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ABSTRACT: Biological systems are composed of heterogeneous
populations of cells that intercommunicate to form a functional living
tissue. Biological function varies greatly across populations of cells, as
each single cell has a unique transcriptome, proteome, and
metabolome that translates to functional differences within single
species and across kingdoms. Over the past decade, substantial
advancements in our ability to characterize omic profiles on a single
cell level have occurred, including in multiple spectroscopic and mass
spectrometry (MS)-based techniques. Of these technologies, spatially
resolved mass spectrometry approaches, including mass spectrometry imaging (MSI), have shown the most progress for single cell
proteomics and metabolomics. For example, reporter-based methods using heavy metal tags have allowed for targeted MS
investigation of the proteome at the subcellular level, and development of technologies such as laser ablation electrospray ionization
mass spectrometry (LAESI-MS) now mean that dynamic metabolomics can be performed in situ. In this Perspective, we showcase
advancements in single cell spatial metabolomics and proteomics over the past decade and highlight important aspects related to
high-throughput screening, data analysis, and more which are vital to the success of achieving proteomic and metabolomic profiling
at the single cell scale. Finally, using this broad literature summary, we provide a perspective on how the next decade may unfold in
the area of single cell MS-based proteomics and metabolomics.
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I. INTRODUCTION and/or extraction of nucleic acids, proteins, and metabolites is
constrained and targeted to singular cells within a tissue or a
culture, the benefit of which is that intercellular differences can
be measured, allowing for the visualization of discrete
populations of cells based on their physiological states (Figure
1). Single cell scales are also necessary to elucidate changes in
cell biochemistry that occur in the early stages of a disease, for
example, which might otherwise be unresolvable by conven-
tional bulk-based measurements.'>™'° For this reason, single
cell omics is increasingly applied to decipher the degree of
biochemical differences between cells within a tissue to
understand phenomena such as immune cell plasticity,'”
microbial resistance,'® and cellular dysregulation.'”

There are substantial challenges in moving from bulk and
multicell analyses to single cell analyses. To begin, eukaryotic
cells, for example, exhibit a significant range in size (~500 nm
to >1 cm; Figure 2) across kingdoms (e.g., planta, animalia,

Omics measurements involve the identification and quantifi-
cation of biomolecules with the overall aim of inferring the
physiological state of an organism based on molecular type,
location, and any change in abundance." Molecular-based
omics can be subcategorized into genomics, transcriptomics,
proteomics, and metabolomics, all of which provide valuable
information toward understanding the complete biotic state of
biological systems. In the fields of proteomics and metab-
olomics, mass spectrometry (MS) has been invaluable as these
methods are ubiquitously employed for bulk characterization
of proteins and metabolites extracted from homogenized tissue
and cell lysates.”™> Innovations in MS have resulted in an
explosion of discoveries and technological advancements
within these omic fields over the last two decades® ® and
have allowed the scientific community to provide answers to
complex biological questions, including how protein expression
regulates the circadian clock and cell signal transduction,”'” as
well as enable the development of tools to artificially evolve Received: December 2, 2020
proteins or target specific gene sequences for modification.' "> Revised:  January 20, 2021
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communities have increasingly set their sights on adapting Published: March 3, 2021
MS-based proteomics and metabolomics to the single cell

scale. Single cell omics differs from bulk omics in that analysis
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Figure 1. Illustration of how physiological state heterogeneity
occurring across a cell population within a sample may not be
resolved by bulk omics measurements (purple line). In this example,
two discrete subpopulations of cells can be resolved by measuring
each cell, which will resolve the predominate cell population (blue)
from a minor cell population (yellow).

etc.).”””" This means that measurements of biomolecules
using probes such as lasers or ion beams must be able to
sample across these size scales (Figure 2). Another challenge is
that cells contain a wide variety of molecules, all with different
abundances ranging from millimolar to subattomolar concen-

trations.””~** These attributes matter particularly at small size
scales, where math begins to dominate in that extraction and
ionization probabilities of each molecule clash with the
reduction in the available molecules that can be measured.”
It is also worth noting that eukaryotes present an easier
analytical challenge when compared to prokaryotes and
archaea, whose smaller sizes (<100 nm to <20 um) further
compound sensitivity issues. This, in part, is the reason
minimal molecular-based single cell proteomics and metab-
olomics research has been performed for these kingdoms in
comparison to eukaryotes. Finally, the speed of analysis
remains another challenge for single cell omics. Cellular level
sampling undoubtedly multiplies the number of data points in
an experiment, as multiple points (e.g., pixels) in a sample are
analyzed,”® and furthermore, the speed of any extraction
processes, digestion steps, and molecular identification further
amplifies this issue.””

Mass spectrometry imaging (MSI) has been an invaluable
technique for single cell biochemical analysis.”**” There are
numerous MSI techniques (Figure 2), each with their own
unique benefits and limitations for single cell analysis. MSI
methods essentially employ an analytical probe (e.g., ion beam,
laser, or solvent junction) capable of in situ endogenous
chemical desorption and/or ionization.>® There are numerous
historical examples of single cell MSI studies involving analysis
of tissue mounted substrates by focused ion beam techniques
(e.g, secondary ion mass spectrometry; SIMS).*' ~** However,
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Figure 2. Representation of the techniques available for MS-based spatial metabolomics and proteomics. The range of sensitivities in femtomoles
(y-axis) is compared against the spatial resolution range (x-axis) for these spatial-MS approaches. The spatial dynamic range is illustrated by the
transparent blue boxes. Cell size dimensions and the lateral resolution of other structural imaging techniques are displayed along the x-axis for

comparison.
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these examples are limited in their analytical throughput and
molecular coverage, and to complicate the matter, primary ion
beams tend to produce high degrees of molecular fragmenta-
tion that make data analysis nontrivial. > Ideally, single cell
omics methods allow for intact, sensitive, rapid molecular
characterization, in combination with a thorough under-
standing of how measurement techniques affect molecular
ionization yields and fragmentation.

Significant advancements have occurred in MSI and spatially
resolved MS-analysis, as a whole, over the past decade, and
many of these have focused on enabhng spatial proteomics and
metabolomics on a single cell scale.”” Advances in single cell
metabolomics have allowed for the interrogation and
classification of bioactive small molecules (e.g., sugars, fatty
acids, amino acids, etc.), drugs, and lipids through improve-
ments in sensitivity and spatial resolution limits,*> whereas
innovative approaches have been used to push the spatial limits
and automate single cell proteomics.**~** Increasingly, new
detectors and separation methods are being coupled to study
the metabolome and proteome for high spatial resolution
analysis at the single cell scale, and the benefit of which is
improvements in mass resolution, tandem mass spectrometry
(MS?), or orthogonal measurements of analytes, such as their
collisional cross sections.”” In addition, efforts toward rapid
analyte assignment through fragmentation prediction, and
hyperspectral data analysis have coalesced with new detector
technologies and sampling methods that has improved the
ability to probe metabolite and protein classes at the single cell
scale.”>?”

In this Perspective, we review the recent advancements in
MS-based single cell omics over roughly the past decade—
focusing on the proteome and metabolome—to address the
challenges yet unmet, illustrate the state of the field as a whole,
and attempt to present an outlook on the future. In short, we
will aim to answer the question: how far can we go toward
rapid, automated, sensitive, single cell scale sampling?

