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Abstract

Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that

reduces lung and respiratory function, with a high mortality rate. Severe and acute deteriora-

tion of COPD can easily lead to respiratory failure, resulting in personal, social, and medical

burden. Recent studies have shown a high correlation between the gut microbiota and lung

inflammation. In this study, we investigated the relationship between gut microbiota and

COPD severity. A total of 60 COPD patients with varying severity according to GOLD guide-

lines were enrolled in this study. DNA was extracted from patients’ stool and 16S rRNA data

analysis conducted using high-throughput sequencing followed by bioinformatics analysis.

The richness of the gut microbiota was not associated with COPD severity. The gut micro-

biome is more similar in stage 1 and 2 COPD than stage 3+4 COPD. Fusobacterium and

Aerococcus were more abundant in stage 3+4 COPD. Ruminococcaceae NK4A214 group

and Lachnoclostridium were less abundant in stage 2–4, and Tyzzerella 4 and Dialister

were less abundant in stage 1. However, the abundance of a Bacteroides was associated

with blood eosinophils and lung function. This study suggests that no distinctive gut micro-

biota pattern is associated with the severity of COPD. The gut microbiome could affect

COPD by gut inflammation shaping the host immune system.

Introduction

Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease and charac-

terized by progressive obstruction of airflow, resulting in symptoms such as shortness of breath,

cough and increased sputum [1]. Exacerbation of COPD often results in high mortality and

morbidity, rapid decline in lung function, and increased health care expense [2]. Though ciga-

rette smoking is associated with COPD, not all smokers develop the disease [2]. Furthermore,
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even though COPD can lead to exacerbations, not all patients are susceptible to the symptoms.

Therefore, COPD is a heterogeneous disease that may be affected by many factors that are not

fully understood.

The pathogenesis of COPD is thought to involve inflammatory mediators and bacterial or

viral infections [3]. Especially, systemic inflammation [4] and airway inflammation [5] are

often associated with exacerbation. Traditional culturing techniques have found evidence of

bacterial and viral colonization in the airways of COPD patients with exacerbations [6, 7].

These pathogens persist in the respiratory tract, creating a diverse environment in the airways

and lungs. Though their presence in relation to exacerbations is not clearly defined, it has been

assumed that any pathogen exposure may induce surfactant abnormalities, hinder mucociliary

clearance, and increase the patient’s susceptibility to chronic inflammation, worsening respira-

tory symptoms and accelerating disease progression.

This gut dysbiosis in humans is related to inflammation of the gastrointestinal tract itself,

but also in the airways, such as in asthma and COPD [8, 9]. Accumulating evidence has

highlighted the influence of the gut microbiota on lung immunity, referred to as the gut–lung

axis, though the underlying pathways and mechanisms are still areas of intensive research [10].

Recently, faecal microbiome of COPD patients and healthy controls were investigated and

found several species with different distribution between two groups, including members of

Streptococcus and the family Lachnospiraceae, also correlate with reduced lung function [11].

Despite the close association of gut microbiota with inflammation and many lung diseases, the

association between the differences in gut microbiota profiles and the severity of COPD dis-

ease is still unknown.

Several studies have found significant differences in the distribution of respiratory micro-

biota between healthy individuals and COPD patients, and between different levels of COPD

severity [12]. There are growing interest in the effect of probiotics on lung disorders, such as

asthma and COPD [13], which should indicate whether the gut microbiome is associated with

COPD exacerbation or severity. In light of the above information, we investigated the relation-

ship between gut microbiota and COPD severity.

Materials and methods

Subjects

A total of 60 COPD patients (> 20 years old) with varying severity according to GOLD guide-

lines [14] were enrolled in this study. DNA was extracted from patients’ stool. Patients with

cancer or other immune-related diseases and viral infections (e.g., Hepatitis B, Hepatitis C,

HIV, etc.) were excluded from this study.

