor.test()”.
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Results
SNP profile of the samples
By mapping the reads to the human reference genome
and performing variant calling, we defined the mutations
appearing in cancer tissues but absent in normal tissues
(Fig. 1a, b). We stress that this study does not aim to re-
trieve the accurate full list of specific mutations in tu-
mors. We only aim to find solid evidence that the
synonymous mutations indeed affect the translational
speed. To accomplish this, we wish to find the “high-
confidence sites” where no derived mutations are ob-
served in normal tissues while the tumor samples are
heterozygous (Fig. 1b). Sites with low sequencing cover-
age are not informative to determine whether they are
mutated or not, so we will perform stricter filtering cri-
teria in the following sections when using ribosome pro-
filing data, where the 1000-genomes SNPs are also
excluded (see Methods). Here, we first show the land-
scape of mutations in RNA-seq.
The nucleotides in human reference genome might

not reflect the ancestral state, and therefore we only
keep the derived mutations by looking at the ortholo-
gous site in macaque (Macaca mulatta) (Fig. 1a). This
step is necessary since the direction of mutations should
not be based on the reference genome and could only be

inferred from the sequence of outgroup species. In the
comparison of normal and tumor tissues, we require the
reference genome and normal tissue to be ancestral nu-
cleotide and tumor tissue to have both the ancestral and
derived nucleotides (Fig. 1b). The mutations in tumors
with extreme high level of 100% were unreliable. More-
over, a SNP might be missed in normal tissues due to in-
sufficient sequencing coverage. Therefore, when
searching for these tumor tissue-specific mutations, we
require them to have at least 5 RNA-seq reads covered
in normal tissues (see Methods for details). Again, we
re-emphasize that the so-called tumor-specific mutations
might be overestimated due to insufficient sequencing
coverage in normal tissues. However, we do not aim to
acquire the accurate list of tumor-specific mutations. In-
stead, these mutations just serve as candidate sites for
our downstream analysis on ribosome profiling data. In
the following sections (where stricter cutoffs are used
and the 1000-genomes SNPs are excluded. See
Methods), we will observe that those synonymous sites
are un-mutated in our normal tissues (coverage ≥20) but
mutated in tumor samples with high confidence (cover-
age ≥20 & alternative allele ≥3), and that they indeed
affect the translational speed by comparing different al-
leles. This is our ultimate purpose.

Fig. 1 Definition and statistics of SNPs. a For SNPs in each sample, we require the human reference sequence to be identical to the sequence in
macaque (Macaca mulatta) so that the alternative allele would be the derived allele. This is the rational way to confirm the direction of
mutations. b To define the tumor-specific mutations, we require the normal samples to have only the ancestral allele and the tumor sample to
have both ancestral and derived alleles. Sites with insufficient sequencing coverages in normal samples were uncertain and excluded (grey). Sites
with 100% mutation levels in tumor samples were also unreliable and discarded (green). Non-ancestral sites (purple, very few) were not
considered. c Fraction of SNPs regarding their functional annotation. d Percentage of SNPs regarding the nucleotide change of the mutation

Li et al. BMC Cancer          (2021) 21:388 Page 4 of 13



Here, under coverage ≥5 in RNA-seq of normal tissues
and mutations detected in tumor sample, 9567 ~ 66,173
SNPs were found in the ten patients, with individual
LC034 having the fewest SNPs and individual LC502
having the most SNPs. The union of these SNPs is 399,
727 unique sites. Among these 399,727 unique SNPs in
patients, 146,595 (43.2%) were missense, 61,259 (18.1%)
were synonymous, ~ 20% were located in UTRs (un-
translated regions), and ~ 20% were located in intron or
other noncoding regions (Fig. 1c). The SNP profile show
that transitions take place much more frequently than
transversions (Fig. 1d), which confirms with our com-
monsense. These results represent the basic landscape of
mutations detected in RNA-seq. The next step is to
identify the signal of translation of these mutations,
where stricter criteria and higher cutoffs will be used.