Applications for Single Cell Proteomics and Metab-
olomics. The development of probe-based MS for biological
molecular imaging has led to a wealth of knowledge and insight
into the spatial distribution of various molecules for a better
understanding of physiological processes.’”*' The high
chemical specificity and sensitivity, along with the critical
spatial information obtained within these experiments, makes
spatially resolved MS a technique of increasing interest for
single cell omics. 4248 1 single cell omics, one must first
consider the sensitivity limitations related to the nature of the
sample itself, wherein a single cell contains a diverse
population of molecules (e.g., carbohydrates, lipids, proteins)
that vary greatly in their natural abundances. The abundance of
a protein molecule can range from a single molecule to a few
million copies per cell, and this consequently directly affects
what can be measured in a single cell.*** For example, the
calculations from McDonnell et al. suggested a peptide
molecule would require a concentration in the micromolar
(uM) range in order to be detected in a single cell, assuming
an attomole limit of detection.*® This effectively restricts the
detection of the majority of the molecules present in a single
cell to only the most abundant ones due to ion competition
during ionization and detection. This is one reason why
metabolites and lipids are often measured in untargeted single
cell experiments. The second major challenge regarding
sensitivity in high-spatial resolution MS experiments is
associated with the fact that increasing lateral resolution
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reduces the analysis area (volume) or pixel (voxel,
respectively) size, thus reducing the amount of material
available for analysis.47 In spite of these challenges, single cell
MS analysis has been achieved in a variety of organisms for
numerous applications, which include measuring dynamic
cellular biosynthesis, activation or inhibition of signaling
pathways, metabolic processes in diseased states, new natural
products, chemical defense mechanisms, and toxicological risk
assessments. "

Various metabolomic and proteomic MS approaches have
demonstrated the potential of obtalnlng a vast knowledge
about mammalian cell processes,"* but with the addition of a
spatial dimension due to the increasing interest in developing
single cell proﬁhnég tools this knowledge base will likely
continue to grow.” The reason metabolomic and proteomic
profile characterization is of such great interest is they help
predict differing cell types that could be associated with
molecular changes due to different perturbations of inter-
est.’”7* One example comes from Jansson et al., who used a
microscopy-guided single cell matrix-assisted laser desorption/
ionization (MALDI)-MS approach to determlne the single cell
heterogeneity of islets of Langerhans.”® Additionally with the
use of MALDI-2, Bowman et al. demonstrated rich lipid
spectra from mouse and human brain tissue containing
multiple sclerosis lesions at approximately 6 um spatial
resolution.”” These studies are some examples that demon-
strate the utility of single cell MSI for the investigation of
mammalian cells, and further examples will be discussed in
detail later.

Single cell MS techniques have also been adopted by plant
biologists in effort to help elucidate primary metabolism,
natural products, and plant defense pathways, for example.>
The vast molecular differences between the leaf, stem, and root
are even more apparent through the lens of single cell analyses.
Individual plant cells can range from ~10—100 um in size,
which in part makes smgle cell analysis more readily attainable
than in mammalian cells.*° However, special consideration
with regard to the cell wall must be considered, as this can
introduce unique challenges into the analysis of plant cells.
Specifically, the outside of the plant plasma membrane is
completely coated with arranged layers of cellulose microfibers
embedded in a matrix that composes a plant cell wall, which
can be up to 0.2 um thick.”” However, this also contributes to
the rigidity of the plant, which ultimately makes plant cells
often easier to handle for single cell MS experiments.”® As an
example, Korte et al. used a modified MALDI-Orbitrap-MS
instrument for single plant cell analy51s, 1mag1ng juvenile maize
leaves at a 5 pm spatial resolution.”” This permitted the
mapping of a variety of metabolites ranging from amino acids,
glycerolipids, and defense-related compounds at below single
cell resolution.” Stopka et al. also utilized an optical fiber-
based laser ablation electrospray ionization mass spectrometry
(fLAESI-MS) technique to target specific cell types within
Egeria densa leaf blade cells.”” Primary metabolites such as
malate, asparate, and ascorbate were found at higher levels in
epidermal cells, while lipids and triterpene saponins were
found in idioblast cells. These two techniques only scrape the
surface of how single cell MS has been applied to plant cells.
More exam les of single cell plant analysis can be found
elsewhere®>°"** and will be discussed further in this review.

Understanding the function of microbial communities is of
major interest, yet they remain a challenge largely due to their
enormous diversity and the complexity of interactions between
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Figure 3. Multiplexed ion beam imaging workflow for high-resolution spatial proteomics. Here, preserved tissue sections are mounted on
conductive substrates and incubated with unique isotopic transition metal-tagged antibody reporters. An oxygen primary ion beam rasters the
sample surface, ejecting and ionizing the isotope reporters, and their masses are subsequently measured via a mass analyzer. In this example, MIBI
analysis of human breast tissue displaying multichannel overlays, where each color represents a separate protein specific reporter. Adapted with

permission from ref 82. 2014 Nature Research.

community members.””** As single cell MS technologies have
advanced, high lateral resolution molecular analysis of bacteria
and fungi is now within reach.%"° However, single cells of
bacteria and fungi are inherently smaller in size than
mammalian and plant cells, and they contain certain properties
that can make high spatial resolution molecular-based MS
measurements difficult. Specifically, bacteria typically range in
size from approximately 0.2 to S ym, whereas fungi can range
from 2 to 10 pm with fungal hyphal-cell bundles reaching 5—
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S0 um (Figure 2).2%*" Other challenges persist with these
types of organisms, where fungal cells, for example, are mostly
made up of chitin that is difficult to breakdown to access
intercellular metabolites and proteins.”® Additionally, diatoms,
a single celled alga, contain a cell wall consisting of silica, which
makes their analysis extremely difficult for the same reason.’®®”
Nonetheless, high-lateral resolution secondary ion mass
spectrometry (NanoSIMS) has provided insights into these
microorganisms. NanoSIMS can achieve spatial resolutions
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down to 30 nm allowing for microbes to be imaged.’®
Schoffelen et al. utilized NanoSIMS for single cell imaging of
phosphorus uptake within algae.”” Additionally, Zimmerman
and co-workers used a combination of flow cell sorting and
NanoSIMS to determine phenotypic heterogeneity of chlor-
obium phaeobacteroides.”

Single cell MS as a field has grown immensely over the past
decade. Technologies such as MALDI-2, NanoSIMS, multi-
plexed ion beam imaging by time-of-flight MS (MIBI-TOF),
and many more have allowed for a continual growth in
research to be conducted on a wide variety of organisms and
cell types. As researchers continue to push the boundaries,
single cell MS is likely to become a mainstay and an essential
piece of research as we continue to strive to elucidate
metabolic functions in vivo.

