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Abstract

Purpose: To probe the feasibility of deep learning-based super-resolution (SR) reconstruction 

applied to nonenhanced magnetic resonance angiography (MRA) of the head and neck.

Methods: High-resolution 3D thin-slab stack-of-stars quiescent interval slice selective (QISS) 

MRA of the head and neck was obtained in 8 subjects (7 healthy volunteers, 1 patient) at 3 Tesla. 

The spatial resolution of high-resolution ground-truth MRA data in the slice-encoding direction 

was reduced by factors of 2 to 6. Four deep neural network (DNN) SR reconstructions were 

applied, with two based on U-Net architectures (2D and 3D) and two (2D and 3D) consisting of 

serial convolutions with a residual connection. SR images were compared to ground-truth high-

resolution data using Dice similarity coefficient (DSC), structural similarity index (SSIM), arterial 

diameter, and arterial sharpness measurements. Image review of the optimal DNN SR 

reconstruction was done by two experienced neuroradiologists.

Results: DNN SR of up to 2-fold and 4-fold lower-resolution (LR) input volumes provided 

images that resembled those of the original high-resolution ground-truth volumes for intracranial 

and extracranial arterial segments, and improved DSC, SSIM, arterial diameters, and arterial 

sharpness relative to LR volumes (P<0.001). 3D DNN SR outperformed 2D DNN SR 

reconstruction. According to two neuroradiologists, 3D DNN SR reconstruction consistently 

improved image quality with respect to LR input volumes (P<0.001).

Conclusion: DNN-based SR reconstruction of 3D head and neck QISS MRA offers the potential 

for up to 4-fold reduction in acquisition time for neck vessels without the need to commensurately 

sacrifice spatial resolution.
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INTRODUCTION

Vascular evaluation of the head and neck remains a key component in the diagnostic 

evaluation of patients presenting with suspected stroke (1). Cross-sectional imaging of the 

head and neck vessels is typically performed with contrast-enhanced CT angiography (CTA) 

or magnetic resonance angiography (MRA) (2). As an alternative to contrast-enhanced CTA 

and MRA, nonenhanced MRA (NEMRA) avoids any risk from contrast agents (3). However, 

scan times associated with NEMRA are relatively long, typically ~10-15 minutes for 

evaluation of the entire neck and proximal intracranial arteries using 2D or 3D time-of-flight 

(TOF) protocols. Recently, 3D thin-slab stack-of-stars quiescent interval slice-selective 

(QISS) MRA has been shown to provide high spatial resolution of the entire neck and Circle 

of Willis in ≈7 minutes with better image quality than TOF (4). Nonetheless, further 

reduction of scan time would be desirable to improve patient comfort, reduce motion 

artifacts, hasten diagnostic evaluation, and compete with the shorter scan times of contrast-

enhanced CTA and MRA (5-7).

3D thin-slab QISS utilizes a stack-of-stars k-space trajectory with radial sampling performed 

in the transversal axis and phase-encoding performed in the slice direction. This k-space 

trajectory provides robustness to motion and pulsation artifacts as well as efficient imaging 

while maintaining spatial resolution and vessel sharpness (8-10,4). As undersampling in the 

radially sampled transversal axis is already high (≈12-fold with respect to the Nyquist rate), 

additional scan acceleration can be achieved primarily through undersampling of the slice-

encoding direction. Established data acceleration strategies include parallel imaging and 

compressed sensing (11,12). However, the very thin slabs (≈2 cm thickness) acquired with 

3D thin-slab stack-of-stars QISS complicates the application of parallel imaging in the slice-

encoding direction due to limitations in receiver coil sensitivity and signal-to-noise ratio 

(11). On the other hand, compressed sensing entails the use of specialized imaging 

sequences (for customized undersampling of k-space) and associated iterative image 

reconstruction routines, which despite growing commercial offerings in recent years, remain 

unavailable on many installed MR systems. Moreover, even with judiciously tuned image 

acquisitions and reconstructions, compressed sensing inevitably degrades fine image detail 

due to deliberate undersampling of high frequency k-space (13-19). Additionally, 

compressed sensing reconstructions enforce data consistency and image sparsity, and thus 

are not designed to recover unacquired image details which are largely defined by high 

frequency k-space.

