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Abstract

We investigated aging effects in a task-switch paradigm with degraded stimuli administered to 

college students, 61–74 year olds, and 75–89 year olds. We studied switch costs (the performance 

difference between task-repeat and task-switch trials) in terms of accuracy and mean reaction 

times (RTs). Previous aging research focused on switch costs in terms of mean RTs (with accuracy 

at ceiling). Our results emphasize the importance of distinguishing between switch costs indexed 

by accuracy and by mean RTs because these measures lead to different interpretations. We used 

the Diffusion Decision Model (DDM; Ratcliff, 1978) to study the cognitive components 

contributing to switch costs. The DDM decomposed the cognitive process of task switching into 

multiple components. Two parameters of the model, the quality of evidence on which decisions 

were based (drift rate) and the duration of processes outside the decision process (nondecision 

time), indexed different sources of switch costs. We found that older participants had larger switch 

costs indexed by nondecision time than younger participants. This result suggests age-related 

deficits in preparatory cognitive processes. We also found group differences in switch costs 

indexed by drift rate for switch trials with high stimulus interference (stimuli with features relevant 

for both tasks). This result suggests that older participants have less effective cognitive processes 

involved in resolving interference. Our findings show that age-related effects in separate 

components of switch costs can be studied with the DDM. Our results demonstrate the utility of 

using discrimination tasks with degraded stimuli in conjunction with model-based analyses.
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Introduction

Most daily life activities involve switching back and forth between multiple tasks. Research 

suggests that successfully switching between tasks requires a coordinated interplay between 

the activation and the inhibition of control processes (Allport, Styles, and Hsich, 1994; 

Allport and Wylie, 2000; Hasher, Lustig, and Zacks, 2007; Hasher, Zacks, and May, 1999). 

The efficiency of these control processes is presumed to decline with age (Bäckman et al., 
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2000; Braver and Bach, 2002; Cepeda, Kramer, and Gonzalez de Sather, 2001; de Bruin and 

Della Sala, 2018; Dennis and Cabeza, 2008; Zelazo, Craik, and Booth, 2004). For instance, 

many studies examined control processes in experimental settings using task-switch 

paradigms and they found that older participants perform worse than younger participants 

(Gajewski, Ferdinand, Kray, and Falkenstein, 2018; Kray & Lindenberger, 2000; Kray, 

Lindenberger & Mayr, 2001; Giller, Zhang, Roessner, and Beste, 2018; Madden et al., 2009; 

Meiran, Gotler, and Perlman, 2001; Tisserand et al., 2002; Verhaeghen and Cerella, 2002; 

Wasylyshyn, Verhaeghen, & Sliwinski, 2011). However, most of these studies relied on 

mean RTs when examining group differences in task performance. This measure does not 

allow for the decomposition of the cognitive process into separate components that are 

associated with different control processes. In this article, we show how the Diffusion 

Decision Model (DDM; Ratcliff, 1978) can be used to study age-specific differences in 

distinct components of task switching.

In the following, we first address classical accounts of performance in task-switch paradigms 

and how they relate to control processes. Next, we describe the sources of different switch 

costs and how they are affected by aging. We then introduce the diffusion model and how its 

parameters can be linked to control processes. Finally, we describe our task-switch paradigm 

and why it is particularly suitable for the study of age-related switch costs with the diffusion 

model.

Task Switching

Task-switch paradigms generally involve pure blocks and mixed blocks (see for a review: 

Vandierendonck, Liefooghe, and Verbruggen, 2010). In the pure blocks, participants repeat 

the same task throughout the block (i.e., pure trials). In the mixed blocks, participants switch 

between multiple (usually two) tasks - repeating the same task on some trials (i.e., no-switch 

trials), while switching to another task on other trials (i.e., switch trials). Experimental 

evidence has consistently shown that performance is slower and more error-prone in mixed 

blocks than in pure blocks (e.g. De Jong, 2000; Rubinstein, Meyer, and Evans, 2001; Rogers 

and Monsell, 1995; Schmitz and Voss, 2012; Wylie and Allport, 2000; Yehene and Meiran, 

2007). This performance difference has been referred to as switch cost. Two types of switch 

costs are distinguished: Global switch costs that refer to the performance difference between 

pure and no-switch trials; and local switch costs that refer to the performance difference 

between no-switch and switch trials (Meiran, 1996; Rogers & Monsell, 1995).

To study the sources of switch costs, theories suggested a decomposition of task switching, 

as a cognitive process, into three phases: 1) preparation for the upcoming task; 2) resolution 

of any interference from the prior task; and 3) selection of a response (see the review: 

Schmitz & Voss, 2012; also Gilbert & Shallice, 2002; Koch & Allport, 2006; Mayr & Kliegl, 

2003; Meiran, 1996; Meiran, Chorev, & Sapir, 2000; Monsell, 2003; Rubinstein et al., 2001; 

Ruthruff, Remington, & Johnston, 2001; Sohn & Anderson, 2001; Yeung & Monsell, 2003). 

Each of these phases is assumed to be governed by a distinct set of control processes 

(Gopher, Armony, & Greenshpan, 2000; Kray & Lindenberger, 2000; Mayr & Kliegl, 2003; 

Meyer & Kieras, 1997; Rubinstein et al., 2001; Ruthruff et al., 2001; Schmitz & Voss, 

2012). In particular, the “multiple components of task switching” - approach (henceforth, 
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MCT approach) assumes that different control processes affect the process of task switching 

at different points in time, contributing to different switch costs (Gilbert & Shallice, 2002; 

Koch & Allport, 2006; Mayr & Kliegl, 2000; Meiran, 1996; Meiran, Chorev, & Sapir, 2000; 

Monsell, 2003; Rubinstein et al., 2001; Ruthruff et al., 2001; Sohn & Anderson, 2001; 

Yeung & Monsell, 2003). On one hand, it is assumed that early-stage preparatory control 

processes are needed to switch between different tasks (by reconfiguring the cognitive 

system for the new task). Hence, early-stage preparatory control processes are assumed to 

contribute predominantly to local switch costs (Baddeley, Chincotta, & Adlam, 2001; 

Miyake, Friedman, Emerson, Witzki, & Howerter, 2000). On the other hand, it is assumed 

that late-stage control processes are needed to reaffirm processing the current task by 

resolving or reiterating existing mental representations from the previous task such as prior 

response selection or prior stimulus-task set associations (Kiesel, Wendt, & Peters, 2005; 

Koch & Allport, 2006; Waszak & Hommel, 2007). For instance, it is presumed that mental 

representations need to be updated more often in mixed blocks than in pure blocks 

(irrespective of whether a task switch occurred). Hence, late-stage control processes are 

presumed to contribute predominantly to global switch costs (e.g., Druey & Hübner, 2008; 

Gilbert & Shallice, 2002; Mayr & Bryck, 2005). A more detailed review of sources and 

components of switch costs can be found in Meiran et al. (2000), and Schmitz and Voss 

(2012).