Il. ADVANCES IN SINGLE-CELL MS ANALYSES

Single Cell Proteomics. Elucidating the spatial distribu-
tion of proteins at the cellular and the subcellular level, as well
as having the ability to capture ever-changing protein dynamics
within a cell, are vital for a complete understanding of the
underlying biology of a system from immune response to
cellular stress, for example.”' Genome amplification and
sequencing techniques commonly perform single cell analyses
and have been shown to resolve rare cell populations and
interrogate specific cells and substructures of interest within
heterogeneous clinical tissues.”” However, genomic and
transcriptomic technologies only provide indirect measure-
ments of cellular states, as these are constantly changing in
response to cellular stress.”* The relationship between protein
abundance and transcript abundance is complex and depend-
ent on the ex%)erimental context, which challenges biological
interpretation.'®”* In-depth proteomic measurements provide
a more direct characterization of phenotypes and are therefore
crucial for understanding cellular functions and regulatory
networks.”> Furthermore, MS-based proteomics measurements
have the potential to identify post-translational modifications
(PTMs), providing insights not available through genomics
measurements.’® Single cell proteomics by MS, therefore,
promises to revolutionize our understanding of cellular
biology.

Single cell proteomics approaches that utilize immunohis-
tochemistry (IHC) methods—bedrocks of clinical diagnostics
and basic research”’—have thus far demonstrated the highest
lateral resolution. Fluorescently labeled antibodies used for the
simultaneous detection of multiple targets with optical
microscopy and spectrometric tools are ubiquitous, but these
techniques have their limitations. In particular, the lateral
resolution of conventional optical microscopy is diffraction
limited, which constrains the lateral resolution of these
measurements.”” Another key challenge in IHC is the
availability of high-quality, thoroughly validated antibodies.”®””

Multiplexing fluorescent labeled IHC tags is possible, but
there is a need for primary antibodies to be highly selective to
the targeted protein (i.e, have very minimal nonspecific
interactions) and have nonoverlapping reporter emission
spectra.”’ Carefully matching fluorescent reporters is essential
along with utilizing dichroic mirrors and band-pass filters to
limit the overlapping emission spectra.”’ Alternatively, metal-
based IHC, like those used in mass cytometry approaches,
readily enable the targeted detection of up to tens of protein
markers from a sample bg utilizing heavy metal antibody-
bound reporter species.”’ Furthermore, imaging mass
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cytometry and metal-based IHC using MSI has come to the
forefront of spatially resolved single cell proteomics measure-
ments. Fluidigm utilizes a laser ablation-inductively coupled
plasma (LA-ICP)-MS approach for the detection of antibodies
within single cells (i.e., imaging mass cytometry).*" Addition-
ally, MIBI, developed by the Angelo lab (Figure 3), employs a
primary ion probing technique with MS to image metal-tagged
antibodies at subcellular resolution within clinical tissue
sections.”"”"” Both approaches have the capability of analyzing
up to 100 targets simultaneously over a five-log dynamic range.
Imaging mass cytometry and MIBI have frequently been
utilized for the analysis of formalin-fixed, paraffin-embedded
(FEPE) tissue.”> FFPE preservation has been a common
practice for clinical pathological analysis because of its ability
to preserve tissue morphologies long-term. Because of this,
large tissue repositories containing patient samples exist
waiting for analysis.”> MIBI-TOF was recently used to
simultaneously quantify 36 proteins at subcellular resolution
in triple-negative breast cancer samples.** In this study, spatial
enrichment analysis showed immune mixed and compartmen-
talized tumors coinciding with the expression of proteins PD1,
PD-L1, and IDO, which can be indicative of metastasis and
poor prognosis, in a cell type and location specific manner.**
Wang et al. utilized the Fluidigm system to analyze human
pancreas islets during the progression of type 1 diabetes.*’
Using this system they were able to achieve 1 ym resolution to
visualize an altered islets architecture and changes in protein
expression levels during disease progression.”” However,
utilization of this type of technology for single cell proteomics
ultimately is inherently limited by the availability of high-
quality antibody reagents—requiring a priori knowledge of the
proteins being targeted for analysis—and a finite multiplexing
capacity.

With the challenges of using IHC-based single cell MS in
mind, untargeted, direct single cell measurements are also a
common technique used for proteomics analysis. Historically,
MALDI-MS was a common method of protein analysis, and
only in the recent decade has it found broad applicability in
metabolomics.*> The detection of peptides within individual
cells was reported over two decades ago (in the year 2000).*°
MALDI-MS offers many advantages for single cell proteomics,
including good tolerance for salts, simple sample preparation,
and attomole detection limits with little sample consump-
tion."”*® A few early MALDI-MS-based studies revealed
neuropeptide profiles in single neurons of invertebrates,” as
well as the discovery of many novel neurohormones in single
invertebrate neurons.”’ Imaging proteins with MALDI-MS
presents a challenge when it comes to balancing throughput,
sensitivity at high spatial resolution, molecular specificity, and
identification. Spraggins et al. worked to address these issues
by improving acquisition rates and the spatial resolution down
to a single cell level, and they were able to spatially resolve and
identify proteins directly associated with host immune
response within specific lung tissue structures.”’ Laser ablation
electrospray ionization (LAESI) has also been used for the
measurement of intact proteins, where Kiss et al. used a LAESI
source combined with a hybrid ion-trap Fourier transform ion
cyclotron resonance (FTICR)-MS for the detection of intact
proteins directly from a tissue using a top-down approach.””
These laser ablation-based spatially resolved proteomics
techniques, however, provide limited molecular coverage of
only a handful of proteins within an analysis.

https://dx.doi.org/10.1021/jasms.0c00439
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While MALDI-MS analysis of proteins presents its own set
of challenges, untargeted molecular separation-based MS
techniques, using liquid chromatography (LC) and nano-
electrospray ionization (ESI), have excelled in multi- and near
single cell proteomics, in part, by providing broad molecular
coverage. Currently, most LC—MS-based proteomic ap-
proaches require samples comprising of thousands of cells in
order to provide in-depth protein proﬁling.38 However,
through the use of laser capture microdissection (LCM),
which permits targeting areas of interest within a tissue, or flow
cytometry cell sorting of disrupted tissue, specific cellular
populations can be isolated to provide comprehensive
molecular coverage of their proteomes.”” The recent develop-
ment of nanodroplet processing in one pot for trace samples
(nanoPOTS) provides the ability to probe small to single cell
populations in depth.”* NanoPOTS effectively enhances the
efficiency and recovery of sample processing by downscaling
preparation volumes to less than 200 nL to minimize surface
losses.”® Using nanoPOTS combined with a differential
tandem mass tag (TMT) labeling approach,” over 1400
proteins were able to be quantified from 152 individual single
cells.*® This finding demonstrates how this technology can be
used for spatially resolved proteomic measurements, with
broad molecular coverage, within clinical tissues of interest.*®

Even though LCM and flow cytometry provide reliable
dissociative methods for single cell analysis, there remains a
need for nondisruptive single cell analysis tools. The ability to
carry out microsampling single cell proteomics experiments
opens the door for studies that can directly probe the
developmental processes in complex tissues or whole
organisms. Within this arena, Xenopus laevis has been
extensively used as a model system for microsampling single
cell proteomic studies due to the large cell size and protein
concentrations in the early stages of their development.”® Sun
and co-workers were able to quantify 1400 protein groups in a
single run using LC—MS? from a single blastomere obtained
from a 16-cell X. laevis embryo.”* Blastomere-to-blastomere
heterogeneity was observed in 8-, 16-, 32-, and S50-cell
embryos, indicating that comprehensive quantitative proteo-
mics of this model organism can lead to valuable insights into
cellular differentiation and organ development.”” Lombard-
Banek and co-workers pushed further and isolated a single D11
cell from X. laevis from the 32-, 64-, and 128-cell stage of
development. Using optically guided in situ subcellular
capillary microsampling and one-pot extraction and digestion
method, they were able to identify between 750 and 800
protein groups in each cell stage by analyzing 5 ng of protein
by capillary zone electrophoresis MS.”® As technologies
continue to push the boundaries of single cell MS, more in-
depth proteomic measurements will be able to aid in
elucidating the critical roles of cellular functions.