As potential complementary or alternative methods to standard MRI acceleration strategies, 

deep neural network (DNN)-based methods have found uses in numerous medical imaging 

applications, including for image reconstruction and restoration in accelerated MRI (20-23). 

With the goal improving apparent spatial resolution and reducing acquisition time, DNN 

methods show particular promise for super-resolution (SR) reconstruction that enables the 

recovery and restoration of unacquired image details based on prior learning (24-27). In 

particular, we hypothesized that DNN-based SR reconstruction could be applied to 

nonenhanced 3D head and neck MRA to allow the acquisition of a reduced number of 

thicker slices, thereby shortening scan time while preserving spatial resolution. The purpose 

of this study was to probe the feasibility and extent to which four DNN-based SR 
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approaches could potentially shorten the scan times of nonenhanced 3D thin-slab stack-of-

stars QISS MRA by factors of up to 6, while comparing results to high-resolution ground 

truth data.

METHODS

This research study was approved by our institutional review board and all subjects provided 

written informed consent. The imaging data used in this study consisted of thin multiple 

overlapping slab stack-of-stars QISS MRA obtained in eight subjects (7 healthy volunteers, 

1 patient with bilateral carotid arterial disease) on a 3 Tesla MRI system (MAGNETOM 

Skyrafit, Siemens Healthineers, Erlangen, Germany) as previously described (4). A 20-

channel head and neck coil received the MRI signal. Acquired spatial resolution was 

0.86×0.86×1.30 mm, which was reconstructed to 0.43×0.43×0.65 mm using zero filling 

interpolation. An axial coverage of 288.6 mm was obtained in 6 minutes 39 seconds. Other 

imaging parameters were: 300 mm field of view, 352 acquisition matrix (704 reconstruction 

matrix after zero filling interpolation), fast low-angle shot readout with TR 9.9 ms and TEs 

of 1.6 ms, 3.7 ms, and 5.7 ms which were combined using a root mean square procedure, 

QISS TR/QI of 1500/583 ms.

Acquired high-resolution (HR) data sets were considered as ground truth, while the 2-fold, 

3-fold, 4-fold, 5-fold, and 6-fold low-resolution (LR) data sets were generated by applying a 

Fourier transform to the HR data sets along the slice-direction, zeroing the highest 50.0%, 

66.6%, 75.0%, 80.0%, and 83.3% acquired spatial frequencies along the slice direction, and 

inverse Fourier transforming the result back to the image domain. This Fourier-based low-

pass filtering process mimics the acquisition of fewer slice-encoding steps as is done during 

3D MRI prescribed with reduced spatial resolution in the slice direction.

Deep Learning-Based SR Methods

Four deep neural network (DNN) models were tested: 2D U-Net and 3D U-Net (28), and 2D 

and 3D networks consisting of serial convolutions and a residual connection (SCRC) (24); 

these DNNs are hereafter referred to as 2D U-Net, 3D U-Net, 2D SCRC, and 3D SCRC, 

respectively. To avoid needless inclusion of superfluous air regions outside the body due to 

the large field of view and to better focus DNN training on arterial and adjacent structures, 

imaging volumes were cropped 50% in the anterior-posterior and left-right directions before 

DNN training.

