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Abstract

Human adenoviruses (HAdVs) are widespread pathogens that cause a number of partially 

overlapping, species-specific infections associated with respiratory, urinary, gastrointestinal, and 

ocular diseases. The early 3 (E3) region of adenoviruses is highly divergent between different 

species and it encodes a multitude of proteins with immunomodulatory functions. The study of 

genetic diversity in the E3 region offers a unique opportunity to gain insight into how the various 

HAdVs have evolutionarily adapted in response to the selection pressures exerted by host immune 

defenses. The objective of this review is to discuss subversion of host antiviral immune responses 

by HAdVs, with a focus on suppression of MHC class I antigen presentation, as a window into 

host-HAdV adaptation.
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Introduction

Human adenoviruses (HAdVs) are widespread pathogens in the world population. There are 

about 100 recognized HAdV types (from HAdV-1 to HAdV-100) that are classified into 

species A to G (http://hadvwg.gmu.edu/), based on their hemagglutination properties, DNA 

homology, and oncogenicity in rodents [1,2]. Members of different HAdV species are 

associated with distinct, yet partially overlapping, human diseases that are linked to 

respiratory (species B, C, and E), urinary (species B), gastrointestinal (species A, F, and G), 

and ocular (species D) infections. While primary HAdV infection elicits host antiviral 

immune responses in which cytotoxic T cells (CTLs) play an important role, these responses 

are usually insufficient to clear the virus. Consequently, HAdVs may often cause long-term 

asymptomatic infections in healthy individuals. The ability of HAdV to persist and spread in 

host cells presupposes that the virus is capable of subverting antiviral immune responses.
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The HAdV genome contains a number of genes that encode proteins with 

immunomodulatory functions [3]. Some of these proteins function by downregulating the 

cell-surface expression of MHC class I molecules, which impairs antigen presentation to 

CTLs and thus protects infected cells against lysis by HAdV-specific CTLs. For example, 

the highly oncogenic HAdV-12 of species A (HAdV-A12) encodes proteins in the early 1A 

(E1A) region that specifically repress transcription of the major histocompatibility complex 

(MHC) class I heavy chain gene [4]. The mechanism by which MHC I gene expression is 

shut down is not clearly determined. The E3 region, on the other hand, is unique in that it 

encodes proteins dedicated at counteracting host immune defenses. The original discovery of 

the E3–19K protein as a modulator of host immune responses [5–7] was not only 

groundbreaking, but it also drove research efforts to identify and characterize 

immunomodulatory proteins in other human viruses. Notably, HAdVs of species A and F 

lack the common E3–19K protein and, instead, express proteins not found in other species. 

To date, these species-specific E3-encoded proteins have not been characterized and thus 

their functions are unknown. Finally, a number of other E3-encoded immunomodulatory 

proteins have been characterized: 49K, RIDα, RIDβ, 6.7K, and 14.7K. These proteins do 

not downregulate cell-surface MHC I, but they employ different mechanisms like inhibition 

of tumor necrosis factor (TNF) activities and cell-surface downregulation of Fas and tumor 

necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors [8].

The E3 region is one of the most divergent gene regions between HAdV species. Although 

the reasons for this genetic variability are not fully understood, it points to an important role 

for the E3 proteins in the clinical diseases caused by the various HAdVs. As such, an 

important factor contributing to species-specific variations in HAdV diseases is likely the 

ability of E3 proteins to adapt to host immune defenses at the sites of infection. Another 

contributing factor is undoubtedly the ability of HAdVs to infect first tissue-specific cell 

types. The study of genetic diversity in the E3 region thus offers a unique opportunity to 

gain insight into how the virus has evolutionary adapted in the face of immune challenges 

that it encounters inside host cells. In this review, we will discuss subversion of host antiviral 

immune defenses by HAdVs, with a focus on the E3 region and downregulation of MHC I 

molecules, as an opportunity to illuminate host-HAdV adaptation. This knowledge is 

important for our understanding of mechanisms at play in the pathogenicity and persistence 

of the various HAdV species.

Adenovirus transcription units

E1A region

The early phase of HAdV infection is driven by the expression of proteins encoded in the 

E1A region that function as transcriptional activators of the other early transcription units [9]. 

Although this is a common feature of all HAdVs species, the E1A region of HAdV-A12 has 

also the unique ability to downregulate cell-surface MHC I levels in transformed rat and 

human cells [10–12]. It is thought that a 289-amino acid protein encoded in the HAdV-A12 

E1A region is specifically responsible for reducing mRNA levels of the class I heavy chain 

gene. Evidence has been provided that HAdV-A12 E1A also represses transcription of genes 

that encode the transporters associated with class I antigen processing 1 (TAP1) and TAP2, 
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as well as the proteasome-associated latent membrane proteins 2 (LMP2) and 7 (LMP7) [13]. 