Single Cell Metabolomics. Individual cells will exhibit a
wide degree of molecular diversity across their population,
therefore screening and identifying biomolecules over this
expansive range is a significant challenge. In the case of
metabolites (e.g., lipids, sugars, and organic acids), the number
of identified molecules orders in the hundreds of thousands in
mammals (according to the human metabolome database),”
and over 200,000 in the plant kingdom (determined from early
calculations).'” Metabolite heterogeneity is a multifaceted
problem for numerous reasons. To begin, lipids and
polysaccharides, for example, act as membrane and cell wall
supports in mammalian and plant cells, respectively, but the
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overall membrane composition can vary across cells of the
same genus.'”"'%” This compounds the analytical challenge as
the dynamic nature of metabolism can result in metabolic
asymmetry.'*® For these reasons, establishing powerful spatial
MS tools to sample the metabolome on a cell-to-cell basis may
provide the ability to answer critical questions such as the
speed and degree of metabolite exchange that occurs in a cell
population and, consequently, how this impacts metabolic
asymmetry.

To date, MSI has been the most impactful tool for MS-based
single cell metabolomics.’”¥***>>> MSI methods have
primarily involved probes including ion beams, lasers, or
solvent junctions for in situ analysis of metabolites.'”> These
techniques, summarized in Figure 2, do not require molecular
labels and are considered label-free imaging techniques. Of all
the techniques, MALDI-MS is utilized the most for spatial
metabolomics,*® and has been used for tissue level studies of
bacterial,®>' fungal,107_109 invertebrate,''**!! plant,“z’113
and mammalian systems,"*""* for example.

Reflective geometry MALDI-MS, where the laser directly
impacts the sample surface, is the most common configuration.
As this is usually employed as a microprobe technique, lateral
resolution is considered laser spot size limited, and therefore,
single cell analysis typically requires subcellular laser spot
11O=118 Reflective geometry MALDI-MS involving spot
sizes greater than a single cell have been explored; however,
this has involved either dispersed cells in a culture or cell
microarrays rather than analyzing single cells in a tissue.''”~"**
Over the past decade, several research groups have improved
the source design for MALDI-MS to enable single cell imaging
in tissues. The Caprioli and Lee groups have used small
diameter pinholes to filter the beam down to spot sizes of ~§
/,tm.sg’125 However, oversampling, where individual pixels are
partially overlaid, was necessary to compensate for low ion
yields in these studies.”” Recently, Feenstra et al. developed a
beam expander able to vary spot sizes between 4 and 50 ym."*°
They visualized lipids, sodiated sugars, and glucosides within
maize roots at S ym, but significant decreases in ion yield were
observed for all species, demonstrating the limitation of a
pinhole approach.'”® There have also been many new
instrumental designs developed to increase the imaging
speed of MALDI-MSI since imaging overall large (tissue
level) areas at single cell resolution increases the number of
data points (pixels) needed to be obtained.'””'** Recently,
Potocnik et al. used continuous laser acquisition to image lipids
at a rate of 50 pixel/s and a lateral resolution of 10 um in
sections of mouse brain using a Bruker rapifleX MALDI
Tissuetyper TOF-MS instrument."*”

Over the past decade, the Spengler group has developed and
improved upon their so-called scanning microprobe MALDI
(SMALDI) source. SMALDI uses a coaxial ion source
geometry with a novel objective for laser focusing, which
permits spot sizes down to 0.25 ym (as observed by the
ablation crater), making it readily applicable for analyzing
single cells.'"”” Recently, SMALDI has been adapted for
ambient pressure analysis (AP-SMALDI)."”” Khalil et al.
coupled the AP-SMALDI to a Thermo Q Exactive to assign 67
lipids at 12 gm resolution in mosquito sections.'*’ Kompauer
et al. decreased pixel sizes to 1.5 ym using a custom nine lens
objective, imaging lipids, metabolites, and peptides at
subcellular resolution in mouse brain sections."”’ Most
recently, Garikapati et al. optimized sample preparation for
10 pum lipid imaging in sections of mouse fetus.'>”

sizes.
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Figure 4. Example single cell imaging results from TG-MALDI-2 in the analysis of Vero-B4 cell culture: (a) Bright-field microscopy image of Vero
B cells with deposited DHB matrix; (b) background (m/z = 633.042) and (c—e) single ion images of PE (36:2), PC (34:1), and PC (34:1). (f)
High resolution bright-field microscopy image of highlighted red region in a, and (g) overlay of ion images in b, ¢, and e. (h) in-line bright-field
microscopy image from the TG-MALDI-2 source outlined region in f. Adapted with permission from ref 140. 2019 Nature Research.

An alternative optical configuration for MALDI is using
transmission geometry (TG-MALDI), where the laser impacts
the sample through the backside of an optically transparent
substrate.'*” This delivers smaller spot sizes than reflective
geometry via high-resolution focusing lenses with focal lengths
typically too small to be used in reflective geometry.'*
Another benefit of TG is that ions can be desorbed directly
into the MS inlet without ion losses that occur due to
orientation of the optics and ion extraction in reflective
geometry mode."** Recently, Zavalin et al. achieved 1 um for
lipids in a HEK-293 culture and mouse cerebellum tissues
using TG-MALDL'*’

It is worth reiterating that the reduction in probe diameter
size will decrease sensitivity.''® However, postionization can
compensate for sensitivity reductions.'*> Soltwisch et al. first
successfully reported laser post ionization (MALDI-2) in the
reflective geometry configuration.'*® Recently, Bowman et al.
mapped 147 unique lipids in sclerotic mammalian lesions at 6
pm,”* and separately, McMillen et al. and Heijs et al. used the
timsTOF flex for neutral lipid and N-glycan profiling,
respectively.l‘w’138 In transmission geometry, Spivey et al
analyzed lipid standards, showing that UV postionization was
able to compensate for sensitivity losses at <1 ym spot sizes." >
Niehaus et al. took this approach further, visualizing neutral
phospho- and glycolipid species in the cerebellum and kidneys
of a mouse model at a submicron resolution (Figure 4)."*

While microprobe analysis is the most common approach
for MALDI-MS, microscope mode is an alternate method.""”
Here, 2D ion detectors provide ion positions and register ion
packets while maintaining their spatial dimensions, which
permits subcellular lateral resolution imaging using spot sizes
larger than the diameter of the analyzed cell.'*' Furthermore,
this reduces throughput time in an imaging experiment, as
fewer sample positions are required for an image.'*' Many of
these notable experiments have involved the triple focusing
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TRIFT II mass spectrometer to achieve lateral resolutions of
below 10 gm in the detection of lipid and peptides.'**~'*°

A common aim of MSI is absolute analyte quantification
with spatial analysis.'**'*® The ability to quantify molecules
in a tissue section opens up the possibility of quantitative
molecular histology, which would permit MSI to be more
readily applied as a diagnostic tool for precise monitoring of
disease states based on spatial changes in molecular
concentrations.'*’ However, analyte quantification is complex
for a number of reasons. Using MALDI-MS as an example,
several factors inhibit quantitative MSI. First, tissue-specific ion
suppression may occur in the analytes surrounding environ-
ment, so-called “matrix effects,” which can change measured
analyte yields.'”* Second, molecules have specific ionization
energies, meaning that the ionization potential of a molecule
must first be known to convert relative abundance to absolute
concentration."”" Finally, in the case of MSI techniques
involving artificial matrices, analyte yields are dependent upon
the matrix composition, relative amount, and uniformity across
a tissue section.'”> Currently, quantification is achieved with
the aid of calibration standards;'>*~"** however, this is far from
scalable for metabolite analysis as the number of known and
unknown metabolites orders in the hundreds of thousands.