U-Net DNNs: Similar to an implementation reported previously in the field of nonenhanced 

MRA (29), the 2D U-Net DNN used 4 levels of downsampling, 4 levels of upsampling with 

concatenation of downsampled features of the same level, and 8 channels (Figure 1a). 2D 

convolution (of size 3×3) with rectified linear unit activation was used on each level, with 

maximum pooling for downsampling, and transposed convolution for upsampling. The 

network took LR 2D image patches (of size 32×32 voxels) as inputs and produced patches 

of the same size as outputs. Ten thousand training patches from coronal reformatted images 

were selected (from all unique candidate patches separated by a stride of 16 voxels in each 

direction) from each subject, with half of the training patches obtained from edge-bearing 

patches (based on the maximal signal contained in the HR volume after convolving with a 5-
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tap [−1, 0.5, 1, 0.5, −1] filter along all three orthogonal directions), and with the other half 

obtained from randomly selected locations within the 3D volume used for training. Output 

patches were tiled together (with patches overlapped by 16 voxels in both the head-foot and 

lateral directions) to generate the final reconstructed volume.

The 3D U-Net DNN (Figure 1b) consisted of 3 levels of downsampling followed by 3 levels 

of upsampling with concatenation of downsampled features. The network took LR 3D image 

blocks (of size 8×8×8 voxels) as inputs and produced output blocks of the same size. Image 

blocks of size 8×8×8 instead of larger block sizes (e.g., of size 32×32×32) were chosen for 

the 3D U-Net DNN as they provided better reconstruction results. Twenty thousand training 

blocks (separated by a stride of 4 voxels in each direction) were selected from each subject, 

with half obtained from edge-bearing blocks (based on the maximum filtered signal in the 

HR volume as defined previously), and the remaining blocks obtained from randomly 

selected locations within the 3D volume. Output blocks were stacked together using a 4 

voxel overlap in all directions.

SCRC DNNs: Similar to prior work applying DNN SR reconstruction to knee MRI (24), 

the 3D SCRC DNN was based on serial 3D convolutions (size 3×3×3) combined with 

rectified linear unit activation, except for the final layer where only convolution was used 

(Figure 1d). The network output was then summed with the LR input block to generate the 

final SR volume. The network took 32×32×32 voxel blocks as inputs and used 7 convolution 

layers and 64 filters; 7 layers were used as more convolutional layers produced similar 

results or failed to train. For DNN training, one thousand spatially-registered 3D blocks 

(from all unique candidate blocks separated by a stride of 16 voxels in each direction) from 

the LR source and HR target volumes were selected, with half of these blocks chosen on the 

basis of edge strength in the HR volume, while the remaining half were chosen randomly 

from the 3D field of view. Output blocks of size 32×32×32 were stacked together with 

blocks overlapped by 16 voxels in all three directions to produce the final reconstructed 

volume. The 2D SCRC DNN (Figure 1c) was analogous to the 3D SCRC DNN but was 

based on 2D convolutions (size 3×3) and took 32×32 image patches as inputs. The training 

and reconstruction approach for the 2D SCRC DNN was identical to that of the 2D U-Net 

DNN.

All DNN training was done using leave-one-out cross-validation, an adaptive moment 

estimation optimizer (learning rate=0.001, β1=0.9, β2=0.999), a mean squared error loss 

function, validation split of 20%, and early stopping based on validation loss (training was 

stopped after 3 epochs with no improvement in validation loss). A 50% dropout probability 

between the central U-Net DNN layers was applied. Training batch sizes for the 2D U-Net, 

3D U-Net, 2D SCRC and 3D SCRC DNNs were 400, 80, 400 and 20, respectively, whereas 

the number of trainable parameters were 540,073, 436,521, 185,857 and 556,801, 

respectively. Training and execution of the DNNs was done in the Python programming 

language using open-source packages (Keras v2.2.4, Tensorflow v1.12.0) and a commodity 

graphics processing unit (GTX 1060, Nvidia Corporation, Santa Clara, CA). Typical training 

times for the 2D U-Net, 3D U-Net, 2D SCRC and 3D SCRC DNNs were approximately 2 

min (9 epochs), 9 min (7 epochs), 5 min (9 epochs) and 60 min (9 epochs), respectively.
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Quantitative Image Analysis

Quantitative analysis consisted of measuring the degree of anatomical agreement between 

HR volumes, LR volumes and the four SR volumes using various quantitative metrics 

including Dice similarity coefficient (DSC), structural similarity index (SSIM), normalized 

root mean squared error (NRMSE), arterial sharpness, and arterial diameter measurements.