The exact mechanism by which HAdV-A12 E1A suppresses transcription of key genes of 

the MHC gene region is not clear, but it may involve interference with processing of the 

nuclear factor kappa B (NF-κB) transcription factor [14].

E3 region

The E3 region is not essential for HAdV replication in cultured cells. However, the fact that 

E3 is always maintained in natural isolates suggests that the proteins encoded in this region 

are critical for natural infections in humans. The E3 region is one of the most divergent gene 

regions between HAdV species. For example, in species D, this region measures 

approximately 5.2 kilobases (kb), while it encompasses only 3 kb in species F [15]. 

Nevertheless, the proteins encoded by the E3 region exhibit mostly immunomodulatory 

functions.

Species C, which is one of the most studied HAdV, seems to express seven E3 gene 

products: 12.5K, 6.7K, 19K, 11.6K, receptor internalization and degradation α (RIDα) 

(formerly 10.4K), RIDβ (formerly 14.5K) and 14.7K [3,16–18]. The 19K protein is present in 

species B, C, D and E. The 12.5K protein is found in species A to E, while RIDα, RIDβ, 

and 14.7K proteins are encoded by all species [3,19]. Interestingly, the E3 region from 

species A encodes two proteins, 29.4K and 30.7K, that have counterparts only in species F 
[19]. Similarly, species B harbors the 16K gene product, with homologs found only in species 

D and E. Notably, HAdVs from species B and D encode two unique E3 gene products, 9K 

and 49K, respectively [20–23]. Characterization of the signal sequences and transmembrane 

segments revealed that the majority of the E3 proteins are transmembrane proteins, with the 

exception of the 12.5K and 14.7K proteins [19,24,25]. The immunomodulatory functions of 

E3-encoded proteins support evasion of host antiviral defenses, which is thought to 

contribute to the establishment of persistent infections by HAdVs.

E3–19K and other E3 proteins

E3–19K

The E3–19K protein was first described as a membrane glycoprotein that co-

immunoprecipitated with transplantation antigens, but with no defined function [26]. E3–19K 

is now known to function as an immunomodulatory protein by interfering with the MHC I 

antigen presentation pathway [5–7]. It was established that E3–19K binds to MHC I 

molecules in the endoplasmic reticulum (ER) of infected cells [5,7,27–30]. Deletion studies 

and experiments with mutants of E3–19K identified a C-terminal di-Lysine motif as highly 

important for ER retrieval, defining E3–19K as an ER-resident protein[31–33]. More recently, 

it was found that the transmembrane domain of E3–19K harbors an ER-retention signal that 

also contributes to the intracellular sequestration of MHC I molecules [34]. It is thought that 

both the ER retrieval and retention signals of E3–19K work cooperatively to suppress MHC 

I transport to the cell surface. By preventing the egress of MHC I molecules to the cell 

surface, HAdV-infected cells become more resistant to lytic attack by CTLs [35–39]. The 

discovery of the MHC I-binding and ER-retrieval/-retention functions, and their effects on 

Oliveira and Bouvier Page 3

FEBS Lett. Author manuscript; available in PMC 2021 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cell-surface expression of MHC I, provided the first evidence that a virus can counteract host 

antiviral T cell responses.

Mature E3–19K varies between 139 and 151 amino acids, depending on the HAdV species 
[40]. E3–19K is composed of a N-terminal ER-luminal domain, a transmembrane domain, 

and a C-terminal cytosolic tail. The ER-luminal domain contains 19 residues that are strictly 

conserved across Ad species[15,40]. Early structure-function studies identified Lys42, Met87, 

Lys91, and Tyr93 in HAdV-C2 as critical for the binding of MHC I by E3–19K [29,30,41–45]. 

The interaction between E3–19K and MHC I was more thoroughly understood from our 

determination of the x-ray crystal structure of Ad2 (species C) E3–19K bound to human 

leukocyte antigen-A2 (HLA-A2) [46] (Fig. 1). The structure showed that E3–19K binds at 

the N-terminus of the α1-helix on HLA-A2 and also contacts the C-terminus of the α2-helix 

and loops on the α3-domain, and β2 microgobulin (β2m) (Fig. 1). This binding mode was 

also seen in the x-ray structure of the HAdV-E4 E3–19K/HLA-A2 complex [47]. These 

structures provided critical information to understand that the conserved residues form a 

tightly packed hydrophobic core essential to maintains the unique tertiary fold of E3–19K 

(Fig. 2A), while the non-conserved residues form most contacts with HLA-A2 (Fig. 2B).