To overcome challenges related to MALDI-MSI anal-
ysis,*>'*° matrix-free LDI methods have been explored."*’”
Mid-IR lasers (ie, A = 2940 nm) capable of vibrationally
exciting endogenous water molecules within cells have been of
particular interest.”® In this approach, probing water-rich
samples enables the ablation of molecules from the sample.'*’
However, since the vast majority of these molecules are
neutral, a postionization step is necessary.159 An orthogonal
electrospray that intercepts the ablation plume and funnels the
ions to the mass analyzer is used in LAESI'® and infrared
matrix-assisted laser desorption electrospray ionization (IR-
MALDESI).'*"'*> Recent examples by Kulkami et al. have
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Figure S. Example of f-LAESI analysis using a 21T-FTICR-MS. Here, single soybean root nodule cells infected with B. japonicum were analyzed.
(a) Identification and ablation of an infected soybean cell and (b, c) the resulting mass spectra data from positive- and negative-ion modes,
respectively. The top left inset shows the captured IFS (black) for N-acetylglutamic acid overlaid on top of its simulated mass spectrum (red dashed
line). The middle inset shows the resolving of two peaks that correspond to two different metabolites. The top right inset shows the IFS of
dehydrosoyasaponin I (black) captured at a longer transient length. The peaks drawn with a red dashed line correspond to the simulated mass

spectrum of the same ion. Adapted from ref 159.

explored metabolite distribution in the roots of native and
invasive plant species at 100 um lateral resolution.'** Agtuca et
al. explored the metabolic asymmetry between infected and
noninfected soybean nodules with LAESI where elevated fatty
acid, purine, and lipid levels occurred as a result of
Bradyrhizobium japonicum infection.'®* The Muddiman
group used ice matrices to increase lipid yields,'® explored
dynamic neurotransmitter imaging,166 used IR-MALDESI for
imaging metabolomics in plant and mammalian samples, """
and coupled a drift tube for ion mobility direct collision cross
section (CCS) measurements from several tissue types.lég
Most recently, cell-to-cell lipid heterogeneity in a dispersed
HeLa cell culture was demonstrated by Xing et al. with IR-
MALDESL'"

Given that spot size increases with wa.velength,171 single cell
analysis can be more challenging with methods using IR lasers
in comparison to those employing UV lasers (e.g, MALDI).
Nevertheless, there have been efforts in this arena. The Vertes
lab have pioneered f-LAESI, which uses an optical fiber to
transmit the IR laser to the sample surface, rather than a series
of mirrors and objectives for focusing.”” This configuration can
produce spot sizes <30 um, and therefore can be used to ablate
single cells.'”> Stopka et al. used f-LAESI to elucidate the
metabolic noise within Egeria densa and infected soybean root
nodule cells.” Recently, Samarah et al. used f-LAESI in
combination with a 21-T FTICR-MS to study the fine isotopic
structure (IES) of endogenous metabolites (Figure 5).">% It
should also be noted that transmission geometry has also been
explored by the Vertes group,'”” but most recent efforts have
been directed at -LAESL

An alternative ionization approach for laser desorption is
using structured array supports. Here, lithography and ion
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etching techniques are used to fabricate nanopost arrays, which
act as a chemical ionization reagent through surface plasmon
wave excitation when tissues mounted on the array are
irradiated.'”*"’® Korte et al. demonstrated that silicon
nanopost array (NAPA) devices produced better metabolite
coverage in LDI-MS than MALDI-MS by detecting 88 unique
low-molecular weight metabolites.'”” NAPA studies have
shown that this method can also expand to other metabolite
classes including amino acids, nucleotides, carbohydrates,
xenobiotics, and lipids.'”® Experiments by Fincher et al. have
shown that the sensitivity of NAPA-based LDI is in the
subfemtomole range, which is significantly more sensitive than
techniques involving modification of tissues after mounting on
a substrate.'”” Additionally, it is theorized that understanding
the effect of array variation on ion yield quantitation is far
easier using the NAPA platform as rapid prototyping
techniques typically can be optimized to minimize array
variation.'®” Nanostructure-initiator mass spectrometry
(NIMS) is another technique that utilizes nanostructured
surfaces, which use porous silicon to facilitate analyte
desorption by laser irradiation."*'~"**> However, this technol-
ogy is in its infancy, and limited examples of cellular resolution
imaging with NIMS have been shown.'**'**

Desorption electrospray ionization (DESI) is a desirable
technique for single cell MS, as molecule desorption via a
solvent stream can be performed under ambient analysis
conditions and with minimal sample preparation.'*® However,
the limited spatial resolution of this approach has relegated it
to primarily tissue-level imaging.'®”~"*” Over the past decade,
Laskin and co-workers have developed nanospray-DESI (or
nanoDESI) utilizing a microliquid junction between two
capillaries to desorb analytes which has resulted in improve-
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Figure 6. Example of TOF-SIMS subcellular imaging, where the distribution of a drug is visualized in a single cell using the hybrid OrbiSIMS. (a) A
sequence of total ion images captured every ~400 nm of depth, as the cell was sputtered away. (b) Overlaid ion images of the PC headgroup in
gray, m/z 157 (a nuclear marker) in magenta, and the drug (amiodarone) in green at each of the respective spatial locations in a, and (c) a 3D
rendering of the cell that tomographically illustrates the location of PC, nucleus, and drug markers. Mass spectrum obtained from the ToF-MS
(black) and the Orbitrap-MS (blue) of the (d) PC headgroup and (e) nuclear marker. Adapted with permission from ref 215. 2017 Nature

Research.

ments in sensitivity and lateral resolution.'”® Sub-10 ym lateral
resolution nanoDESI-MS has been applied for lipid imaging in
lung, brain, and pancreatic tissues.'”""'** The addition of shear
force probes to standardize capillary-to-sample distance has
allowed for combined topography/molecular imaging, permit-
ting the ability to assess ion yield variation effects with
topographic changes, for example.'”