Overall arterial anatomical congruence between the ground truth, LR and SR reconstructions 

was evaluated using the DSC (30). In assessing anatomical congruence with the DSC, 3D 

arterial masks were generated using a bespoke region-growing routine with four extracranial 

seed points placed manually in the bilateral common carotid arteries and V2 segments of the 

vertebral arteries (≈2 cm below the carotid bifurcation), as well as with additional seed 

points placed in the intracranial arteries. The minimum signal intensity allowed in the 

arterial mask enlarged via region growing was set to 50% (6 of 8 subjects) or 55% (2 of 8 

subjects) of the mean signal intensity contained in the four extracranial seed points to avoid 

unwanted inclusion of venous signal. DSCs were computed over the entire arterial anatomy 

(including both the extracranial and intracranial vessels), as well as for the extracranial and 

intracranial vessels separately.

SSIM, NRMSE, arterial sharpness, and arterial diameters were computed for the bilateral 

M1 segments of the middle cerebral arteries. In calculating SSIM and NRMSE, two square 

image patches (size ≈100 mm2) were obtained from coronal views of each image set, 

centered on the bilateral M1 middle cerebral arteries. SSIM and NRMSE calculations were 

done using the Python “scikit-image” package (version 0.16.1). Arterial diameter and edge 

sharpness in the slice direction (i.e., the direction of resolution reduction) were calculated in 

each subject within ImageJ software (version 1.53f, National Institutes of Health, Bethesda, 

MA), by analyzing one-dimensional ≈10-mm-long intensity profiles along the slice-

encoding axis which were bicubically interpolated by a factor of 5. With respect to 

background signal levels which were defined as the minimum signal levels on both sides of 

the arterial profile, arterial diameter (in mm units) was computed as the full-width-at-half-

maximum (FWHM) of the intensity profile. Using the same signal intensity profiles, arterial 

sharpness (in mm−1 units) was computed as the inverse of the distance between 20% and 

80% of vessel maximum intensity (relative to background signal levels), averaged from both 

sides of the vessel (31).

SR reconstructions providing median DSC and SSIM values of ≥0.9, as well arterial 

sharpness and diameter measures not significantly differing from those of the HR ground 

truth volumes were interpreted to provide sufficiently accurate displays of the arterial 

anatomy with potential for diagnostic usage.

Qualitative Image Analysis

Coronal maximum intensity projections of the LR volumes and volumes provided by the 

optimal SR reconstruction approach (as determined by the largest DSC, SSIM and arterial 

sharpness measures, as well as the smallest arterial diameter measures) were randomized 

(with the SR reconstruction displayed on either the left or right side) and displayed side-by-

side to two neuroradiologists with over 15 years of experience interpreting MRA. Using a 
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two-alternative forced choice paradigm, the neuroradiologists were asked to identify the 

volume (left or right) which provided the best image quality for diagnostic interpretation.

Statistical Analysis

Differences in quantitative measures were identified using Friedman and post-hoc Wilcoxon 

signed-rank tests. One-sided binomial tests with a test probability of 0.5 were used to 

analyze two-alternative forced choice evaluations performed by neuroradiologists. P-values 

less than 0.05 indicated statistical significance. Bonferroni correction was used for post-hoc 

Wilcoxon signed-ranked test comparisons of arterial SSIM, NRMSE, diameter and 

sharpness to avoid type I error. Statistical analyses were done using SciPy (version 1.4.1, 

https://scipy.org/).

RESULTS

Mean reconstruction times of the 2D U-Net, 3D U-Net, 2D SCRC and 3D SCRC DNN SR 

methods over the entire field of view (704×704 matrix, 444 axial slices) were 2 min 34 sec, 

13 min 9 sec, 3 min 40 sec, and 15 min 51 sec, respectively.