Determining A-site tri-nucleotide in RPF reads
The ribosome protected fragment, termed RPF, is typic-
ally around 30 nt. The position being translated is the P-
site and A-site (Fig. 2a). P-site is more relevant to the
amino acid property and A-site usually reflects the trans-
lational speed of the codon. The distance from the 5′

end of RPF read to the 5′ of P-site is termed P-site off-
set. Multiple tools [47, 51] are able to find out the P-site
offset in the ribosome profiling data with good phase.
We looked at the phase of the ribosome profiling data

in hand. For different RPF length, most of the reads have
5′ end mapped to the first codon position (Fig. 2b), sug-
gesting the success of nucleotide digestion in the ribosome
profiling protocol. Next, we employed software plastid
[47] to determine the P-site offset RPF reads with different
length (Fig. 2c, d). By trimming the offset from the 5′ end,
we determine the P-site tri-nucleotide in each RPF read.
The A-site tri-nucleotide is just located downstream the
P-site in each RPF read (see Methods for details). In the
following sections, only the A-site tri-nucleotide was used
to calculate the ribosome density (translational speed) and
the mutations detected in RPF reads.

Capture of allele-specific translational events of
synonymous mutations
For all the mutations we selected, the nucleotides in nor-
mal tissues are the ancestral alleles and the nucleotides
in tumors have both ancestral and derived alleles (Fig. 3).
For each of these alleles, it has RNA coverage and RPF

Fig. 2 Illustration of what P-site and A-site mean and how offset is determined. a The ribosome protected fragment is usually around 30 nt. The
positions being translated are P-site (3 nt) and A-site (3 nt). A-site should be used to calculate the translational speed of each codon. The distance
from the 5′ end of the RPF to the 5′ of P-site is defined as “P-site offset”. When the position of P-site is determined, A-site is just 3 nt downstream
of the P-site. b In the ribosome profiling data, we counted the percentages of RPF reads mapped to the different frames. Frame0 represents the
RPF reads with 5′ end mapped to the first codon position. Frame1 means the 5′ end of RPF reads was mapped to the second codon position.
Frame2 means the third codon position. c The 5′ end of RPF reads usually peaks at the upstream of start codon ATG. The distance from the peak
to the start codon is the P-site offset. d The P-site offset of RPF reads with different lengths
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(A-site) coverage, and the RPF (A-site) density could be
calculated to represent translation elongation velocity
(Fig. 3). Higher A-site density represents slower local
translation velocity. In normal tissues, the A-site dens-
ities of the ancestral alleles are calculated, and in tumors,
both the ancestral and derived alleles have their own
RPF densities (Fig. 3). We calculated the A-site densities
of the alleles for all SNP sites. Next, we retrieved the
synonymous sites and check whether the synonymous
mutations increase or decrease the codon optimality.
Synonymous mutations from A/T to C/G increase
codon optimality and those from C/G to A/T decrease
codon optimality (Fig. 3). Our aim is to examine if the
alteration in codon optimality could impact the A-site
density, that is, the local translation elongation speed. As
shown in Fig. 3, the comparison of A-site densities be-
tween normal and tumor samples might be questionable
as we did not perform “normalization by library size”.
However, the comparison of A-site densities between
the two alleles in tumor sample is completely unbiased
and valid because they are produced from the same se-
quencing library. Moreover, heterozygous SNPs within
the same sample are exposed to the same trans environ-
ment, which provides the perfect condition to study the
effects of cis elements like sequence features. Neverthe-
less, although the cross-sample comparison is affected

by library size and other variables, we intend to add it as
supporting evidence.
In the previous section that displayed the mutation

landscape in RNA-seq, we only required sequencing
coverage ≥5 and mutation detected in tumor samples. In
the following comparison of translational speed, which
would be sensitive to low sequencing coverage, we further
required the mutation sites to have (1) RNA-seq coverage
≥20 in normal tissues and no mutation was detected; (2)
A-site coverage ≥20 in normal tissues and no mutation
was detected in A-site tri-nucleotide; (3) RNA-seq cover-
age ≥20 in tumors and both two alleles were detected with
allele count ≥3; (4) A-site coverage ≥20 in tumors and
both two alleles were detected in A-site tri-nucleotide with
allele count ≥3; (5) absent in 1000-genome. We believe
these criteria would ensure the high-confidence mutation
sites we want. Now that we have defined the synonymous
mutations in RNA-seq and RPF data, the next step would
be the comparison of translational speed on the different
alleles of the mutation sites.