Of all the MSI techniques, SIMS maintains the highest
spatial resolution for MSL'** The ability to obtain molecular
images of intact species depends upon ion beam characteristics
such as the composition, the configuration of the ion optics,
and the energy spread of the beam."””'”° Ton beams composed
of majority monatomic species readily provide subcellular
resolution imaging capability, as they can be focused to below
50 nm."”*"7"%® However, the limitation for analysis of
biological samples is that they generate significant fragmenta-
tion, therefore molecules are rarely desorbed (and con-
sequently measured) intact.'”® Gas cluster ion beams
(GCIBs), which can be focused to <3 um and are used on
instruments including the Tonoptika J105,"”*%" have improved
intact lipid imaging due to softer desorption processes that
generate less fragmentation than the liquid metal ion guns
(LMIG) typically used in SIMS.*'~*** Subcellular imaging of
phosphocholine (PC) lipids in the brain, lipid visualization in
3D within bacterial envelopes, and de novo purine biosynthesis
have been demonstrated at a single cell scale with (CO,),/Ar,
gas clusters.””*7>°° Recently, high energy water clusters have
been shown to improve ion yields for single cell imaging with
SIMS.*”” Due to SIMS introducing significant fragmentation,
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instruments with MS?® capabilities are desired as they aid
assignment of fragment ions (produced by molecule
fragmentation) to their corresponding parent ions in a
fragment rich SIMS spectra.””***" However, many instruments
only employ a simple TOF-multichannel plate detector, which
limits the mass resolving 0power to <10000, making structural
assignments nontrivial.”'’ The PHI nanoTOF II has MS?
capabilities and operates a triple focusing electrostatic analyzer,
where precursor ions can be selected and directed into a
collision induced dissociation cell for MS%*'" Single cell
imaging with the nanoTOF II has included the imaging
endoplasmic reticulum stains in single cells,*"* among other
examples.”'” Recently, IONTOF have developed MS?
capabilities for the TOF-SIMS V by the addition of a Thermo
Q_Exactive Orbitrap (FTMS) to the instrument (termed “the
hybrid orbiSIMS”).”'* Passarelli et al. have used this novel
instrument for imaging lipids and isotopically labeled
amiodarone in 3D within single cells at either high lateral or
high mass resolution (Figure 6).”"°

lll. CORRELATIVE IMAGING AND MULTIMODAL
SPATIAL OMICS

Single cell MS experiments can provide an abundance of
informative data about molecular processes related to a cell’s
phenotype. Nonetheless, linking data of this technology with
data from other analytical approaches can increase the amount
of knowledge obtained from a sample. Combining two or more
imaging modalities (i.e, “multimodal imaging”) provides
advantages that include (i) improved sensitivity and specificity
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of chemical classes that cannot be easily identified or analyzed
by a single imaging modality alone and (ii) enhanced data
mining capabilities. ¢ Moreover, the utilization of multiple
spatially resolved MS tools in conjunction with one another
can provide a more effective means to probe the biomolecular
complexity of biological systems by providing higher
confidence in molecular annotations and localizations.”*'®
Beyond MS-based omics, there are other major technologies
for proteomics and metabolomics, such as NMR, 197221
arrays,”*” and other reporter-based methods that can provide
spatially resolved biochemical information,'*>*****

The addition of labels can be used to correlate data from
multitechnique analyses and enhance the interpretation in
single cell biology. For example, the use of hybrid tracers
enables a direct comparison between fluorescence confocal
microscopy and LA-ICP-MS imaging techniques, further
showing how multimodal techniques can be complementary
to one another.®' Recently, breast cancer cell lines stained
using receptor specific hybrid tracers, which contained both a
fluorophore and a DTPA single lanthanide chelate, permitted
fluorescence confocal microscopy to guide subsequent LA-
ICP-MS analysis.”’ Laser ablation isotope ratio mass
spectrometry (LA-IRMS) has the ability to trace *C through
a variety of samples and can be used to inform, as well as in
conjunction with, higher spatial resolution imaging techniques
like SIMS to confirm labeled molecule distributions across
tissues and down to each cell.”****°

Raman spectroscopy is an advancing cell imaging method
that, unlike MS methods, is nondestructive. Single cell Raman
microspectroscopy, for example, can obtain biochemical
fingerprints of individual microbial cells.””” A key advantage
of Raman spectroscopy is its ability to determine the
biochemical makeup of a cell, wherein proteins, lipids, and
DNA can be visualized according to their unique vibrational
spectra.””® Using the unique vibrational spectra, functional
groups and chemical bonding in molecules can be identified.
The weak Raman signal of water affords the ability to image
cells within aqueous environments more readily, which means
live cell imaging is feasible under normal physiological
conditions.”” Stable isotope probing (SIP)-Raman spectros-
copy can also help reveal metabolic activity within a cell. A
number of bands within a single cell Raman spectrum can shift
upon metabolic labeling with '*C, N, and 2H.**’
Furthermore, the results from SIP-Raman spectroscopy can
be combined with fluorescence in situ hybridization (FISH)
specific bands shifts to link metabolic activity to cell
identity.”®" SIP can also be used to bridge NanoSIMS and
Raman microspectroscopy imaging modalities, by tracking
isotopically labeled substrates (i.e., *C, *H, *N) incorporation
into metabolic pathways at single cell and subcellular spatial
resolution. Numerous reviews detail the application areas of
SIP-NanoSIMS*** and SIP-Raman microspectroscopy.””
Recently, SIP-NanoSIMS has been used to identify the
presence of cholesterol-rich sphingolipid patches in plasma
membranes of kidney cells,”** image the root cell-soil interface
in perrnafrost,234 image carbon transfer between the root-
rhizosphere,”” identify the dependence of Bacillus subtilis
sporulation on the presence of mycelia in nutrient starved
regions of soil,”** and image the accumulation of drugs in
multilamellar lysozymes at nanometer scale resolution.”’

Microscopy is no doubt the most utilized tool for single cell
imaging, and it is highly versatile in the types of measurements
it can make. These capabilities include live-cell fluorescence
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imaging for the understanding of signaling dynamics,”** FISH
for measuring gene expression,””” immunofluorescence,”” and
other antibody-based methods for measuring protein ex-
pression*” (as detailed in the proteomics section). In addition,
recent studies have combined other modalities such as RNA-
sequencing”*’ and microfluidics™” with live-cell imaging to
expand the possible measurements and knowledge gained from
a single cell. The use of microfluidics in MS has also grown in
recent years due to the advent of “biology-on-a-chip” devices.
These devices have the ability to monitor dynamic chemical
processes in a controlled environment, and having the ability
to spatially map these chemical signals within the devices may
allow for new insights to be gained.”*' For example, Cahill et
al. recently developed a porous membrane sealed microfluidic
device that can be used in conjunction with liquid micro-
junction surface sampling probe MS.”*' In this study, they
were able to demonstrate in situ MS chemical analysis of fluid
within a microfluidic flow cell device by forming a liquid
junction between the porous membrane and the sampling
probe.”*" Further examples of how microfluidic technologies
have been used in single cell metabolomics and proteomics can
be found in other recent reviews.”**”*** Combining atomic
force microscopy with single cell force spectroscopy is also
useful for single cell analysis, as this can be used to study the
adhesion of living cells in near-physiological conditions,”*
while scanning electron microscopy’*® and transmission
electron microscopy (TEM) can be used to create a high
resolution image of the single cell.”*” For example, NanoSIMS
and TEM were used together to visualize the uptake of
cisplatin, a common chemotherageutic, into resistant and
nonresistant ovarian cancer cells.”*

All of these techniques described here can provide a wealth
of knowledge individually, but when combined with additional
analytical approaches, they can provide a more comprehensive
picture of complex biochemical processes. Moreover, since
each technique has its own unique advantage(s) for single cell
analyses, when they are used in a multimodal fashion, one can
enhance their results through the combination of data as more
biologically relevant signals can be produced. MSI experiments
can give a wealth of chemical meaning, while other techniques
such as Raman spectroscopy can give meaningful chemical
bonding and structural information. However, there can be
technical challenges when coregistering images acquired with
different modalities. One major issue can be the differences in
spatial resolution between the images that are being
coregistered. Recent work has been done in an effort to help
mitigate coregistration issues. For example, Patterson et al.
have developed experimental and computational pipelines to
help bridge data sets between high spatial resolution optical
microscopy and MALDI-MSI studies.”*”*** Multimodal
imaging analysis is therefore an important aspect to
contemplate and consider when attempting to elucidate the
complexity of a single cell.