Figure 2 shows the image quality obtained with the 3D SCRC SR technique with respect to 

the LR input volumes, and the target high resolution output volume. With respect to the LR 

volume, 3D SCRC SR improved vessel conspicuity and sharpness in the slice-encoding (i.e., 

axial) direction, which mimicked that of the target volume for all tested resolution reduction 

factors. Supporting Information Video S1 shows corresponding results obtained with 2D U-

Net, 2D SCRC, and 3D U-Net SR reconstructions, where similar improvements in vessel 

conspicuity with respect to LR data were noted.

Quantitative Analysis

DSC measures of agreement in arterial anatomy portrayed in the SR-reconstructed and the 

ground truth volumes are shown in Figure 3 and Supporting Information Figure S2. In 

general, 3D DNN outperformed 2D DNN SR reconstructions, while SCRC DNNs 

outperformed U-Net DNNs of the same dimensionality. The 3D SCRC DNN method 

provided the largest overall DSC values. Due to the smaller caliber of the intracranial 

arteries as well as their greater orthogonality with respect to the slice-encoding direction, 

DSCs were improved to a greater degree intracranially as opposed to extracranially. For all 

four tested DNNs, median DSCs of at least 0.9 were maintained for resolution reduction 

factors of up to 2 and 5 for the intracranial and extracranial vessels, respectively, whereas 

this threshold was achieved for the 3D SCRC DNN for factors of 3 intracranially and 6 

extracranially.

Arterial SSIM, NRMSE, diameter and sharpness metrics are shown in Figure 4 and 

Supporting Information Figure S3. All four quantitative metrics improved with application 

of the DNN SR techniques (Friedman, P<0.001), with arterial SSIM and sharpness values 

increasing, and with arterial NRMSE and diameter values decreasing with respect to values 

obtained from the LR volumes. In general, progressive improvement in quantitative metrics 

was observed with the SR DNNs in the following order: 2D U-Net, 2D SCRC, 3D U-Net 
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and 3D SCRC. Of note, the 3D DNNs provided median SSIM values of ≥0.9 and retained 

the apparent image sharpness of the HR volumes for reduction factors of up to 4.

Image Appearance and Artifacts

Figure 5 shows magnified views of extracranial and intracranial arteries obtained with all SR 

reconstruction techniques, where the improved arterial display using SR reconstruction was 

obtained with respect to the LR volumes. Visually, for modest reduction factors of 2 to 3, all 

four SR DNNs restored the lost spatial resolution of the LR volumes in the slice-encoding 

direction. Consistent with the quantitative results, 3D SR DNNs generally outperformed 2D 

SR DNNs, and SCRC DNNs outperformed U-Net DNNs of the same dimensionality. In 

general, the 3D SR DNNs restored arterial detail for resolution reduction factors of up to 4.

At large resolution reduction factors of ≥5, SR DNN reconstruction artifacts included loss of 

arterial conspicuity (e.g., in the left M2 segment of the middle cerebral artery), arterial 

narrowing (e.g., in the left V3 segment of the vertebral artery), distortion of arterial contours 

(e.g., in the left petrous internal carotid artery), and a beaded vessel appearance (e.g., in the 

right V4 vertebral artery). The severity of such artifacts depended on the DNN technique and 

the factor of spatial resolution reduction.

Figure 6 and Supporting Information Figure S4 show the results of the various SR 

reconstructions on the appearance of two carotid stenoses. The DNN SR reconstructions 

recovered the original HR display of the carotid bifurcation up to resolution reduction 

factors of approximately 4.

Qualitative Image Analysis by Neuroradiologists

Qualitative evaluation by two experienced neuroradiologists showed that the best performing 

3D SCRC SR DNN produced MR angiograms that were preferred over angiograms obtained 

from the input LR volumes 100% of the time (40 of 40 comparisons, P=9.09×10−13) for 

both reviewers.