Optimal synonymous mutations increase local
translational speed
We plotted the A-site density on each allele in normal
and tumor samples. We first looked at the optimal syn-
onymous mutations from A/T to G/C. Apparently, the

Fig. 3 Illustrating the pipeline to compare the allele-specific RPF density (A-site tri-nucleotide density). According to the description in previous
parts, the allele in normal tissue is the ancestral allele, and the tumor tissues have both the ancestral and derived allele. The A-site and RNA reads
count could be extracted from the sequencing data. The A-site/RNA (A-site density) is calculated for each allele. We also classify the synonymous
mutations based on codon optimality. Synonymous mutations from A/T to C/G are optimal and the opposite direction are non-optimal
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A-site densities on ancestral alleles in normal and tumor
samples are comparably high, while the A-site density
on derived allele in tumors is lower (Fig. 4a). Since lower
A-site density denotes faster translation elongation
speeds, this result demonstrates that the optimal syn-
onymous mutations really change the local translation
rate. One may argue that the comparison between two
samples did not consider the library size. Therefore, we
display the A-site density of two alleles within the tumor
samples (Fig. 4b). In the figure, each dot represents one
optimal synonymous mutation site, and we could clearly
see that the A-site density on ancestral allele (A/T) is
significantly higher than that on derived allele (C/G).
This is direct observation of the different translational
speed on two alleles with different codon optimality
(within the same library).
Similarly, we then looked at the non-optimal synonym-

ous mutations from C/G to A/T. The A-site densities on
ancestral alleles in normal and tumor samples are low,

while the A-site density on derived allele in tumors is high
(Fig. 4c). Again, to cancel the potential bias caused by li-
brary size, we compared the A-site densities on ancestral
and derived alleles in tumors. The translation on ancestral
alleles (C/G) is significantly faster than that on derived al-
leles (A/T) (Fig. 4d). This consolidates the notion that syn-
onymous mutations in tumors altered the codon
optimality and local translation elongation speed.
Note that the pre-filters on sequencing coverage (≥ 20)

ensured the high confidence of these mutation sites
where the normal tissues do not have mutations and the
tumor samples have both alleles sequenced with ad-
equate coverage (≥ 3). These criteria should make our
results and conclusions more reliable.

Enrichment of speed-controlling synonymous mutations
in oncogenes and tumor suppressor genes
By merely observing the differential translation speed on
two alleles in tumors does not prove the causal

Fig. 4 RPF density (A-site density) on different alleles of synonymous sites. a For optimal synonymous sites, the A-site densities on ancestral
alleles in normal sample, ancestral alleles in tumor sample, and derived alleles in tumor sample were plotted. KS tests were used to calculate the
p-values. b For optimal synonymous sites, the A-site densities on two alleles in tumor sample were compared. Paired t-test was used to calculate
the p-value. c For non-optimal synonymous sites, the A-site densities on ancestral alleles in normal sample, ancestral alleles in tumor sample, and
derived alleles in tumor sample were plotted. KS tests were used to calculate the p-values. b For non-optimal synonymous sites, the A-site
densities on two alleles in tumor sample were compared. Paired t-test was used to calculate the p-value
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relationship between synonymous mutations and onco-
genesis. However, the direct evidence could only be ob-
tained from molecular and cellular experiments or
animal models. Given the transcriptome and translatome
data in hand, what we could do is to examine the enrich-
ment of these synonymous mutations in different groups
of genes. We denote the optimal (A/T to C/G) and non-
optimal (C/G to A/T) synonymous mutations as the
speed-controlling synonymous mutations (as proved by
the results above).
The synonymous mutations used in this section was

those with RNA-seq coverage ≥5. Although in the trans-
lational speed comparison we used a more stringent fil-
ter to obtain speed-affecting mutations with higher
confidence, we believe that many of the discarded sites
in the filtering steps would also affect translational speed
and they are removed solely due to the technical issue
(insufficient sequencing coverage). Therefore, in this sec-
tion that compares the synonymous SNP density in dif-
ferent genes, to increase statistic power, we used the
larger set of mutation sites with RNA-seq coverage ≥5.

The results of high-confidence mutation sites will be dis-
played in the next section.
We defined SNP density as the number of SNPs per

Kb of CDS. Here, SNP means the tumor-specific SNPs
as defined previously (and throughout this study). Mean-
while, we retrieved the lists of oncogenes and tumor
suppressor genes (TSG) from cancer gene consortium
(CGC, https://cancer.sanger.ac.uk/census/). Totally 240
oncogenes and 242 TSG were obtained. We found that
the density of optimal synonymous mutations is signifi-
cantly higher in oncogenes than in TSG (Fig. 5a, pooled
samples are shown), and the density of non-optimal syn-
onymous mutations is significantly higher in TSG than
in oncogenes (Fig. 5b). Apart from oncogenes and TSG,
the remaining genes also have these synonymous muta-
tions. However, we did not see differential SNP densities
(optimal versus non-optimal) on these genes (Fig. 5c).
These results make sense and seem to connect syn-

onymous mutations to liver cancer development. In
tumor samples, optimal synonymous mutations increase
translational speed and are enriched in oncogenes, and