The stool samples were obtained from patients with moderate COPD and patients with

severe COPD in stable condition (at least 3 months without exacerbation or use of antibiotics

for any other reason). Diagnosis and classification of COPD was established according to

GOLD recommendations [14]. The patient groups were defined as A (stage 1), B (stage 2),

and C (stage 3+4) according to the classification of airflow limitation in the severity of COPD

[14]. DNA was extracted from the stool samples using Qiagen QIAamp DNA Stool Mini Kit

(Qiagne, Hilden, Germany) and subjected to next-generation sequencing (NGS). DNA quality

was verified before and after rRNA depletion treatment by the Agilent 2100 Bioanalyzer. The

DNA samples were also treated with RNase. All DNA processing were performed under asep-

tic conditions.

The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki

and was approved by the Ethics Committee of Taoyuan General Hospital, Taoyuan, Taiwan
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(reference number: TYGH106037). Written informed consent was obtained from each patient

enrolled in the study.

MetaVx™ library preparation and illumina MiSeq sequencing

NGS library preparations and Illumina MiSeq sequencing were performed at GENEWIZ, Inc.

(Suzhou, China). DNA samples were quantified using a Qubit 2.0 Fluorometer (Invitrogen,

Carlsbad, CA, USA). A total of 30–50 ng of DNA was used to generate amplicons using a

MetaVx™ Library Preparation kit (GENEWIZ, Inc., South Plainfield, NJ, USA).

V3 and V4 hypervariable regions of prokaryotic 16S rDNA were selected to generate ampli-

cons and subsequent taxonomy analysis. GENEWIZ designed a panel of proprietary primers

aimed at relatively conserved regions bordering the V3 and V4 hypervariable regions of bacte-

ria and Archaea16S rDNA. The V3 and V4 regions were amplified using forward primers con-

taining the sequence CCTACGGRRBGCASCAGKVRVGAAT and reverse primers containing the

sequence GGACTACNVGGGTWTCTAATCC. First-round PCR products were used as templates

for second-round amplicon enrichment PCR. At the same time, indexed adapters were added

to the ends of the 16S rDNA amplicons to generate indexed libraries ready for downstream

NGS on Illumina Miseq.

The DNA libraries were validated by an Agilent 2100 Bioanalyzer (Agilent Technologies,

Palo Alto, CA, USA) and quantified using a Qubit 2.0 Fluorometer. DNA libraries were multi-

plexed and loaded on an Illumina MiSeq instrument according to the manufacturer’s instruc-

tions (Illumina, San Diego, CA, USA). Sequencing was performed using a 2 x 300 paired-end

(PE) configuration; image analysis and base calling were conducted by the MiSeq Control Soft-

ware (MCS) embedded in the MiSeq instrument.

Data analysis

The QIIME data analysis package was used for 16S rRNA data analysis. The forward and

reverse reads were joined and assigned to samples based on barcode, and truncated by cutting

off the barcode and primer sequence. Quality filtering of joined sequences was performed and

sequences that did not fulfil the following criteria were discarded: sequence length< 200 bp,

no ambiguous bases, mean quality score� 20. The sequences were then compared to the

reference database (RDP Gold database) using the UCHIME algorithm (https://drive5.com/

uchime/uchime_download.html) to detect chimeric sequences, and the chimeric sequences

removed. The effective sequences were used in the final analysis. Sequences were grouped into

operational taxonomic units (OTUs) using the clustering program VSEARCH (1.9.6) [15]

against the Silva 119 database pre-clustered at 97% sequence identity. The Ribosomal Database

Program (RDP) classifier was used to assign a taxonomic category to all OTUs at a confidence

threshold of 0.8. The RDP classifier uses the Silva 132 database, which has taxonomic catego-

ries predicted to the species level. Sequences were rarefied prior to calculation of alpha and

beta diversity statistics. Alpha diversity indexes were calculated in QIIME (version 1.9.1) [16]

from rarefied samples using the Shannon index for diversity and the Chao1 index for richness.

For beta diversity analysis, Principal Component Analysis (PCA) was performed and plotted

based on Brary-Curtis distance matrix by R version 3.1.1 (https://cran.r-project.org/bin/

windows/base/old/3.1.1/). The pheatmap package (https://cran.r-project.org/src/contrib/

Archive/pheatmap/) was used for ecological analysis and heatmaps. By using metastats, differ-

ential analysis of taxonomic composition at genus level between groups can be performed

based on the differential abundance between different groups. Differences in the abundance of

microbial communities in two groups can be evaluated using strict statistical methods. The

multiple hypothesis test was performed and false discovery rate (FDR) of the rare frequency
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data determined to evaluate the significance of the observed difference. The FDR-adjusted p-

values were calculated using the Benjamini-Hochberg procedure.