DISCUSSION

In this study, we probed the capability of four DNN-based SR methods to improve spatial 

resolution in QISS MRA acquired with 2- to 6-fold degraded spatial resolution in the axial 

direction. We found that 2D and 3D DNN-based approaches restored image spatial 

resolution and appearance according to multiple quantitative image metrics including arterial 

SSIM, NRMSE, sharpness and diameter. Using stack-of-stars QISS data, we found that 

DNN-based SR reconstruction can improve apparent spatial resolution in the slice direction 

and holds promise for shortening the acquisition times of nonenhanced QISS MRA by 

factors of up to 4.

The 3D SCRC SR reconstruction technique used in this work resembles that of Chaudhari 

and colleagues (24) which was applied to improve the apparent spatial resolution in knee 

MRI. Using layers of 3D CNNs, both networks generate a difference volume which is then 

added back to the lower-resolution volume to generate the final resolution-improved volume. 

Seven convolutional layers were used in the present work as we observed that more 
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convolutional layers (i.e. >7) provided negligible benefit at substantially higher 

computational expense during training and inference, whereas the use of 20 layers resulted 

in the SCRC DNN failing to learn. Because the receptive field of the SCRC DNN increases 

with number of convolutional layers, this observation suggests that high-spatial frequency 

arterial edge information in neurological MRA is best inferred from image data in the 

immediate vicinity of the artery.

With respect to prior work in the field of SR-enhanced MRA of the neurovasculature 

(31,32), our study adds further support to the notion that SR-based methods can provide 

improvements in apparent spatial resolution. Our work differs from a prior SR study in the 

field of MRA (31) in that a 3D rather than a 2D MRA acquisition was used, and that DNN-

based SR methods (as opposed to more conventional SR methods) were tested. In contrast to 

this prior study which reported only modest (≈15%) increases in arterial sharpness values 

with conventional (i.e., non-DNN) Irani-Peleg-based SR reconstruction (33), the 3D DNN 

SR methods tested here provided much larger increases (≈60% at 3-fold reduced spatial 

resolution) in arterial sharpness. Moreover, the DNN SR methods markedly reduced the 

broadening of arterial diameter seen in LR volumes. Of note, we tested conventional Irani-

Peleg SR reconstruction on the LR volumes of this study but the approach provided no 

substantial benefit (due to the lack of distinct overlapping data) and consequently results are 

not reported.

Using leave-one-out cross-validation, we found that the 2D and 3D DNN SR techniques 

could be trained using limited training data obtained in only 7 subjects. This finding is 

notable as it suggests that such DNN networks can be sufficiently trained using a small 

number of existing data sets. We also found that the various DNNs required substantially 

different training times and application times despite having nearly the same number of 

training parameters. Even though the 3D DNNs outperformed the 2D DNNs in terms of 

quantitative metrics, the latter were faster to train and apply. 2D SR DNNs may therefore be 

advantageous when faster image reconstruction is preferred at the cost of reconstruction 

accuracy. Of note, the SR DNNs used in this study were applied to a very large imaging 

matrix obtained after two-fold interpolation in all three directions. Reconstruction times for 

all four DNNs can be shortened substantially by disabling interpolation, limiting 

reconstruction to arterial locations, or using more powerful graphical processing units.

This study has some limitations. First, reconstruction artifacts in the form of vessel blurring 

and distortion from some of the evaluated DNNs were noted at large resolution reduction 

factors of ≥4; accordingly, the use of more modest reduction factors of 2–3 is recommended. 

Second, the approach used to select the training 2D patches and 3D blocks was determined 

empirically and may not be optimal. Additional improvements in SR performance may be 

feasible with further DNN hyperparameter optimization and other DNN architectures. Third, 

with the exception of one patient with bilateral carotid disease, this study was performed in a 

small cohort of primarily healthy subjects. Fourth, the DNN approaches presented were 

applied exclusively to magnitude images; further work is needed to evaluate whether the 

incorporation of phase data (which was not available in this study) would be helpful. Lastly, 

our study was limited to data in which spatial resolution was reduced retrospectively and 
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ground truth higher-resolution data was available. Future work must validate the presented 

DNN SR methods on data acquired prospectively with reduced axial spatial resolution.