IV. DATA ACQUISITION AND HIGH-THROUGHPUT
SCREENING

The commercial viability of single cell screening with MS
requires technologies able to rapidly and efliciently extract and
assign biomolecules from multicellular samples. Introducing
high throughput screening (HTS) methods into MS workflows
is attractive, as this method of experimentation involves
analysis of thousands of samples on a rapid time scale and is
usually reliant on automation and robotics that provide
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reproducibility and robustness.”>' Historically, HTS of bio-
logical samples has involved fluorometric or calorimetric assays
to provide molecular information, but these techniques require
analytes to be chromophoric probing methods that may limit
molecular specificity, decrease throughput from the extra
labeling steps, and are blind to the majority of biomolecules
present in a cell’”” The aim of MS-based HTS is for
biomolecule extraction, ionization, separation, and molecular
assignment all to be automated. However, many of the
methods we have referenced illustrate that proteome or
metabolome MS measurements at the single cell often require
lengthy sample preparation steps and/or long data acquisition
and analysis times, which brings to question, can certain types
of MS analyses be used in HTS?

The microarray format has been useful for rapid screening in
drug discovery for decades.””® HTS has been adapted from
drug discovery to single cell MS-metabolic analysis through
manufacturing single cells arrays. Ellis et al. combined liquid
extraction surface analysis with bioprinting to measure the lipid
profile of mammalian smﬁle cell lines, where they showed
impressive spectral quality. ©" However, acquisition times were
nonideal, and only 37% of the droplets on the array contained
single cells.124 Yang et al. used microcontact printing to deposit
poly-L-lysine and electrostatically adhere single mammalian
lung cancer cells with a capture efficiency of 40% and
demonstrated a linear relationship between PC lipid
abundance and cell number using MALDI-MS.'*

Ambient sampling methods have been developed to
diminish the need for extensive sample preparation. LAESI,
for example, allows for in situ metabolomics of native tissue.*’
However, HTS single cells with LAESI is still quite complex, as
this often relies on fiber-based LAESI (f-LAESI), where the
etched optical fiber is placed 1n contact with the cell surface,
requiring manual positioning.°” This also presents a challenge
in measuring dynamic systems with ongoing metabolic
processes, where tissues and cells are not fixed. Metabolic
quenching can be compensated for by freeze-fixed analysis, but
the speed of how rapidly activity is quenched also remains a
question.254

Direct infusion MS instruments are attractive for HTS, in
part because sample processing can be readily automated.
Examples of direct infusion commercial instruments include
the TriVERSA NanoMate nanoelectrospray/LESA Nano-
Mate,”™ the Agilent RapldFlre, and the Labcyte Echo
acoustic droplet ejection system,”” which are all robotically
driven. However, these approaches have had little application
on the single cell scale. The invention of the nanoPOTS
system (Figure 7) shows promise for MS-HTS for single cell
proteomics, in part because sample processing can be
automated. In this technique, nanoliter cell-containing droplets
are dispensed into a multiwall chip, followed by extraction,
alkylation, protein digestion, and peptide collection. Zhu et al.
demonstrated the utility of the nanoPOTS platforms by
quantifying over 3000 proteins in as little as 10 cells.”
Recently, Williams et al. developed a nanoPOTS autosampler
compatible for automated LC—MS analysis, removing labor
intensive steps such as manual sample loading.*® 256 individual
proteins were able to be identified in single MCF10A cells at a
rate of 24 cells per day.”®

There are limited examples of HTS-MS imaging workflows
in tissue sections, in part due to the challenges of sample
variation, image correlation, and automatically assigning
molecular structures to multidimensional imaging data
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Figure 7. Example of near-single cell untargeted proteomic analysis
using nanoPOTS, which is adaptable method for high-throughput
single cell screening applications. (a) Bright-field images of nanowells
with dispersed HeLa cells in droplets. (b) Ion chromatograms
corresponding to analysis of 12, 42, and 139 cells and (c—f) the
unique peptides and protein group coverage from nanoPOTS
processing of different liquid volumes. Data are expressed as means
+ SD for experimental triplicates, and the scale bar in (a) is S00 ym.
Adapted with permission from ref 75. 2018 Nature Research.

sets.”>® Many of the efforts have been aimed toward increasing
sample analysis through source and detector improvements.
Imaging experiments are frequently performed with sample
replicates to assess the biological reproducibility.”*”>*" To
this end, fusion of microscopy and MSI data sets have been
explored by the Caprioli group as a method of training ion
distributions for rapid parallel sample imaging, theoretically
allowing for microscopy images to inform analyte distributions
in sample replicates. The idea is that once the software is
trained sufficiently to recognize ion distributions optical images
can be used to predict MS images allowing for rapid sample
screening. Van de Plas et al. demonstrated this technique for
lipid profiling to accurately predict the distribution of
PE(16:0/22:6), and built on the work of Tarolli and co-
workers, who first used pan-sharpening to improve lateral
resolution of MS images,”®” to visualize lipids at 10 um lateral
resolution in mammalian brain tissue using a 100 pm

. . 263
resolution MS image.
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Figure 8. Automated parallel mass spectrometry imaging approach that provides high-confidence molecular structural identification. Here, (a) lipid

classes and unique lipids were identified within the cerebellum of a rat brain. (b) Number of automatically assigned lipids using the ALEX
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framework and high-resolution FT-MS/MS in comparison to the number validated assignments from parallel MS/MS data and the (c) validated
IDs across the different lipid classes. (d—h) Example single MS ion images of the different validated lipid species detected in (i) comparison to the
H&E-stained tissue section. Adapted with permission from ref 298. 2018 Nature Research.

V. CHALLENGES AND FUTURE PERSPECTIVES

A core challenge for single cell proteomic and metabolomic
analysis is moving from the tissue to the cell level, which
requires greater detection sensitivity and will ultimately require
faster analysis times.”*"*%° Per sensitivity, development of mass
analyzers able to measure the potential attomolar concen-
trations of metabolites and proteins present within individual
cells are necessary.'*"*°>**” Ideally, these detectors are also
capable of high mass resolution and mass accuracy analyses to
provide increased confidence in molecular formula annota-
tions. The FTMS-based instruments from Bruker (magnetic
field-based, FTICR) and Thermo (electric field-based, Orbi-
trap) continue to advance in this direction.*”**® As detailed
throughout this Perspective, these detectors are regularly being
coupled to single and near single cell proteomic and
metabolomic methods. Nevertheless, it is important to
consider analysis time scales, since inferring biological meaning
from single cell measurements will require measurement of
hundreds to thousands of single cells.”” To this end, the
advent and increased implementation of new FT-based mass
analyzers capable of detection at multiples of the cyclotron
frequency promise an increase FT performance (e.g, duty
cycle, mass resolution, etc.) and are already being implemented
into new commercial MSI instrumentation.”*” Alternatively,
new high speed extended path TOF mass analyzers, utilizing
spectral multiplexing techniques,”’® may also become more
widespread.