Correlation analysis used statistical models to study the correlation between random vari-

ables and investigates whether a dependency exits between the phenomena and the nature and

level of association. Spearman correlation coefficient was determined using R version 3.1.1

based on the OTU abundance and clinical features (blood eosinophil percentage and lung

function). P values were also obtained. Heatmaps were generated to illustrate the relationship

between clinical features and OTUs.

Results

Demographic and clinical features of study subjects

We totally enrolled 60 male COPD patients and 20 patients diagnosed as stage 1, 20 patients as

stage 2, and 20 patients as stage 3+4. The demographic and clinical features of enrolled patients

were listed in Table 1. The patients in mild COPD group were elder than patients in moderate

and severe COPD groups. Clinical features (with statistical significance), such as pulmonary

function test, reflected the different among this three patients groups. The medication also had

significant difference among the three study groups.

The stool DNA samples were eluted in 200 μl AE buffer. The average of DNA concentration

was 5.52 ng/μl (range 1.05–12.43 ng/μl).

OTUs

According to the results of the OTU cluster analysis, the common and unique OTUs of differ-

ent samples/groups were analysed and showed in a Venn diagram (S1 Fig). The statistics for

the OUTs sequence number in each sample are given in S1 Table (for data sharing).

Alpha and beta diversity analyses among three COPD groups

The Chao1 index and Shannon index were used to evaluate the alpha diversity of the micro-

biome in the three COPD groups. The results are given in Fig 1a and 1b. We did not find any

significant difference in OTU richness and diversity among three groups. Using the PCA anal-

ysis and Brary-Curtis distance matrix for beta diversity analysis, we also found no significant

different in comparison of bacterial communities among three COPD groups (Fig 1c).

Taxonomic distribution among three COPD groups

At phylum level, we observed the phylum abundance of each groups, and found Bacteroidetes

was more abundant in grade 1 than grade 2–4 COPD (Fig 2). The top 30 abundant taxa in

each sample or group were clustered and plotted in a heatmap at the species and genus level

(Figs 3 and 4). The samples of three groups did not form a distinct cluster according to the

cluster of sample analysis in species and genus level (Figs 3a and 4a). In the cluster of groups

analysis based on euclidean distance, the top 30 species and genus in groups A and B were

more similar than those in group C (Figs 3b and 4b). At genus level (Fig 4b), Fusobacterium
and Aerococcus were more abundant in group C (stage 3 and 4). The Ruminococcaceae

NK4A214 group and Lachnoclostridium were less abundant in group B/C (stage 2–4), and Tyz-
zerella 4 and Dialister were less abundant in group A (stage 1).

Differential abundance

The differential analysis was carried out at the genus level. The abundance distribution of the

five genera with the largest between-group difference is shown in Fig 5. The X-axis indicates
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Table 1. The demographic and clinical characteristics of the study participants.

Variables Mild COPD Moderate COPD Severe COPD p value

Age (years)

Mean ± SD (range) 78 ± 11 (51–95) 72 ± 10 (51–91) 68 ± 8 (50–81) 0.008a

BH (m)

Mean ± SD 1.64 ± 0.07 1.66 ± 0.07 1.63 ± 0.07 0.630a

BW (Kg)

Mean ± SD 61.79 ± 9.75 63.86 ± 10.24 58.94 ± 8.88 0.277a

BMI

Mean ± SD 22.85 ± 3.51 23.35 ± 3.71 22.09 ± 3.40 0.535a

WBC (per ul)

Median (range) 6700 (4090–9060) 6470 (4620–13740) 9335 (2580–19590) 0.081b

Eosinophil (%)

Median (range) 2.10 (0.5–10.9) 1.75 (0–8.4) 1.60 (0–14.8) 0.354b

Eosinophil (per ul)