Interestingly, generalizations and extensions of the described DNN SR methods are 

anticipated. Due to similarities in image appearance (bright vessels on a dark background) 

and assuming the use of analogous DNN training methods, we anticipate that the benefits of 

DNN-based SR reconstruction strategies will extend to other MRA techniques such as 3D 

time-of-flight MRA and contrast-enhanced MRA, as well as to MRA outside the head and 

neck. Lastly, since the DNN SR techniques tested here are carried out in the image domain, 

they can readily complement and be synergistically combined with other MRI acceleration 

strategies such as parallel imaging and compressed sensing (34,35) to realize very fast 3D 

neurological MRA protocols.

CONCLUSION

In conclusion, we found that the use of DNN-based SR reconstruction of head and neck 

MRA is feasible, and potentially enables scan time reductions of up to 4-fold for displaying 

the extracranial arteries. Further work remains to validate the DNN SR reconstruction 

approaches in patients with known or suspected cerebrovascular disease.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Architectures of the deep neural networks used for super-resolution reconstruction. ReLU = 

rectified linear unit.
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Figure 2. 
Coronal maximum intensity projection 3D thin-slab stack-of-stars QISS MRA images 

obtained in a patient with bilateral carotid arterial disease showing the impact of 3D SCRC 

SR DNN reconstruction on image quality for 2- to 6-fold reduced of axial spatial resolution 

with respect to ground truth data (left-most column) and input lower resolution (LR) data 

(right-most upper panels). Insets show magnified views of the left middle cerebral artery 

(dashed boxed region in ground truth image). Note the improved spatial resolution of the 3D 

SCRC SR DNN with respect to input LR volumes as well as the improved correlation with 

respect to ground truth data. LR = low resolution; SCRC = serial convolution residual 

connection; SR = super-resolution.
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Figure 3. 
Boxplots showing DSCs obtained with the SR DNNs for select spatial resolution reduction 

factors and locations. 3D DNN SR reconstructions provided the largest DSCs, with the 3D 

SCRC DNN providing the largest DSCs. Numbers are medians; bold numbers indicate 

DNNs providing DSCs≥0.9. Horizontal dashed lines show the minimum DSC adequacy 

threshold of 0.9. DSC = Dice similarity coefficient; LR= low resolution; SCRC = serial 

convolution residual connection.
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Figure 4. 
Bar plots showing arterial SSIM, NRMSE, diameter and sharpness results obtained with the 

DNN SR reconstructions for select factors of spatial resolution reduction. Numbers are 

medians; bold numbers indicate DNNs providing SSIMs≥0.9, NRMSE values significantly 

differing from those of the LR volumes, and arterial sharpness and diameter measurements 

not significantly differing from those of the HR volumes. Dashed horizontal lines in SSIM 

plots indicate the minimum adequacy threshold of 0.9. SSIM = structural similarity index; 

NRMSE = normalized root mean square error; LR = low resolution; HR = high-resolution 

ground truth.
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Figure 5. 
Comparison of DNN SR techniques in a healthy volunteer. Coronal maximum intensity 

projection images showing magnified views of the low resolution and DNN SR 

reconstructions at the four locations marked in the coronal QISS MRA image. Note the 

improved correlation with respect to the ground truth images obtained with the 3D DNN SR 

reconstructions (with respect to 2D DNN reconstructions), and with the SCRC DNNs (with 

respect to U-Net DNNs). Best agreement with the ground truth data was generally obtained 

with the 3D SCRC method. ICA = internal carotid artery; MCA = middle cerebral artery; 

MIP = maximum intensity projection; SCRC = serial convolution residual connection; VA = 

vertebral artery.
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Figure 6. 
15-mm-thick maximum intensity projection 3D QISS MRA images obtained with the SR 

DNNs showing a severe stenosis of the right internal carotid artery (arrow). Note the 

preservation of arterial detail with the various SR DNNs for resolution reduction factors of 

up to ≈4. LR = low resolution; SCRC = serial convolution residual connection.
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