Fig. 5 SNP density (number of SNPs per Kb CDS) in different genes. a Optimal synonymous SNP density in oncogenes and TSG. KS test was used
to calculate p-value. b Non-optimal synonymous SNP density in oncogenes and TSG. KS test was used to calculate p-value. c Synonymous SNP
density in the remaining genes. KS test was used to calculate p-value. d Examples of genes with high synonymous SNP density. Oncogenes with
the highest optimal synonymous SNP density were shown. TSG with the highest non-optimal synonymous SNP density were shown. “Freq”
means number of SNPs
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non-optimal synonymous mutations decrease transla-
tional speed and are enriched in TSG, while other genes
do not exhibit different densities of these optimal or
non-optimal synonymous mutations.
To visualize our results and provide more specific ex-

amples, we listed the genes with the highest synonymous
SNP density (Fig. 5d). Oncogenes with the highest dens-
ity of optimal synonymous mutations and TSG with the
highest density of non-optimal synonymous mutations
were listed. Among the top genes, the oncogenes CALR
(Calreticulin), HNRNPA2B1 (Heterogeneous Nuclear Ri-
bonucleoprotein A2/B1), and TSG including B2M (Beta-
2-Microglobulin), BTG1 (B-Cell Translocation Gene 1)
may all play crucial roles in maintaining or disrupting
the equilibrium status in normal cells. For example, mu-
tations in gene CALR were reported to cause breast and
colorectal cancer [52], ovarian carcinoma [53], and pros-
tate cancer [54], and the mutations reported were mis-
sense mutations. Now that we found many optimal
synonymous mutations in liver cancer tissues, this might
broaden the knowledge about this gene and serve as
guidance in diagnosis in the future.
To show the potential effect of the synonymous muta-

tions on the global translation efficiency (TE) of genes,
we first compared the TE in tumor samples and normal
samples. For oncogenes, the TE was significantly higher
in tumor samples than normal samples (Fig. 6a). For
TSG, the TE was significantly higher in normal samples

than tumor samples (Fig. 6b). Since we already observed
the enrichment of “speed-controlling” synonymous mu-
tations in these gene sets, it was reasonable to attribute
the TE foldchange to the effect of synonymous muta-
tions. We performed multiple regression analysis “Y ~
X1 + X2 + ... + Xn”, where Y was the TE foldchange be-
tween tumor and normal samples, and X1 to Xn were
the variables. We aimed to see which variable had the
strongest effect on TE foldchange. We found that the
number of optimal synonymous mutations positively
contributed to TE foldchange and that the number of
non-optimal synonymous mutations negatively contrib-
uted to TE foldchange (Fig. 6c). For other variables like
gene length, conservation level (dN), expression, and GC
content played minor roles in determining the tumor
versus normal translational changes. This observation
strongly indicated that synonymous mutations did have
impact on the local and global translational changes be-
tween tumor and normal samples.

Robust patterns are found for the high-confidence
mutations in tumors
As stated, the so-called tumor-specific mutations have
two layers in this article. The results of the mutations
with loose criteria (coverage ≥5) were shown above.
Here, we try to show the robustness of the patterns by
using the high-confidence mutations with much stricter
cutoffs (coverage ≥20, alternative allele ≥3, and also

Fig. 6 Translation efficiency (TE) in normal and tumor samples. a TE of oncogenes in normal and tumor samples. “***” represented p-value <
0.001. b TE of TSG in normal and tumor samples. c Regression coefficients of “Y ~ X1 + X2 + ...Xn”. Y is the TE fold change of tumor samples to
normal samples. The variables were scaled to the same range of − 1 to 1. The variables included number of optimal synonymous mutations,
number of non-optimal synonymous mutations, gene length, conservation level (dN), gene expression, and GC content
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absent in the 1000-genomes SNPs. See Methods for
details).
We validated the following patterns. The density of

optimal synonymous mutations is significantly higher in
oncogenes than in TSG (Fig. 7a), and the density of
non-optimal synonymous mutations is significantly
higher in TSG than in oncogenes (Fig. 7b). No signifi-
cant difference of SNP densities (optimal versus non-
optimal) was observed on the remaining genes (Fig. 7c).
The optimal synonymous mutations contribute posi-
tively to the gene TE while the non-optimal synonymous
mutations negatively affect the gene TE (Fig. 7D). All
these patterns suggest that our observation of synonym-
ous mutations and codon optimality affecting the trans-
lation elongation speed is robust.