Median (range) 146 (29–701) 118 (0–597) 162 (0–881) 0.216b

IgE (kU/L)

Median (range) 53.45 (1.50–7758.30) 20.80 (1.5–436.30) 62.50 (6.80–2130.30) 0.296b

Smoking (n)

Yes 15 17 18 0.432c

No 5 3 2

CAT

Mean ± SD 6.60 ± 3.50 9.45 ± 6.92 14.25 ± 6.30 <0.001a

Score < 10 (n) 17 12 6 0.002c

Score≧10 (n) 3 8 14

mMRC

Mean ± SD 0.35 ± 0.59 1.05 ± 1.19 1.80 ± 1.06 <0.001a

Score < 2 (n) 19 12 8 0.001c

Score≧2 (n) 1 8 12

Pulmonary function test

Pre-bronchodilator

FVC (L)

Mean ± SD 3.18 ± 0.61 2.88 ± 0.65 2.48 ± 0.54 0.002a

FVC (% predicted)

Mean ± SD 115.65 ± 24.85 96.45 ± 17.70 84.80 ± 21.21 <0.001a

FEV1 (L)

Mean ± SD 2.05 ± 0.48 1.52 ± 0.39 0.97 ± 0.24 <0.001a

FEV1 (% predicted)

Mean ± SD 98.40 ± 20.23 65.95 ± 13.30 42.15 ± 11.38 <0.001a

FEV1/FVC ratio (%)

Mean ± SD 64.80 ± 11.38 54.05 ± 13.18 40.10 ± 10.85 <0.001a

Post-bronchodilator

FVC ± SD (L)

Mean ± SD 3.33 ± 0.51 3.03 ± 0.66 2.64 ± 0.64 0.003a

FVC (% predicted)

Mean ± SD 120.75 ± 19.30 101.85 ± 18.23 90.05 ± 22.60 <0.001a

FEV1 (L)

Mean ± SD 2.10 ± 0.43 1.63 ± 0.39 1.03 ± 0.27 <0.001a

FEV1 (% predicted)

(Continued)
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the names of the five genera and the Y-axis the relative abundance of each. We found four gen-

era, including Veillonella, Corynebacterium 1, Romboutsia, and Aerococcus, that are more

abundant in group C than groups A and B. Megasphaera was found at lower abundance in

group A than groups B and C. The statistical significance may due to few outliers.

OTU abundance correlated with blood eosinophil percentage and lung

function

Correlation analysis revealed that some OTUs are associated with clinical features (Fig 6).

OTU 19 (Bacteroides sp.) had a stronger negative correlation with eosinophil count

Table 1. (Continued)

Variables Mild COPD Moderate COPD Severe COPD p value

Mean ± SD 101.30 ± 18.41 71.20 ± 13.59 44.60 ± 12.48 <0.001a

FEV1/FVC ratio (%)

Mean ± SD 63.15 ± 7.97 54.80 ± 11.44 40.10 ± 11.38 <0.001a

Medication

LAMA (n) 10 3 0 0.005c

LABA (n) 1 1 0

LAMA+LABA (n) 4 7 8

ICS+LABA (n) 3 3 1

ICS+LAMA+LABA (n) 2 6 11

SD = standard deviation; COPD = chronic obstructive pulmonary disease; n = number of subjects; BH = body height; WB = body weight; BMI = body mass index;

WBC = white blood cell; CAT = COPD Assessment Test; mMRC = Modified Medical Research Council; FVC = forced vital capacity; FEV1 = Forced expiratory volume

in one second; LAMA = long-acting muscarinic antagonist; LABA = long-acting beta agonist; ICS = inhaled corticosteroid.
a: The statistical analysis was tested by One-way ANOVA.
b: The statistical analysis was tested by Kruskal-Wallis test.
c: The statistical analysis was tested by χ2-test.

https://doi.org/10.1371/journal.pone.0249944.t001

Fig 1. The alpha and beta diversity analyses among three COPD groups. a: Chao1 index boxplot of each group. The X-axis indicates

the names of the groups and Y-axis the Chao 1 index. Each box diagram shows the minimum, first quartile, medium, third quartile, and

maximum values of the Chao1 index of the corresponding sample; b: Shannon index boxplot of each group; c: PCA score plot. A: stage

1, B: stage 2, C: stage 3+4.

https://doi.org/10.1371/journal.pone.0249944.g001
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(P< 0.001) and positively correlated with FEV1 and FVC (P< 0.05). The statistical results of

correlation analysis were shown in S2 Table.