Age-Related Switch Costs

Global Switch Costs.—Many studies (Kray & Lindenberger, 2000; Meiran et al., 2001; 

Verhaeghen & Cerella, 2002; Wasylyshyn, Verhaeghen, & Sliwinski, 2011; Zelazo et al., 

2004) found large age-related global switch costs. Some of these studies proposed that age-

related increases in global switch costs are due to an age-related decline in working memory 

(WM) capacities (e.g., Frensch, Lindenberger & Kray, 1999; Lindenberger & Mayr, 2014; 

Mayr & Kliegl, 1993; 2000a; Mayr, Kliegl, & Krampe, 1996; Kray & Lindenberger, 2000; 

Zelazo et al., 2004). Specifically, they argued that the mixed blocks generally demand higher 

WM than the pure blocks because the mixed blocks require the participant to maintain 

multiple task rules in mind. In contrast, the pure blocks require the participant to maintain 

only one task rule in mind. Other studies argued that age-related increases in global switch 

costs are due to an age-related decline in control processes. In particular, they proposed that 

older participants tend to accommodate a generally slower, more cautious processing mode 

in task-switch paradigms and that this age-related difference in response strategy is what 

contributes the most to age-related global switch costs (e.g., Duncan, 1995; Keele & Rafal, 

2000; Mayr, 2001; Raz, 2000).

Local Switch Costs.—Many studies have not found age-related local switch costs (Kray 

& Lindenberger, 2000; Mayr & Kliegl, 2000b; Salthouse, Fristoe, McGuthry, & Hambrick, 

1998). These studies proposed that older participants experience a “general” age-related 

slowdown in cognitive functioning (in line with the explanation for age-related global switch 

costs). For instance, Mayr (2001) proposed that older participants need to update the task-

specific mental representation on switch and no-switch trials, whereas younger participants 

need to do so only on switch trials. Other studies (Eppinger, Kray, Mecklinger, & John, 

2007; Gajewski, et al., 2018; Kray, Eppinger, & Mecklinger, 2005; Mayr & Kliegl, 2003) 
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did find age-related local switch costs. They proposed that older participants show increased 

local switch costs due to a greater sensitivity to interference between the prior and the 

current task (Baddeley, 1986; Gajewski et al., 2018; Kray & Lindenberger, 2000; Mayr & 

Kliegl, 2003; Meyer & Kieras, 1997). Specifically, performing the prior task would produce 

a task-specific mental representation that decays more slowly in older participants than in 

younger participants. This representation may interfere with the representation produced by 

performing the current task, leading to an age-related decline in performance particularly on 

switch trials.

The Diffusion Decision Model

The Diffusion Decision Model (Ratcliff, 1978) (henceforth, diffusion model) is an attractive 

tool to study task switching. This is because it decomposes the cognitive process into 

separable components (in line with the MCT approach previously introduced). A general 

introduction into the diffusion model, its assumptions and model parameters is presented in 

the Supplemental Material. We will introduce the main model parameters in the context of 

task switching shortly. Before doing so, we will summarize the benefits of a diffusion model 

analysis compared to conventional performance measures.

The diffusion model uses more information than classical analysis methods because its 

parameters are derived from the simultaneous consideration of accuracy and the entire RT 

distributions for correct and error responses. There have been a number of successful 

applications of the diffusion model to the data from a variety of tasks (Ratcliff, 2014; 

Ratcliff & McKoon 2008; Ratcliff & Rouder, 1998; Ratcliff, Smith, Brown, & McKoon, 

2016; Ratcliff, Van Zandt, & McKoon, 1999; Voss, Rothermund, & Voss, 2004). Some of 

these studies have led to a reinterpretation of experimental results in the aging research 

domain. For instances, Ratcliff, Thapar, and McKoon (2001; 2004; 2006; 2007; 2010; 2011), 

and Thapar, Ratcliff, and McKoon (2003) (henceforth, RTM studies), as well as Ratcliff 

(2008), Ratcliff, Thapar, Gomez, & McKoon (2004), and Voskuilen, Ratcliff, and McKoon 

(2018) applied the model to a variety of different perceptual and cognitive tasks (outside the 

domain of task switching). They found that younger and older participants differed in two 

cognitive components. First, the older participants usually required more information to 

make a response (higher boundary separation) than the younger participants. Second, the 

older participants took longer to encode, build a decision-related representation to drive the 

decision process, and to produce a response (longer nondecision time component) than the 

younger participants.

The temporal separation of control processes, proposed by the MCT approach, can be used 

to link diffusion model parameters to the distinct phases of task switching. Based on 

previous diffusion model applications to task-switch paradigms (e.g., Karayanidis et al., 

2009; Klauer, Schmitz & Voss, 2012; Voss, Schmitz, & Teige-Mocigemba, 2007), the 

diffusion model involves three main parameters presumed to be most informative for the 

study of task switching. In the following paragraphs, we will introduce these three model 

parameters (Ter, v, and a) as well as reasons for the proposed associations between model 

parameters and control processes. In the last subsection, we will also discuss empirical 

evidence that supports the proposed associations.
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Nondecision Time Component.—This parameter represents the latency of processes 

outside the decision process such as task preparation, time to access working memory, 

perceptual encoding of cue and/or stimuli, and execution of the response (Ratcliff, Thapar, & 

McKoon, 2006; Voss et al., 2004). In the context of task switching, processes of basic 

encoding and response execution contribute to the nondecision time component of all trial 

types in a task-switch paradigm (i.e., pure, no-switch, and switch trials). Moreover, several 

studies found that differences in the nondecision time components (between no-switch and 

switch trials) additionally contributed to the local switch costs (Karayanidis et al., 2009; 

Klauer et al., 2007; Madden et al., 2009; Schmitz & Voss, 2012). For instance, Karayanidis 

et al. (2009) paired characters such as letters, digits, and nonalphanumeric symbols (either in 

gray or in color) for a task-switch paradigm that involved three tasks (classifying the 

compound stimuli either according to the letter, the digit, or the color) and four cues (i.e., 

repeat, switch-to, switch-away, and a cue not specifying whether a task-switch would occur). 

Applying a diffusion model analysis, they found increased nondecision time component on 

switch trials relative to no-switch trials. Based on these results, Karayanidis et al. (2009) 

concluded that the nondecision time component could be used to index early-stage control 

processes associated with the preparation time of task switches. This view is in line with the 

MCT approach, associating the nondecision time component with the first and the last phase 

of task switching. Specifically, based on the MCT approach, a longer nondecision time 

component on switch trials (relative to no-switch trials) is due to the additional preparatory 

processes that would take place on switch trials (Ruthruff et al., 2001; Schmitz & Voss, 

2012).

Drift Rate.—This parameter represents the mean rate of information accumulation during 

the decision process. Specifically, high drift rates correspond to fast and accurate responses. 