Discussion
Intuitively, the oncogenesis process might be caused by
the enhancement of oncogenes or the suppression of
TSG. The enhancement or suppression could be regu-
lated at (1) transcription level; (2) mRNA decay level; (3)

translation level; (4) protein degradation level; or (5)
protein activity level. In this study, we focused on the al-
teration at translation level, and has associated this
translational change with the synonymous mutations in
tumor samples. This is a novel angle that interprets the
cancer development with synonymous codon usage bias.
Our study hints that the synonymous mutations could
affect the codon optimality and consequently regulate
the translation of codons. The impact of synonymous
mutations is detectable, and it might more or less con-
tribute to the cancer development.
In early years, the literatures on synonymous codon

usage bias mainly analyzed its evolutionary patterns
based on genome sequences. Recently, as many tech-
nologies improved, the effect of synonymous codon
usage bias could be demonstrated by artificially manipu-
lating the codon sequence [55]. However, we claim that
the experimental manipulation of codon sequences has
several concerns that should consider: (1) The control
group (wildtype sequence) and experimental group (al-
tered sequence) might differ in trans factors, and thus

Fig. 7 SNP density (number of SNPs per Kb CDS) in different genes. The high-confidence SNPs were used in this part (coverage ≥20, alternative
allele ≥3, and absent in 1000-genomes). a Optimal synonymous SNP density in oncogenes and TSG. KS test was used to calculate p-value. b
Non-optimal synonymous SNP density in oncogenes and TSG. KS test was used to calculate p-value. c Synonymous SNP density in the remaining
genes. KS test was used to calculate p-value. d Regression coefficients of “Y ~ X1 + X2 + ...Xn”. Y is the TE fold change of tumor samples to normal
samples. The variables included the number of optimal synonymous mutations and the number of non-optimal synonymous mutations
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the sequence alone might not be able to completely ex-
plain the different behavior. But the heterozygotes or hy-
brid systems well solve this problem. (2) The patterns
found in lower organisms (like bacteria and yeasts)
might not be suitable for humans. (3) Most literatures
studied the effect of codon usage bias on transcription
level, mRNA decay level, and protein folding level. No
evidence of translational changes has been observed
in vivo or in vitro.
Therefore, our study nicely filled these gaps. (1) The

use of human tumor samples avoided the concern and
uncertainty of using other animals. (2) The focus on het-
erozygous SNPs fully took advantage of the identical
trans environment. The different behavior observed on
the two alleles could only be explained by sequence dis-
crepancies. (3) Translational regulation bridged the gap
between mRNA and protein.
One may ask that in this study the translational regu-

lation exerted by synonymous mutations was examined
at nucleotide level or codon level, but why this regula-
tion could not be directly tested at gene level by using
the ribosome profiling data? One should be clear that
the translation initiation process and translation elong-
ation speed work together to determine the protein pro-
duction rate. However, translation initiation is the rate
limiting step and serves as the major determinant of
protein production. Thus, the term translation efficiency
(TE) usually specifically refers to the translation initi-
ation efficiency, while elongation speed only fine-tunes
the amount of proteins. In the ribosome profiling data,
the RPF reads count per gene divided by the RNA reads
count per gene could roughly reflect the translation ini-
tiation efficiency of a gene. This algorithm automatically
assumes that the ribosome moves at constant speed on
the mRNA. Therefore, the effect of synonymous muta-
tions on protein production rate is very minor and is not
likely to be detected at gene level by ribosome profiling
data.
However, since the ribosome profiling data has the

ability to capture the codon-resolution (or nucleotide-
resolution) translation events, if one only used these data
to calculate the gene-level TE, then it did not fully utilize
the information hidden in the data. We understand the
advantage of ribosome profiling and we have done what
we could to parse the data at nucleotide-resolution, will-
ing to reflect the differential elongation speed on the
two alleles. We did so. Nevertheless, the alteration in
elongation speed is not impactful enough to be detected
at gene level. The ribosome profiling data alone could
not directly testify the final protein abundance of the
two alleles. All in all, we believe that our results we pro-
vided were adequate to support our conclusion that the
synonymous mutations could regulate the translation
elongation speed.

Conclusions
Synonymous mutations might play a role in liver cancer
development by altering codon optimality and transla-
tional velocity. Synonymous mutations should no longer
be ignored in the genome-wide studies.
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