Discussion

COPD is becoming a leading cause of death and is increasingly prevalent worldwide [3–4].

The full spectrum of factors and mechanisms underlying the disease is still not completely

understood. In this study, we investigated the gut microbiome in stool samples from 60 COPD

patients with varying severity using 16S rRNA gene sequencing. In alpha and beta diversity

Fig 2. Phylum abundance of each groups. A: stage 1, B: stage 2, C: stage 3+4.

https://doi.org/10.1371/journal.pone.0249944.g002
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Fig 3. The heatmap analysis of the top 30 species. a: Cluster of samples. b: Cluster of groups. The columns represent samples and/or groups and the rows represent

species. The dendrogram above the heatmap is the cluster result of the samples and/or groups and the dendrogram to the left is the species cluster. The colours in the

heat map represent the relative abundance of the corresponding species in the corresponding sample or group.

https://doi.org/10.1371/journal.pone.0249944.g003
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Fig 4. The heatmap analysis of the top 30 genus. a: Cluster of samples. b: Cluster of groups. The columns represent samples and/

or groups and the rows represent genus. The dendrogram above the heatmap is the cluster result of the samples and/or groups and

the dendrogram to the left is the genus cluster. The colours in the heat map represent the relative abundance of the corresponding

genus in the corresponding sample or group.

https://doi.org/10.1371/journal.pone.0249944.g004
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Fig 5. Abundance distributions of the five genera with the largest between-group differences. Top: group A vs.

group B; middle: group A vs. group C; bottom: group B vs. group C.

https://doi.org/10.1371/journal.pone.0249944.g005
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Fig 6. The heatmap analysis of Spearman correlation between OTUs and blood eosinophil percentage and

pulmonary function. Spearman correlation coefficient (r) ranges between -1 and 1. r> 0 indicates positive correlation

and r< 0 negative correlation. �p = 0.01–0.05, ��� p<0.001. OTU 26: g__Ruminococcaceae_UCG-002, s__uncultured

organism; OTU 7: g__Faecalibacterium, s__Ambiguous taxa; OTU 19: Bacteroides sp.; OTU 15: g__Bacteroides,

s__unidentified; OTU 6: Bacteroides sp.; OTU 4: Parabacteroides_merdae; OTU 36: Bacteroides sp.; OTU 41:

Fusobacterium sp. IDs of other non-significant OTUs are listed in S1 Table.

https://doi.org/10.1371/journal.pone.0249944.g006
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analyses, we did not find significant differences in bacterial richness and communities among

stool samples of three COPD groups. In stage 3+4 COPD, the more abundant genera were

Fusobacterium and Aerococcus. The Ruminococcaceae NK4A214 group and Lachnoclostri-
dium in stage 2–4 COPD and Tyzzerella 4 and Dialister in stage 1 COPD were less abundant.

Using Spearman correlation analysis, the abundance of a Bacteroides was associated with

eosinophil count and lung function.

The gut microbiome has not been characterized previously in COPD patients. However,

gut bacterial dysbiosis has been reported in response to cigarette smoke in both humans and

mice. In gut microbiota composition, current smokers have more abundant of Bacteroidetes

and less abundant of Firmicutes and Proteobacteria than never smokers [17]. In addition,

healthy smokers had increased Bacteroides–Prevotella compare to non-smokers [18]. Signifi-

cant alterations in microbiota composition have been reported in healthy smokers, which

reverse upon smoking cessation, with marked increases in both overall microbial diversity and

in the phyla Firmicutes and Actinobacteria, and a reduced proportion of Bacteroidetes and