Drift rates usually vary across experimental conditions as a function of task difficulty (e.g., 

Ratcliff, 1978; Ratcliff & McKoon, 2008; Voss et al., 2004). For instance, highly 

discriminable stimuli were associated with high drift rates. Moreover, drift rates have also 

been found to vary between individuals. For instance, multiple studies found positive 

associations between drift rate and IQ scores, as well as between drift rate and working 

memory capacity (e.g., Schmiedek, Oberauer, Wilhelm, Süß, & Wittmann, 2007; Ratcliff, 

Thapar, & McKoon, 2010). In the context of task switching, Schmitz and Voss (2012) 

suggested that drift rate can be used to index the efficiency of control processes associated 

with the activation of stimulus-response mapping rules, the resolution of interference from 

prior task-set preparation, and other carry-over effects from previous trials (e.g., stimulus-

driven effects). This proposal is supported by findings showing that drift rates were 

decreased on switch trials relative to no-switch trials, contributing to the local switch costs 

(Karayanidis et al., 2009; Madden et al., 2009; Schmitz & Voss, 2012). For instance, 

Karayanidis et al. (2009) found decreased drift rate on switch trials relative to no-switch 

trials. The type of cue did not affect the drift rates on switch trials. Based on these results, 

Karayanidis et al. (2009) concluded (a similar conclusion as Schmitz and Voss, 2012) that 

drift rate could be used to index late-stage control processes associated with interference 

resolution. This view is in line with the MCT approach, associating drift rate with the second 

phase of task switching.
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Boundary Separation.—Multiple studies have shown that this parameter reflects an 

individual’s response strategy. Specifically, in a variety of different discrimination and 

memory tasks, participants who preferred a more conservative, cautious response strategy 

had larger boundary separation, resulting in generally slower, but more accurate responses 

(e.g., Mulder et al., 2010; Ratcliff, 1985; Ratcliff & McKoon, 2008; Schmitz & Voss, 2012; 

Starns & Ratcliff, 2010; Voss et al., 2004). Moreover, studies have found that boundary 

separation is affected by the type of instructions (emphasis of speed vs. accuracy) (e.g., 

Mulder et al., 2010; Ratcliff & Rouder, 1998), or the introduction of reward for accurate 

responses (e.g., Voss et al., 2004). In the field of aging research, multiple studies found 

larger boundary separation for older participants compared to younger participants (Ratcliff, 

Thapar & McKoon, 2001; Starns & Ratcliff, 2010; 2012). In the context of task switching, 

Schmitz and Voss (2012) argued that larger boundary separation in mixed blocks relative to 

pure blocks could be explained by the higher working memory load in mixed blocks relative 

to pure blocks. This view is based on their study in which they administered a task-switch 

paradigm1 to college students and in which they found larger boundary separation for mixed 

blocks relative to pure blocks.

Previous DDM Applications To Task Switching In Aging Research.—Only a few 

studies have utilized the diffusion model to analyze performance data from task-switch 

paradigms (see for an overview Schmitz & Voss, 2012). Even fewer studies have used the 

diffusion model to examine age-related performance differences in task-switch paradigms 

(i.e., Karayanidis et al., 2009; Madden et al., 2009; Schuch, 2016). Those studies used 

simplified versions of the diffusion model and we will review their results in the following 

paragraphs.

Madden et al. (2009) administered a task-switch paradigm (composed of two tasks) to 

younger and older participants. In one task, words had to be categorized based on their 

meanings as either “man-made” or “natural.” In the other task, words had to be categorized 

based on their referent as either “larger” or “smaller” than a computer monitor. Like in the 

previously discussed study by Karayanidis et al. (2009), the paradigm involved mixed blocks 

only. A constrained diffusion model was fit to the data. Specifically, the model allowed for 

differences only in drift rates and nondecision time components as a function of age group 

and trial type (no-switch and switch trials). Madden et al. (2009) found that older 

participants had lower drift rates and longer nondecision time components than younger 

participants for both trial types. However, the researchers did not find any group differences 

in switch costs in terms of nondecision time component or drift rate. These results suggest 

that the early-stage as well as the late-stage control processes of older participants were as 

good as those of the younger participants.

Schuch (2016) administered a task-switch paradigm (composed of three tasks) to younger 

and older participants. In their paradigm, photographs of faces had to be categorized based 

on gender (male vs. female), age (younger vs. old), or emotional expression (happy vs. 

1The paradigm involved target stimuli composed of letter-number pairs. Depending on the cue, students had to classify the letter (i.e., 
indicating whether the letter was a consonant or a vowel), or they had to classify the digit (i.e., indicating whether the digit was odd or 
even).
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angry). Schuch (2016) found, among other results, that older participants had larger 

boundary separation and longer nondecision time component than younger participants. 

Most importantly, older participants had larger local switch costs in terms of nondecision 

time component, but not in terms of drift rate, than younger participants. While Schuch 

(2016) found age-related local switch costs, Madden et al. (2009) did not find age-related 

local switch costs. Therefore, the extent to which age-related switch costs become apparent 

seems to depend on the specifics of the task-switch paradigm. Moreover, the studies 

discussed above only examined local switch costs but not global switch costs. Most probably 

because accuracy in pure blocks was too high to adequately estimate model parameters. This 

discussion highlights the importance of re-designing existing experimental paradigms to 

utilize a computational model’s full potential.

Present Study

Our task-switch paradigm allowed us to address multiple limitations in the domain of task 

switching and aging:

First, past research mostly studied switch costs in terms of mean RTs because accuracy was 

almost always at ceiling (accuracy values > 95%) for all participants (e.g., Mayr, 2001; Mayr 

& Kliegl, 2000a, 2000b; Kray & Lindenberger, 2000; Wasylyshyn, Verhaeghen, & 

Sliwinski, 2011). However, many hypotheses regarding age-related switch costs (e.g., age-

related local switch costs due to older participants being more sensitive to task interference 

than younger participants) can only be tested in a sufficiently demanding task-switch 

paradigm in which most conditions have accuracy values that are not at ceiling. Our task-

switch paradigm involved degraded target stimuli, producing accuracy values that were off 

ceiling. This allowed us to study differences between conditions (i.e., between pure and 

mixed blocks as well as within mixed blocks) as well as to examine switch costs in terms of 

RTs (as has been the focus of previous aging research) and accuracy. We will show that 

switch costs indexed by mean RTs and accuracy lead to different conclusions regarding the 

effects of aging.

Second, our task-switch paradigm involved target stimuli that were bivalent when processing 

one task (i.e., it was possible to classify the target stimuli according to the task rules of both 

tasks) but univalent when processing the other task (i.e., it was possible to classify the target 

stimuli according to the task rule of only one task.) This experimental feature allowed us to 

examine whether local switch costs are higher for bivalent target stimuli than for univalent 

target stimuli and whether there are any age-related effects. Previously discussed studies 

suggested that older participants are more sensitive to interferences caused by bivalent 

stimuli. Therefore, we expected that older participants, relative to younger participants, 

would produce larger increases in local switch costs for bivalent target stimuli as compared 

to univalent target stimuli.

Third, most existing task-switch paradigms required participants to learn and maintain 

multiple task rules for the mixed blocks (e.g., press the left response button for either odd 

numbers or consonant letters versus press the right response button for either even numbers 

or vowel letters). Therefore, these paradigms likely assess age-related differences in 

“working memory capacities” besides those in “task switching” (see for a review: Cepeda, 

Ging-Jehli and Ratcliff Page 7

Psychol Aging. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kramer, & Gonzalez de Sather, 2001; Hasher et al., 1999; 2007). As previously outlined, 

some researchers argued that age-related global switch costs are mainly produced by age-

related declines in working memory capacity (e.g., Mayr, 2001; Mayr & Kliegl, 2003; 

Zelazo et al., 2004). Our task-switch paradigm involved predictable task switches and 

explicitly displayed response alternatives (see Method Section for details). These measures 

are known to reduce the demand of working memory (e.g., Korteling, 1993; Kray, Li, & 

Lindenberger, 2002; Kray & Lindenberger, 2000; Rogers & Monsell, 1995; Wasylyshyn et 

al., 2011).