Immunoprecipitation assays with cells infected by HAdVs from species C (HAdV-C2 and 

HAdV-C5) or D (HAdV-D19a/-D64) indicated that E3–19K binds to MHC I molecules with 

different affinities, resulting in differential sensitivities of MHC I downregulation on 

infected cells [21,48,49]. This interaction between E3–19K and MHC I was later confirmed by 

an in vitro binding assay using recombinant, soluble E3–19K proteins of species B, C, D and 

E and HLA-A, HLA-B and HLA-C molecules [41,42]. These studies showed that E3–19K 

associates with HLA-A and HLA-B but, interestingly, has reduced affinity for HLA-C. The 

locus-specific downregulation of MHC I is thought to counteract natural killer (NK)-cell 

cytotoxic responses against HLA-devoid cells, as shown for the HIV-1 negative regulatory 

factor (Nef) immunomodulatory protein [50], although this remains to be determined.

In addition to interfering with the MHC I antigen presentation pathway, E3–19K was shown 

to promote intracellular sequestration of the MHC class I-related chain A (MIC A) and MIC 

B, which are important cell-surface ligands for NK cells to recognize target cells [51]. 

Alanine scanning mutagenesis of the luminal domain of E3–19K revealed that substitutions 

of Thr14 and Met82 compromise MIC A and MIC B downregulation with minimal effects 

on MHC I downregulation [44]. Interestingly, these two E3–19K residues are located outside 

of the MHC I-binding surface (Figs. 1 and 2B). The possibility that E3–19K interacts 

directly with both MHC I and the MIC proteins would provide distinct mechanisms for 

subverting T-cell and NK-cell effector functions. Finally, one report suggests that E3–19K 

also binds to TAP, which likely prevents TAP from interacting with the MHC I accessory 

protein tapasin, thus interfering with MHC I assembly [52].

HAdV species that lack an E3–19K protein

HAdVs of species F, which comprises HAdV-F40 and HAdV-F41, are critical pathogens and 

second only to rotavirus as a cause of acute gastroenteritis in children worldwide [53,54]. A 

striking feature of HAdVs of species F is that they lack the E3–19K protein. Instead, the E3 

region of both HAdV-F40 and HAdV-F41 encodes two proteins, 19.4K and 31.6K, that are 
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conspicuously absent in other species. To date, neither of these proteins have been 

characterized and no immune-evasion function has been ascribed to these two HAdVs. 

However, because the 19.4K and 31.6K proteins are expressed by both HAdV-F40 and 

HAdV-F41, and each protein shares 99% amino acid sequence homology with its 

counterpart[55–57], it suggests that these unique proteins likely play important roles in 

species F pathogenesis. Moreover, it is noteworthy that the 19.4K and 31.6K proteins have 

no homology with E3–19K proteins, suggesting that they may be newly acquired. Another 

striking feature of species F HAdVs is that they show a narrow tropism for intestinal cells. 

Given the clinical significance of infections associated with species F HAdVs, there is a 

pressing need to characterize the 19.4K and 31.6K proteins and to understand whether and 

how they possess immune modulatory functions. We suggest that species F HAdVs may 

have adapted to specifically downregulate the cell-surface expression of the MIC A and MIC 

B molecules. The MIC proteins are constitutively found almost exclusively on intestinal 

epithelial cells and are recognized by NK cells for the elimination of infected cells in the 

gut. It is noteworthy that the MIC proteins are the target of other human viruses that evade 

immune surveillance [58–62].

Much like species F, the highly oncogenic HAdV strain of species A preferentially replicates 

in the gastrointestinal track and also lack an E3–19K gene. Consequently, HAdV-A12 is 

unable to retain MHC I molecules in the ER of infected human cells [6]. However, and 

importantly, HAdV-A12-transformed rodent and human cells showed reduced cell-surface 

expression of MHC I molecules [10–12], an effect attributed to the regulation of the MHC 

class I heavy chain gene by the E1A region (see above). Notably, HAdV-A12 expresses the 

unique E3-encoded 29.4K and 30.7K proteins that share 32% and 38% similarity with the 

19.4K and 31.6K proteins of species F, respectively [56]. To date, the functions of the 29.4K 

and 30.7K proteins are undetermined. Finally, given that HAdV-G52 was cultured from the 

stool of a patient with gastroenteritis, this new HAdV species deserves future attention 
[63,64].

