Skip to main content
. 2021 Mar 25;12:655590. doi: 10.3389/fimmu.2021.655590

Figure 2.

Figure 2

A model of rapid gene induction in NK cells through higher-order chromatin architecture and remodeling. Many inducible genes in NK cells are associated with super-enhancers (SEs) that can be orderly modulated by multi-dimensional epigenetic mechanisms (72). (A) Phase separation. Phase separation occurs as a dynamic process in which transcription factors (TFs) and co-activators form non-membrane bound condensates through weak multivalent protein-protein interactions of their intrinsically disordered region (130). Multi-loop hubs bring TF-bound regulatory elements (REs) and their target genes into close proximity to finetune gene expression. (B) Super-enhancers (SEs). SEs differ from typical enhancers as they recruit large numbers of TFs and transcriptional apparatus, including co-activators, to drive high magnitude of gene induction (130132). (C) Topologically associating domains (TADs). Hi-C plots allow for visualization of three-dimensional TADs and sub-TADs, which form during the cohesin-mediated loop extrusion process. Looping can occur between two convergently oriented CCCTC-binding factor (CTCF) sites, using a cohesin ring that extrudes DNAs as shown in (A) (2, 133135).