Method

Participants

The participants in our study were 52 younger participants (18–26 year olds), 38 older 

participants (61–74 year olds), and 22 older participants (75–89 year olds). The younger 

participants were students who participated for course credit in an introductory psychology 

course at The Ohio State University (OSU) or at Bryn Mawr College (BMC). The older 

participants were healthy, active, community-dwelling individuals who lived in the 

surrounding area of OSU or BMC. They met the following inclusion criteria to participate in 

the study: a score of 26 or above on the Mini-Mental State Examination (MMSE; Folstein, 

Folstein, & McHugh, 1975); and no evidence of disturbances in consciousness, medical or 

neurological diseases that would cause cognitive impairment, head injury with loss of 

consciousness, or current psychiatric disorder. All participants completed the Vocabulary 

and Matrix Reasoning subtests of the Wechsler Adult Intelligence Scale – 3rd Edition 

(WAIS-III: Wechsler, 1997).

One-way analyses of variance (ANOVAs) suggested no significant group differences on the 

subtests of the WAIS-III, all F(2, 108) ≤ 1.63, all p > 0.05 (Table 1). There were significant 

group differences in years of education, F(2, 108) = 11.08, p < 0.05. Subsequent contrast 

tests confirmed that the 61–74 year olds had significantly more years of education than the 

college students and the 75–89 year olds, college students vs. 61–74 year olds: t(51.05) = 

4.03, p < 0.05; 75–89 year olds vs. 61–74 year olds: t(52.01) = −3.13, p < 0.05. The 75–89 

year olds had as many years of education as the college students, t(28.49) = −0.13, p > 0.05. 

We also found group differences in ratings on the MMSE, F(2, 108) = 4.88, p < 0.05. 

Subsequent contrast tests confirmed that 61–74 year olds had lower ratings on the MMSE 

than college students, t(31.85) = −2.79, p < 0.05. The 75–89 year olds had similar ratings on 

the MMSE compared to college students, t(38.56) = −1.51, p > 0.05. Similarly, the 75–89 

year olds had similar ratings on the MMSE compared to the 61–74 year olds, t(74.22) = 

−1.61, p > 0.05.

Experimental Procedure

This study was approved by the Ohio State University Institutional Review Board (IRB; 

research ethics committee; protocol: #2003B0201). The task-switch paradigm consisted of 4 

pure blocks and 8 mixed blocks in each experimental session. In the pure blocks, 

participants performed either the letter discrimination task or the brightness discrimination 

task (2 blocks of each). In the mixed blocks, participants switched between the two 
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discrimination tasks predictably, every third trial. The order of the pure and mixed blocks 

was randomized across participants. Each block was composed of 144 trials and there were 

breaks between blocks. Half of the pure and mixed blocks had a response-stimulus interval 

(RSI) of 260ms, while the other half had a RSI of 750ms (RSI was kept constant within 

blocks). The order of blocks with short/long RSI was random and differed across 

participants.

Participants were tested for two to three sessions in order to obtain enough data for 

modeling. The reason for the difference in the number of sessions completed by individual 

participants is that some of the older participants could not complete a whole task-switch 

session in the time allocated. For all participants, at least two sessions of data were used for 

the analyses.

To construct the stimuli, a 64 × 64 array of pixels was generated with 50% black and 50% 

white randomly placed. For the letter stimuli, a black or white letter was generated and 10% 

of the pixels were flipped to the opposite polarity. Then the letter replaced the pixels in the 

64 × 64 array. For the brightness stimuli, the same procedure was used except that 30% of 

the pixels in the letter were flipped. This resulted in a slightly white or dark blob in the 

center of the pixel array, but it was not possible to determine the identity of the letter. If the 

letters were made identifiable by reducing the proportion of pixels in the letter that were 

flipped, then the brightness discrimination task was too easy and accuracy was near ceiling. 

For both discrimination tasks, there was only one level of difficulty.

For letter discrimination, the same two letters were the response alternatives (i.e., cues) for 

all of the letter trials of a block. The pairs of letters were designed to be dissimilar from each 

other (the pairs were: F/Q, B/N, P/L, T/X, W/K, and G/R). They were simultaneously 

displayed one to the left of the center of the computer screen and one to the right. 

Participants were instructed to press the / key on the keyboard if the right alternative had 

been presented and the Z key if the left alternative had been presented. Figure 1 shows an 

example stimulus for a letter discrimination trial.

For brightness discrimination, a white square and a black square represented the response 

alternatives (i.e., cues) for all the brightness trials of a block. They were simultaneously 

displayed one to the left of the center of the computer screen and one to the right. Figure 2 

shows an example stimulus for a brightness discrimination trial.

The response alternatives remained on screen for pure and no-switch trials, and for both 

discrimination tasks. For the switch trials, the response alternatives of the prior task 

disappeared before the response alternatives of the current task were shown. These current 

response alternatives were displayed for 50ms, following which, the stimulus was displayed 

at the center of the screen.

Participants were provided feedback: Incorrect responses were followed by a message 

“ERROR” displayed for 200ms at the center of the screen. Correct responses were followed 

by a blank screen for 200ms. Responses shorter than 250ms were followed by a “TOO 

FAST” message displayed for 1,000ms at the center of the screen in order to discourage 

participants from going too fast (if they were responding quickly to finish the experiment 
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quickly, the 1,000ms delay would slow them more than the fast responding would speed 

them up). If fast incorrect responses were made, then both messages, “TOO FAST” and 

“ERROR,” were presented.

It should be stressed that the brightness stimuli were not the same as the stimuli used in 

other RTM brightness tasks. In this brightness discrimination task, the stimulus was a blob 

of brighter or darker pixels in the middle of an array of 50/50 black and white pixels, 

whereas in the RTM studies, the whole pixel array was darker or brighter than 50/50. This 

means that the brightness stimuli used here are similar to letter stimuli (from which they 

were derived) as well as the brightness stimuli used in the RTM studies.

Data Analysis Of Conventional Performance Measures

We computed global and local switch costs once in terms of mean RTs and once in terms of 

accuracy for each participant group. For each type of switch cost (global vs. local), we 

performed a mixed analysis of variance (ANOVA) to test for significant group differences in 

switch costs. The three participant groups represented the between-subject factor. The type 

of switch cost and the two discrimination tasks served as within-subject factors. Mean RTs 

and accuracy values were similar for the two RSIs and were combined (we present an 

analysis of the results of RSI on performance measures in the Supplemental Material). 

Because there were multiple hypothesis tests, Bonferroni corrections were used in the 

analysis. We then used contrast tests to examine separate group-specific differences in global 

and local switch costs. Specifically, we performed three pairwise comparisons: 1) college 

students vs. 61–74 year olds; 2) college students vs. 75–89 year olds; 3) 61–74 year olds vs. 