49K, RIDα, RIDβ, 6.7K, and 14.7K

The E3–49K protein is uniquely encoded by species D and it is the first species-specific E3 

protein that has been functionally characterized [22,23]. During HAdV infection, E3–49K 

undergoes proteolysis; this results in the secretion of the N-terminal part of its ectodomain, 

which is referred to as sec49K. Studies showed that sec49K is capable of suppressing 

activation and effector functions of both T cells and NK cells [23]. Notably, purified sec49K 

shows some tropism as it binds to lymphoid cell lines and primary leukocytes, but not to 

fibroblasts or epithelial cells [23]. This cell tropism is likely relevant for the immune function 

of sec49K in host cells. It remains to be established whether this newly identified function of 

E3–49K is a prerogative of the species D HAdVs associated with epidemic 

keratoconjunctivitis, as this would point to a role for E3–49K in the pathogenesis of this 

ocular disease [23].

HAdVs have also evolved several strategies to prevent apoptotic cell death. At least four E3-

encoded proteins are known to contribute to anti-apoptotic functions: RIDα and RIDβ, 

which together form the RID complex, 6.7K, and 14.7K proteins. The RID complex is 
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known to stimulate the lysosomal degradation of specific death receptors, such as Fas 

(CD95) [65–67], TRAIL-R1[68,69], and TRAIL-R2[68], thereby allowing HAdV-infected cells 

to escape FasL- or TRAIL-mediated apoptosis. Further studies showed that a third E3 

protein, namely E3–6.7K, was required for the degradation of TRAIL-R2 [8,68]. Finally, the 

E3–14.7K has been shown to suppress inflammation and TNF-mediated apoptosis [40,70,71], 

possibly through a mechanism involving the inhibition of NF-κB transcriptional activity [71].

Conclusion and perspectives

Significant progress has been made in the last decades towards the characterization of the 

gene regions of various HAdVs. In particular, the E3 region has attracted much attention 

because of its role in the interplay between the virus and the host’s immune system. During 

infection, a number of E3 proteins are produced to subvert different immune functions and 

pathways, enabling the virus to establish long-term, possibly life-long, persistence in the 

host. E3–19K protein is the most studied E3-region gene product for both historical 

significance and its ability to downregulate MHC I molecules that prevents recognition of 

infected cells by CTLs. The structures of HAdV-C2 and HAdV-E4 E3–19K bound to HLA-

A2 have reconciled many years of research by various laboratories on the characterization of 

E3–19K. The possibility that E3–19K might directly target the MIC proteins would add 

another layer of complexity to E3–19K. There remains much to be learnt about the functions 

of other E3 proteins, in particular the species-specific proteins. The recent characterization 

of the species D E3–49K protein is an example of a species-specific protein with an 

intriguing functional activity [23]. Collectively, the characterization of species-specific E3 

proteins significantly expands our understanding of the role of E3 proteins in HAdV 

pathogenicity.
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Abbreviations

HAdV Human adenovirus

E3 early transcription unit 3

MHC major histocompatibility complex

CTL cytotoxic T cells

E1A early 1A

TNF tumor necrosis factor

TRAIL tumor necrosis factor-related apoptosis-inducing ligand

TAP transporter associated with class I antigen processing
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β2m beta 2 microglobulin domain

LMP latent membrane protein

FasL Fas ligand

NF-κB nuclear factor kappa B

RID receptor internalization and degradation

ER endoplasmic reticulum

HLA human leukocyte antigen

NK natural killer

Nef negative regulatory factor

MIC MHC class I-related chain
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Figure 1. Structure of Ad2 E3-19K/HLA-A2 complex.
Ribbon representation of the structure of Ad2 E3–19K/HLA-A2: E3–19K, grey; HLA-A2 

heavy chain (α1-, α2-, and α3-domains), purple; β2m, pink; HIV-1 Tax peptide 

LLFGYPVYV, green.
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Figure 2. Conserved and non-conserved amino-acid residues in E3-19K.
(A) Ribbon representation of liganded Ad2 E3–19K showing that the sidechains of strictly 

conserved amino-acid residues (purple) are largely involved in forming the hydrophobic core 

of the E3–19K fold. (B) Ribbon representation of liganded Ad2 E3–19K showing that the 

sid chains of non-conserved amino-acid residues (red) are solvent-exposed and serve 

primarily as contact sites with MHC I (see also Fig. 1). Residues Thr14 and Met82 (green) 

were shown to affect interactions with the MIC proteins [44]. The N- and C-termini of Ad2 

E3–19K are labeled.
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