Proteobacteria compared to continuing smokers and non-smokers [19]. In previous mouse

study, colonic19 bacterial dysbiosis was induced by chronic (24 weeks) exposure to cigarette

smoke, with increased Lachnospiraceae sp. [20]. In our study, Bacteroidetes was more abun-

dant in grade 1 COPD than grade 2–4 COPD (Fig 2). From the observation of Fig 5, the pres-

ent of the abundance distribution of the five generagenera with the largest between-group

difference may due to few outlier(s). That may indicate two issue: (1) the result is suspicious

due to random sampling effect; (2) the outlier(s) observed only one or two study groups (not

random sampling effect) suppose the bacteria associated with COPD severity only in part (not

all) patients. However, the distinct pattern of gut microbiota defined by one or few bacteria is

not revealed in this study. Furthermore, the severe COPD patients were higher ratio with

inhaled corticosteroid (ICS) treatment that may indicate the medication did not alter gut

microbiota obviously.

The blood eosinophil count was reported to associate with the risk of COPD exacerbation,

mortality, decreased FEV1, and response to corticosteroids [21]. The differential expression of

the airway microbiome between eosinophilic and non-eosinophilic patients with COPD, dur-

ing both stable disease [22] and acute disease exacerbation [23], suggest that dysregulation of

this complex homoeostatic immunity is likely to feature in the pathogenesis of COPD. Bacte-

rial counts for potentially pathogenic microorganisms negatively correlated with sputum

eosinophil count, but not blood eosinophil count [24]. Our results indicate that the Bacteroides
was associated with blood eosinophil percentage and lung function in COPD. This observation

may indicate the different roles of gut and airway microbiomes in COPD via eosinophil

inflammation. In previous mouse researches, the gut microbiome was essential to shaping the

host immune system [25, 26]. The gut microbiome should influence the host immune system

by modulating the blood eosinophil count, not directly affect COPD by pathogenic infection.

Our results shown that the more abundant genera in patients with severe COPD (stage 3

+4) were Fusobacterium and Aerococcus. Fusobacterium nucleatum is abundant in patients suf-

fering from chronic gut inflammation, contributing to the pathogenesis of colorectal cancer

[27]. Aerococcus urinae and Aerococcus sanguinicola are associated with urinary tract infec-

tions [28] but are unknown in the pathogenesis of gastrointestinal disease. We also found that

the Ruminococcaceae NK4A214 group and Lachnoclostridium were less abundant, and Tyzzer-
ella 4 and Dialister more abundant in stage 2–4 COPD. Patients with non-alcoholic fatty liver

disease (NAFLD) have lower abundance of Ruminococcaceae than those with non-NAFLD

[29]. In patients with bipolar disorder, Ruminococcaceae is relatively decreased [30]. In chil-

dren with autism spectrum disorders, the significant decrease in30 relative abundance of Lach-
noclostridium, Tyzzerella subgroup 4, Flavonifractor, and unidentified Lachnospiraceae was
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found [31]. The low frequency of Dialister observed was reported31 in non-inflamed ileal and

colonic biopsy tissue from patients with spondyloarthritis and healthy controls [32]. Based on

the aforementioned studies, we suggest that the different abundance of gut microbiome associ-

ated with varying COPD severity and involved gut inflammation in this study.

Some methodological factors limit the interpretation and inferences drawn from this study.

First, the sample size was relatively small and caused to the results under power, which might

be responsible, at least in part, for our findings with statistical significant was suspicious due to

random sampling effect. Thus, a future study to further increase the number of each grouped

subjects will help solidify our finding. Second, the heathy (or non-COPD) control did not

enrolled for this study because the criteria of control are hard to define. However, the aim of

this study is to identify the gut microbiota associated with COPD severity, not COPD per se.
Third, we did not evaluate the extraction blank and collect the information about obesity and

stool consistency of COPD patients in this study. Recent studies indicated the influence of

reagent and laboratory contamination on sequence-based microbiome analysis [33] and the

close associations of obesity and stool consistency with changes in gut microbiota [34–36].

The impact of these factors on microbiome analysis has been suggested, and it may affect the

assay results.

Our results found no obviously relationship between gut microbiota and severity of COPD

in humans. However, the association between blood eosinophils and gut microbiota in COPD

patients was revealed in our study. Our results may provide useful information for developing

new diagnostic or therapeutic methods to control COPD progression.
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