75–89-year olds.

Data Analysis With The Diffusion Model

In the following paragraphs, we introduce the model parametrization, the model fit 

procedure, and the method of data analysis with the diffusion model. Further results (i.e., 

analysis of quantile-probability plots, assessment of model fits, correlations between model 

parameters) can be found in the Supplemental Material.

Model Parametrization.—Our task-switch paradigm was composed of two 

discrimination tasks, each of which had three types of trials (i.e., pure, no-switch, and switch 

trials). We introduced a separate value for boundary separation (a) for each discrimination 

task (keeping boundary separation constant across trial types of a given task). This is one 

major difference in model parametrization compared to previous studies discussed in the 

Introduction (Karayanidis et al., 2009; Madden et al., 2009; Schmitz & Voss, 2012; Schuch, 

2016). Specifically, prior studies that applied a diffusion model analysis to task-switch 

paradigms introduced a separate decision criterion for each trial type (pure, no-switch, and 

switch trials) whereas we assumed one value of boundary separation for all these trial types.

We kept boundary separation constant across all trial types because initial analyses showed 

that it could be assumed to be constant without making the quality of fits worse. 

Furthermore, increasing the number of fixed model parameters generally increases the 

constraints on a model. Creating a highly constrained model is preferred, because such a 
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model can be falsified more easily (Ratcliff, 2002). In this sense, keeping boundary 

separation fixed across all trial types is a more conservative approach. Moreover, the aging 

research reviewed above provided evidence that older participants tend to generally 

accommodate a different response strategy in task-switch paradigms and in line with this 

research, we used boundary separation as an index to account for the general “more 

cautious” response strategy in older participants. We provide an analysis of an alternative 

model in which we varied boundary separation by block type in the Supplemental Material. 

The main results are similar to those obtained from the model with a fixed boundary across 

conditions.

The analysis of mean RTs and accuracy on each trial type and for each task did not suggest a 

bias towards either alternative (i.e., for brightness discrimination: bright vs. dark, and for 

letter discrimination: letter 1 vs. letter 2). Therefore, we combined correct responses for 

bright and dark stimuli (and the same for errors) and the same for the two letter types. In the 

diffusion model, this required that the starting point was set to be halfway between the two 

response boundaries (i.e., z=a/2) and this reduced the number of free parameters in the 

model. We provide an overview of this analysis in Supplemental Table S14.

Based on past research discussed in the Introduction section, we expected nondecision time 

components to increase from pure to no-switch trials and from no-switch to switch trials. 

Similarly, we expected drift rate to decrease from pure to no-switch trials and from no-

switch to switch trials. We further hypothesized that these differences across trial types 

would be more pronounced for short RSI than for long RSI. Therefore, we introduced 

separate drift rates and separate nondecision time components for each trial type and for 

each RSI, resulting in 6 drift rates for each discrimination task. Moreover, we expected 

larger variability in the nondecision time components for the mixed blocks compared to the 

pure blocks, because the latency of early-stage control processes is presumed to facilitate 

task switching on mixed blocks (and is presumed to vary across RSIs). Therefore, we 

introduced 4 parameters for the variability in nondecision time components (Ratcliff, 

Gomez, & McKoon, 2004; Ratcliff & Tuerlinckx, 2002), i.e., st,1 = RSI short, pure and no-

switch trials; st,2 = RSI short, switch trials; st,3 = RSI long, pure and no-switch trials; st,4 = 

RSI long, switch trials. Across trial SD in drift rate (ƞ) and the range in starting point (sz) 

were assumed to be constant across all trial types of a given discrimination task. These 

hypotheses were consistent with the quantile probability plots in Supplementary Figure S1. 

These plots show a shift and a spread in the RT distributions as a function of trial types (see 

analysis in the Supplemental Material).

The assumptions that only drift rates and nondecision time components can change across 

the three trial types of each discrimination task, and that boundary separation can only 

change between the two discrimination tasks, yielded a highly constrained model (Ratcliff, 

2002).

Model Fit Procedure.—The diffusion model was fit to the data by using a standard 

method (Ratcliff & Tuerlinckx, 2002) in which the model parameters are adjusted to 

produce a minimum value of chi-square value. For each of the six experimental conditions 

(i.e., three trial types × two RSIs), accuracy values as well as five RT quantiles (.1, .3, .5, .7, 
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and .9 quantile RTs) for correct and error responses, were entered into the minimization 

routine. For each participant, a separate model was fit for the letter and the brightness 

discrimination tasks. Table A1 in the Appendix present the parameter values averaged over 

participants for each participant group. Details of RT quantiles as a function of accuracy 

(i.e., quantile probability plots), which present accuracy and the entire RT distributions for 

correct and error responses for each participant group are also presented in the Supplemental 

Material. An assessment of goodness of fit as well as plots of model fits at an individual 

participant level, which show that the model provided an adequate description of the 

behavioral data, can be found in Supplemental Table S2. A bootstrapping analysis, which 

shows the expected range of variability in accuracy and RT quantiles for the comparison 

between predictions and data, can be found in Supplemental Tables S10 to S13.

Data Analysis.—We conducted three mixed ANOVAs: In the first ANOVA, we tested for 

group-specific differences in boundary separation for which the three participant groups 

presented the between-subject factor, and the two tasks presented the within-subject factor. 

In the second ANOVA, we tested for group-specific differences in global and local switch 

costs when calculated in terms of nondecision time component. The three participant groups 

presented the between-subject factor. The two tasks and the two types of switch cost served 

as within-subject factors. In the third ANOVA, we tested for group-specific differences in 

global and local switch costs when calculated in terms of drift rate. The three participant 

groups presented the between-subject factor. The two tasks and the two types of switch cost 

served as within-subject factors. Since multiple hypothesis tests were conducted on the same 

data, Bonferroni corrections were used in all the analyses. We then used contrast tests to 

examine separate group-specific differences in global and local switch costs. Specifically, 

we performed three pairwise comparisons: 1) college students vs. 61–74 year olds; 2) 

college students vs. 75–89 year olds; 3) 61–74 year olds vs. 75–89-year olds.

Results

Response times shorter than 350ms for the college students and 500ms for the two older 

participant groups, as well as response times longer than 5,000ms for all three participant 

groups, were eliminated from the analysis. This resulted in 1.7% of the data being 

eliminated for the college students, and 2.1% of the data being eliminated for each of the 

two older participant groups. Most of the data eliminated were fast responses are likely to be 

contaminants because they were fast responses that were too fast to have come from the 

decision process.

The results are presented in two parts. In the first, we present results when switch costs were 

calculated based on conventional performance measures (i.e., mean RTs, accuracy). In the 

second, we present results when switch costs were calculated based on the main model 

parameters (i.e., nondecision time component, drift rate). We provide further analyses in the 

Supplemental Material (i.e., analysis of effects of RSI on switch costs, correlations between 

model parameters, and an alternative diffusion model analysis with boundary separation as a 

function of block type).
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Results From Conventional Performance Measures

Figure 3 shows the mean RTs for correct responses and accuracy values across the three trial 

types (pure, no-switch, and switch trials) for each participant group. The left side of Figure 3 

presents data from the letter discrimination task, and the right side those from the brightness 

discrimination task (Supplemental Table S1 provides values of mean RTs and accuracy). 