As a reminder, orthogonal measurements beyond MS! are
required for obtaining higher confidence molecular identi-
fications.””! Tandem MS methods (MS? MS? etc) can
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provide more confident structural information, but obtaining
more than one spectrum per pixel in a spatially resolved MS
measurement remains a challenge. Premass analysis chromato-
graphic separations, like using LC, are a key orthogonal
technique in bulk omic analyses, but these methods are limited
in their throughput. The past decade has seen the integration
of postionization gas phase ion mobility separation MS as a
method of circumventing analyte retention time differences in
column chromatography, where ion separation is based
differences in electrophoretic mobility in a carrier gas.””
This approach is rapid and has enabled measurement of the
physical size of ions (i.e, CCS) and can be used to separate
and identify structural isomers.”’> Waters and Bruker have
incorporated ion mobility mass spectrometry into the
SYNAPT and timsTOF (trapped ion mobility separation,
TIMS) for LDI analysis, respectively,””*~>"°
integration of field asymmetric-waveform ion-mobility spec-
trometry (FAIMS) into Thermo systems has the potential to
increase proteomics sensitivity and throughput.”’® As such, it is
expected to see the use of ion mobility approaches expand
within single cell proteomics and metabolomics over the next
decade.

Any omics scientist will attest that obtaining raw MS data
can be challenging, but a significant obstacle still remains in
data analysis. The first issue is data handling. Spatial MS data
can be “Big Data” due to the spatial dimension beyond that of
bulk MS methods. Furthermore, this data can become even
76 A typical

whereas the

larger with another dimension like ion mobility.
imaging experiment can be represented as
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FLOPS = 14kN” + 8N°

where FLOPS is the number of floating-point operations, k is
the number of pixels, and N is the number of variables, or
separate mass channels.”® For example, a TOF-MS imaging
data set with 200000 pixels equates to a data set with 200000
separate spectra and 70000 mass channels in turn would mean
the total number of floating-point operations to be 1 X 10'.*”7
Moreover, this example is with a theoretical TOF-MS data set.
Data handling can be significantly more problematic with FT
data that can contain millions of mass channels. Efficient peak
picking algorithms and subsampling have been explored for
hyperspectral data sets to address this problem,””**”* along
with software developments for image analysis.”*" However,
data set sizes will remain a noteworthy issue in MSI as higher
resolution imaging methods are developed. The universal
datafile format developed for the MSI community, imzML,**"
allows for data export into multiple image processing software,
but it has been shown to be 3—4 times slower in write speed
when compared to the HDFS format.”*” There are also several
other research groups attempting to address this issue by
exploring file format optimization for MS files.”*>*** However,
these alternative formats have yet to gain traction with the
broader community. Computational power continues to
improve on basic lab computer workspaces, and cloud-based
imaging processing (e.g., through Amazon Web Services) are
becomin§ increasingly utilized for processing imaging data
sets,”*>*% and as such, we anticipate these will be the key to
handling such complicated data over the next decade.

The next issue is turning raw spectra into biological
meaning. Molecular assignment in MS-based proteomics and
metabolomics for single cells should be performed through
reference libraries to assign identities using the molecular ions
and fragment species.””""**"**® There are numerous examples
of databases built on spectral data from standards.”**?
However, obtaining accurate standards to build these databases
for the vast number of known and unknown species is far from
practical. As an alternative, in silico approaches are promising
for structural identification and streamlining spatially resolved
MS workflows. Incorporation of MS in silico fragmentation
MS? modeling into MS studies has been explored by multiple
research groups.””'~*> Also, in silico methods are being
developed for annotating known and unknown molecules
detected in ion mobility-based MS measurements.””**°” In the
near future, we anticipate these spectral annotation tools will
become fully incorporated in spatial MS and MSI workflows.
One example that suggests this might be the case was recently
reported by Ellis et al, where ALEX, an in silico lipid
fragmentation calculator, was incorporated into their MALDI-
MSI workflow.””® This automated capability allowed them to
structurally assign up to 430,000 lipid parent and fragment ions
(Figure 8), and MALDI-MS imaging with MS?® capability
permitted ragid assignment of 104 unique lipids in rat
cerebellum.””® As molecular databases continue to expand
and automated in silico MS* and CCS prediction becomes
more ubiquitous, these will become key tools in single cell
proteomics and metabolomics, expanding the types of inter-
and intracellular biological mechanisms and biochemical
pathways we can resolve.

VI. CONCLUSION

Is sensitive single cell scale MS sampling realistic for the future,
or have we set our sights too high? The recent advancements
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in MS and MSI over the past decade have dramatically
addressed issues related to sensitivity, spatial resolution, and
throughput challenges for molecular characterization. There
are multiple instrument configurations available for spatial MS
and MSI studies, and many of the recent developments in this
area have been in effort to transition from the tissue scale to
the single cell level. SIMS has historically been a valuable tool
in single cell analysis, and the advancement of new cluster
sources and adaptation of higher performing mass analyzers
position it well for future single cell studies. Perhaps MALDI of
all the spatial probing MS methods has seen the most growth
over the past decade. There are now a number of commercial
instruments that can achieve ~10 ym or less lateral resolution,
and the intermediate vacuum pressure it can operate under has
been key to its ability to successfully employ postionization;
permitting MALDI-2 the ability to detect and image a broader
number of molecules and molecular classes.'** Advancements
in ambient ionization sources, like nanoDESI'*® and LAESL,"*’
have also shown promise for single cell metabolomics and may
play a larger role in HTS approaches because limited sample
preparation is needed to employ these methods. Untargeted
proteomics utilizing MSI remains a significant challenge for
single cells, yet the recent development of metal-based IHC
with MSI and imaging cyTOF holds significant promise for
multiplexed subcellular proteomic imaging.”"*"* New ad-
vancements in sample handling have started to transform
untargeted proteomics, like those utilized in nanoPOTS, and
we are now at the precipice of being able to readily perform
untargeted single cell proteomics with broad molecular
coverage.”

To address the question posed at the beginning of this
section: yes, single cell MS-based proteomics and metab-
olomics is very realistic in the near future. If the past decade of
advancements in this arena detailed in this Perspective are an
indicator, then we should continue to see enhancements in
single cell MS probing approaches, increased sensitivity and
throughput of mass analyzers, further incorporation of
orthogonal methods like ion mobility, and improvements in
data computation and annotations over the next decade.
Moreover, we are starting to see advancements in many of
these methods that are directly applicable to HTS approaches,
meaning that rapid single cell screening of thousands of cells
from culture or a tissue can provide greater biological
understanding from resolving the cellular heterogeneity across
and within phenotypes. As such, these methods will comple-
ment single cell transcriptomics and structural imaging
techniques and provide a full phenome of single cells.
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