Figure 3 shows that the 61–74 year olds and the 75–89 year olds were slower than the 

college students on all trial types (pure, no-switch, and switch trials) for both discrimination 

tasks.

Next, we first discuss global switch costs in terms of mean RTs and accuracy, then we 

discuss local switch costs in terms of mean RTs and accuracy. Table 2 presents the global 

and local switch costs in terms of mean RTs for each participant group and for each task 

(including statistics from ANOVAs and contrast tests). Table 3 presents the global and local 

switch costs in terms of accuracy for each participant group and for each task (including 

statistics from ANOVAs and contrast tests).

Age-Related Differences In Global Switch Costs.—Calculating switch costs in terms 

of mean RTs, the 61–74 year olds and the 75–89 year olds had significantly larger global 

switch costs than the college students for both discrimination tasks (Table 2). The global 

switch costs of the 61–74 year olds were similar to those of the 75–89 year olds for both 

discrimination tasks. Indexing switch costs in terms of accuracy (Table 3), group-specific 

differences varied as a function of the discrimination task: for the letter discrimination task, 

the 75–89 year olds and the 61–74 year olds had similar global switch costs to the college 

students. For the brightness discrimination task, the 75–89 year olds and the 61–74 year olds 

had significantly larger global switch costs than the college students. The global switch costs 

of the 75–89 year olds were similar to those of the 61–74 year olds for both discrimination 

tasks.

Age-Related Differences In Local Switch Costs.—Calculating switch costs in terms 

of mean RTs, the 61–74 year olds and the 75–89 year olds had significantly larger local 

switch costs than the college students for both discrimination tasks. The local switch costs of 

the 61–74 year olds were similar to those of the 75–89 year olds for the letter discrimination 

task. However, the local switch costs of the 61–74 year olds were significantly smaller than 

those of the 75–89 year olds for the brightness discrimination. Indexing switch costs in 

terms of accuracy, group-specific differences in switch costs varied as a function of the 

discrimination task: for the letter discrimination task, the 75–89 year olds and the 61–74 

year olds had significantly larger local switch costs than the college students. For the 

brightness discrimination task, the 75–89 year olds and the 61–74 year olds had similar local 

switch costs to the college students. The local switch costs of the 61–74 year olds were 

similar to those of the 75–89 year for both discrimination tasks.

Interim Summary For Conventional Performance Measures.—The results 

presented thus far illustrate that it is important to distinguish not only between local and 

global switch costs, but also between switch costs indexed by mean RTs and accuracy. The 
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underlying components that lead to these effects are examined with the diffusion model 

analysis in the following subsections.

Results From The Diffusion Model Analysis

Our goal with the diffusion model analysis was to understand the cognitive components 

involved in task switching and how these components change with age. In particular, the 

diffusion model can help to identify sources of age-related switch costs (e.g., the relative 

contributions of early-stage preparatory control processes and late-stage control processes).

In the next subsection, we discuss group-specific differences in boundary separation (Table 

4). We then discuss global switch costs in terms of nondecision time component and drift 

rate, followed by a discussion of local switch costs in terms of nondecision time component 

and drift rate. Table 5 presents the global and local switch costs in terms of nondecision time 

component for each participant group and for each task (including statistics from ANOVAs 

and contrast tests). Table 6 presents the global and local switch costs in terms of drift rate for 

each participant group and for each task (including statistics from ANOVAs and contrast 

tests).

Age-Related Differences In Boundary Separation.—Results from the ANOVA 

suggested group-specific differences in boundary separation (Table 4). Subsequent contrast 

tests confirmed that boundary separation was significantly larger for the two older 

participant groups than for college students for both discrimination tasks. The 61–74 year 

olds had similar boundary separation values compared to those of the 75–89 year olds for 

both discrimination tasks.

Age-Related Differences In Global Switch Costs.—Calculating switch costs in terms 

of nondecision time component, the 61–74 year olds and the 75–89 year olds had 

significantly larger global switch costs than the college students for the letter discrimination 

task (Table 5). The global switch costs of the 61–74 year olds were similar to those of the 

75–89 year olds for the letter discrimination task. For the brightness discrimination task, the 

61–74 year olds and the 75–89 year olds had larger global switch costs than the college 

students. However, only the difference between the 61–74 year olds and the college students 

was statistically significant. The difference between the 75–89 year olds and the college 

students did not reach statistical significance. The global switch costs of the 61–74 year olds 

were similar to those of the 75–89 year olds for the brightness discrimination task. Indexing 

switch costs in terms of drift rate (Table 6), the three participant groups had similar global 

switch costs for both discrimination tasks.

Age-Related Differences In Local Switch Costs.—Calculating switch costs in terms 

of nondecision time component, the 61–74 year olds and the 75–89 year olds had 

significantly larger local switch costs than the college students for both discrimination tasks 

(Table 5). The local switch costs of the 61–74 year olds were similar to those of the 75–89 

year olds for both discrimination tasks. Indexing switch costs in terms of drift rate (Table 6), 

group-specific differences varied as a function of the discrimination task: for the letter 

discrimination task, the 75–89 year olds and the 61–74 year olds had significantly larger 
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local switch costs than the college students. The local switch costs of the 61–74 year olds 

were similar to those of the 75–89 year olds for the letter discrimination task. For the 

brightness discrimination task, the 75–89 year olds and the 61–74 year olds had similar local 

switch costs to the college students.

Interim Summary For Diffusion Model Analysis.—Calculating switch costs in terms 

of nondecision time components, we found age-related local and global switch costs for both 

discrimination tasks. Calculating switch costs in terms of drift rate, we found age-related 

local switch costs only for the letter discrimination task, but not for the brightness 

discrimination task. These results suggest that relative to the college students, older 

participants were more sensitive to stimulus interference when the target stimuli were 

bivalent (as on switch trials in the letter discrimination task) than when target stimuli were 

univalent (as on switch trials in the brightness discrimination task.)

General Discussion

For univalent target stimuli (brightness discrimination task), older participants had larger 

global switch costs (both in terms of mean RTs and accuracy) than younger participants. For 

bivalent target stimuli (letter discrimination task), older participants had larger global switch 

costs in terms of mean RTs (but not in terms of accuracy) than younger participants. This 

pattern of results was reversed for local switch costs, namely: For univalent target stimuli, 

older participants had larger local switch costs in terms of mean RTs (but not in terms of 

accuracy) than younger participants. For bivalent target stimuli, older participants had larger 

local switch costs (both in terms of mean RTs and accuracy) than younger participants. 

These results suggest that switch costs in terms of accuracy and mean RTs most likely 

reflect age-related differences in distinct components of task switching.

We then showed that the diffusion model parameters separated components of task switching 

in a principled way, allowing us to identify the sources of age-related switch costs (i.e., 

early-stage preparatory control processes as indexed by nondecision time component and 

late-stage control processes as indexed by drift rate.) Figure 4 illustrates global and local 

switch costs for univalent and bivalent target stimuli, respectively. The diffusion model 

components that contributed to age-related differences in each of these switch costs are 

represented by circles. Irrespective of whether target stimuli were univalent or bivalent, age-

related global and local switch costs were composed of nondecision time components (Ter). 

Based on the MCT approach, this result suggests slower early-stage preparatory control 

processes for older participants than for younger participants. For bivalent target stimuli 

only, age-related local switch costs additionally had a drift rate (v) component. Based on the 

MCT approach, this result suggests deficits in late-stage control processes (presumed to 

resolve stimulus interference) for older participants than for younger participants.

Mayr (2001) proposed that a task-switch paradigm with univalent and bivalent stimuli 

intermixed in a block may allow one to determine how much late-stage control processes 

(i.e., the ambiguity of the bivalent target stimuli may cause interference that has to be 

resolved by these processes) and early-stage control processes (i.e., processes that prepare 

for task switches irrespective of whether the target stimuli is bivalent or univalent) contribute 
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to switch costs. In line with Mayr (2001)’s view, we found that the older participants were 

more sensitive to interference caused by bivalent stimuli (as suggested by the age-related 

increase in local switch costs indexed by drift rate for the letter discrimination task). 

Because this result was specific to switch costs measured by drift rate, it seems that late-

stage control processes contribute more to these switch costs than do early-stage control 

processes. Another way to see that these components represent separate components of 

processing is to examine correlations between them. Supplemental Table S9 shows that 

nondecision time component and drift rate were not correlated with each other over 

participants and this supports the view that they index different processing components.

Some aging studies discussed earlier hypothesized that older participants adopt a generally 

more conservative response strategy in task-switch paradigms (e.g., Lindenberger and Mayr, 

2014; Mayr, 2001). In line with this view, we found that older participants had significantly 

larger boundary separation than college students for both discrimination tasks. In contrast to 

the conclusions from previous studies, the general more conservative response strategy did 

not explain all the effects of age-related switch costs. Specifically, we found age-related 

differences in global and local switch costs indexed by nondecision time component and 

drift rate beyond the age-related increase in boundary separation.

Previous aging studies that used task-switch paradigms found that older participants have 

larger global switch costs (as indexed mostly by mean RTs) than younger participants 

(Gajewski et al., 2018; Meiran et al., 2001, Verhaeghen & Cerella, 2002; Wasylyshyn et al., 

2011; Zelazo et al., 2004). Recent diffusion model applications discussed in the Introduction 

mostly focused on local switch costs by using paradigms that involved mixed blocks only. 

To estimate consistent model parameters for pure blocks, a sufficiently high error rate is 

necessary on those trials. However, accuracy values on pure blocks are often high (i.e., 

above 95%) (Huizinga & van der Molen, 2007; Salthouse et al., 2000; Schmitz & Voss, 

20112; Schuch, 2016; Zelazo et al., 2004). The task-switch paradigm presented here 

involved two discrimination tasks with degraded stimuli (and predictable task switches). The 

use of degraded stimuli resulted in a sufficiently high error rate that allowed us to study 

global and local switch costs. We found that older participants, relative to younger 

participants, had larger global switch costs when computed in terms of reaction times or in 

terms of nondecision time components (Gajewski et al., 2018; Meiran et al., 2001, 

Verhaeghen & Cerella, 2002; Wasylyshyn et al., 2011; Zelazo et al., 2004). Some 

researchers argued that age-related global switch costs are mainly produced by age-related 

declines in working memory capacity (e.g., Mayr, 2001; Mayr & Kliegl, 2003; Zelazo et al., 

2004). However, importantly, we found age-related global switch costs, despite the fact that 

we reduced the demand of working memory as much as possible in our task-switch 

paradigm (see Introduction: Present Study and Method Section: Experimental Procedure).

Previous studies (Karayanidis et al., 2009; Madden et al., 2009; Schmitz & Voss, 2012; 

Schuch, 2016) suggested that nondecision time component and drift rates might not be able 

to index global and local switch costs in task-switch paradigms that involved predictable 

task switches. For instance, Schmitz and Voss (2012) presented stimuli (composed of a letter 

and a digit) to participants and asked them to categorize stimuli either based on their digits 

(odd or even) or their letters (consonant or vowel). They found local switch costs in terms of 
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nondecision time component but only when task switches occurred randomly, not when task 

switches occurred predictably (every third trial). Furthermore, Schmitz and Voss (2012) did 

not find any global switch costs in terms of nondecision time component. In contrast to these 

results, we found that younger and older participants exhibited global and local switch costs 

in terms of nondecision time component and drift rate. The fact that Schmitz and Voss 

(2012) did not find differences in nondecision time component between no-switch and 

switch trials when task switches occurred predictably, whereas we did, could be due to their 

use of clearly identifiable stimuli (unlike the stimuli used here).

For the RSI manipulation, we found that RSI significantly modulated global and local switch 

costs, and that the older participant groups were more affected by changes in RSI. We 

discuss these secondary results in the Supplemental Material in more detail. Overall, the 

results suggested that RSI mainly affected switch costs in terms of nondecision time 

component. Furthermore, differences between the two older participant groups were more 

pronounced when RSI was short rather than long. For both discrimination tasks, group 

differences in global switch costs indexed by nondecision time component were largest 

when RSI was short, whereas group differences in local switch costs indexed by nondecision 

time component were largest when RSI was long. Previous results suggested that an increase 

of RSI decreases switch costs, and that it does more so for older participants (Kiesel et al., 

2010; Koch & Allport, 2006; Schmitz & Voss, 2012; Vandierendonck et al., 2010). Our 

findings put previous results into perspective by suggesting that it depends on the type of 

task as well as on the type of switch costs whether an increase in RSI decreases switch costs 

particularly of older participants.

The MCT approach (Gilbert & Shallice, 2002; Koch & Allport, 2006; Mayr & Kliegl, 2003; 

Meiran, 1996; Meiran et al., 2000; Monsell, 2003; Rubinstein et al., 2001; Ruthruff et al., 

2001; Sohn & Anderson, 2001; Yeung & Monsell, 2003) hypothesized that early-stage 

preparatory control processes and late-stage control processes affect cognitive-processing at 

different points in time, leading to different types of switch costs. Our results provide 

evidence for this hypothesis and further suggest that the diffusion model provides the means 

with which to decompose these control processes. The findings from our study suggest that 

switch costs indexed by nondecision time component and drift rate represent different 

cognitive components. Our results illustrate the utility of using a task-switch paradigm with 

degraded stimuli and in conjunction with model-based analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Table A1

Means and standard deviations in parameter values across participant groups for fits of the 

diffusion model to the task-switch paradigm (for the model in the main text).

Group Task a ƞ sz st1 st2 st3 st4

Mean

college students
Brightness 0.148 0.135 0.048 0.166 0.354 0.192 0.432

Letter 0.139 0.113 0.045 0.136 0.231 0.143 0.249

61–74 year olds
Brightness 0.228 0.141 0.042 0.243 0.430 0.251 0.579

Letter 0.221 0.145 0.046 0.152 0.337 0.140 0.357

75–89 year olds
Brightness 0.256 0.138 0.051 0.298 0.364 0.275 0.563

Letter 0.239 0.152 0.060 0.154 0.354 0.140 0.400

Standard deviation

college students
Brightness 0.043 0.038 0.026 0.078 0.157 0.083 0.191

Letter 0.030 0.033 0.024 0.042 0.094 0.046 0.111

61–74 year olds
Brightness 0.061 0.038 0.042 0.107 0.222 0.173 0.189

Letter 0.049 0.034 0.034 0.072 0.180 0.075 0.211

75–89 year olds
Brightness 0.079 0.041 0.064 0.168 0.194 0.199 0.227

Letter 0.042 0.034 0.043 0.094 0.201 0.082 0.232

Note. Model with one boundary separation for pure and mixed blocks. a = boundary separation; ƞ = standard deviation in 
drift across trials; sz = range of the distribution of starting point (z); st1 = range of the distribution of nondecision time 

components for pure and no-switch trials with short RSI; st2 = range of the distribution of nondecision time components 

for switch trials with short RSI; st3 = range of the distribution of nondecision time components for pure and no-switch 

trials with long RSI; st4 = range of the distribution of nondecision time components for switch trials with long RSI.

Table A2

Means and standard deviations in nondecision time components across participant groups 

for fits of the diffusion model to the task-switch paradigm (for the model in the main text).

Group Task Ter1 Ter2 Ter3 Ter4 Ter5 Ter6

Mean

college students
Brightness 0.396 0.412 0.537 0.397 0.425 0.562

Letter 0.393 0.430 0.488 0.400 0.443 0.499

61–74 year olds
Brightness 0.525 0.628 0.919 0.514 0.605 0.923

Letter 0.487 0.577 0.705 0.475 0.558 0.701

75–89 year olds
Brightness 0.615 0.702 0.946 0.593 0.657 0.920

Letter 0.487 0.606 0.803 0.474 0.576 0.756

Standard deviation

college students
Brightness 0.072 0.058 0.108 0.064 0.061 0.119

Letter 0.031 0.040 0.054 0.027 0.040 0.055

61–74 year olds
Brightness 0.143 0.129 0.239 0.112 0.111 0.185

Letter 0.083 0.106 0.116 0.068 0.074 0.112

75–89 year olds Brightness 0.237 0.208 0.297 0.167 0.184 0.183
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Group Task Ter1 Ter2 Ter3 Ter4 Ter5 Ter6

Letter 0.052 0.090 0.175 0.064 0.058 0.135

Note. Model with one boundary separation for pure and mixed blocks. Ter1 = nondecision time component of response 

time for pure trials with short RSI; Ter2 = nondecision time component of response time for no-switch trials with short 

RSI; Ter3 = nondecision time component of response time for switch trials with short RSI; Ter4 = nondecision time 

component of response time for pure trials with long RSI; Ter5 = nondecision time component of response time for no-

switch trials with long RSI; Ter6 = nondecision time component of response time for switch trials with long RSI.

Table A3

Means and standard deviations in drift rates across participant groups for fits of the diffusion 

model to the task-switch paradigm (for the model in the main text).

Group Task v1 v2 v3 v4 v5 v6

Mean

college students
Brightness .217 .177 .146 .213 .179 .149

Letter .307 .230 .216 .295 .224 .220

61–74 year olds
Brightness .178 .138 .105 .190 .135 .110

Letter .339 .246 .207 .328 .234 .212

75–89 year olds
Brightness .176 .118 .082 .168 .115 .094

Letter .315 .202 .187 .307 .222 .182

Standard deviation

college students
Brightness 0.070 0.060 0.052 0.081 0.067 0.046

Letter 0.076 0.053 0.058 0.062 0.057 0.059

61–74 year olds
Brightness 0.084 0.057 0.047 0.078 0.062 0.051

Letter 0.098 0.068 0.064 0.083 0.061 0.056

75–89 year olds
Brightness 0.071 0.063 0.059 0.073 0.057 0.062

Letter 0.102 0.085 0.071 0.096 0.071 0.059f

Note. Model with one boundary separation for pure and mixed blocks. v1 = drift rate for pure trials with short RSI; v2 = 

drift rate for no-switch trials with short RSI; v3 = drift rate for switch trials with short RSI; v4 = drift rate for pure trials 

with long RSI; v5 = drift rate for no-switch trials with long RSI; v6 = drift rate for switch trials with long RSI.
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Figure 1. 
Example of the stimulus for letter discrimination (correct response: T).
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Figure 2. 
Example of the stimulus for brightness discrimination (correct response: bright).
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Figure 3. 
Plots of accuracy and mean correct response time (RT) for the letter discrimination (left 

panel) and the brightness discrimination task (right panel) and for each trial type, averaged 

over participants of each group, respectively. The left side presents the data for letter 

discrimination. The right side presents the data for brightness discrimination. Accuracy and 

mean correct RTs were averaged over the short and long response-stimulus intervals (RSIs). 

The bars in the top left (for mean correct RTs), and the bottom left (for accuracy) represent 

the standard deviations averaged over trial types for each participant group. For a given 

participant group, the standard deviation of each participant was averaged to obtain the 

average standard deviation.
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Figure 4. 
Graphical illustration of age-related switch costs.
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Table 1

Participant background characteristics.

College students 61–74 year olds 75–89 year olds

Measure M SD M SD M SD

Mean age 20.66 1.76 68.11 3.68 79.28 2.88

Years of education 13.69 1.56 15.88 3.08 13.61 2.46

MMSE 29.06 1.16 28.63 1.30 28.05 1.53

WAIS-III Vocabulary 12.63 2.83 12.79 2.61 11.55 2.60

WAIS-III Matrix 12.06 2.89 12.55 3.06 12.91 3.54

Note. There are three missing values for the college participants, and one missing value for the 75–89 year olds. MMSE = Mini-Mental State 

Examination; WAIS-III = Wechsler Adult Intelligence Scale – 3rd Edition (raw scores). The college students included 11 men and 40 women. The 
61–74 year olds included 38 women only, whereas the 75–89 year olds included 5 men and 17 women.
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Table 4

Boundary separation for the letter and the brightness discrimination task, averaged over participants of each 

group.

Groups Boundary Separation ANOVA Contrast Tests

M SE 99% CI Effect F ratio df Partial ƞ2 GC Test statistic

Letter Discrimination Task

College Students 0.15 0.01 [0.13,0.17] G 53.8** 2 0.50 1 t(57.1) = −9.0**

61–74 year olds 0.23 0.01 [0.20,0.25] T 8.762** 1 0.07 2 t(30.6) = −10.1**

75–89 year olds 0.26 0.01 [0.20,0.24] G × T 0.35 2 0.01 3 t(49.7) = −1.5

Brightness Discrimination Task

College Students 0.14 0.01 [0.12,0.15] 1 t(63.4) = −6.6**

61–74 year olds 0.22 0.01 [0.20,0.24] 2 t(26.5) = −5.8**

75–89 year olds 0.24 0.01 [0.22,0.26] 3 t(35.5) = −1.4

Note. G = group; T = task type; CI = confidence interval; GC = group comparison (1 = college students vs. 61–74 year olds; 2 = college students 
vs. 75–89 year olds; 3 = 61–74 year olds vs. 75–89 year olds).

*
p < .05;

**
p < .01.
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