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Abstract

Background

Initially, the relative sizes of the asymptomatic and the symptomatic infected populations

were not known for the COVID-19 pandemic and neither was the actual fatality rate. There-

fore it was not clear either how the pandemic would impact the healthcare system. As a

result it was initially predicted that the COVID-19 epidemic in Denmark would overwhelm

the healthcare system and thus both the diagnosis and treatment of other hospital patients

were compromised for an extended period.

Aim

To develop a mathematical model, which includes both asymptomatic and symptomatic

infected persons, for early estimation of the epidemic’s course, its Infection Fatality Rate

and the healthcare system load in Denmark, both retrospectively and prospectively.

Methods

The SEIRS (Susceptible—Exposed—Infected—Recovered—Susceptible) model including

deaths outside hospitals and separate assessments of symptomatic and asymptomatic

cases (based on seroprevalence) with different immunological memories. Optimal model

parameters are in part identified by Monte Carlo based Least Square Error methods while

micro-outbreaks are modeled by noise and explored in Monte Carlo simulations. Estimates

for infected population sizes are obtained by using a quasi steady state method.

Results

The calculations and simulations made by the model were shown to fit with the observed

development of the COVID-19 epidemic in Denmark. The antibody prevalence in the
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general population in May 2020 was 1.37%, which yields a relative frequency of symptom-

atic and asymptomatic cases of 1 to 5.2. Due to the large asymptomatic population, the

Infection Mortality Rate was only 0.4%. However, with no non-pharmacological restrictions

the COVID-19 death toll was calculated to have more than doubled the national average

yearly deaths within a year. The transmission rate <0 was 5.4 in the initial free epidemic

period, 0.4 in the lock-down period and 0.8–1.0 in the successive re-opening periods

through August 2020. The large asymptomatic population made the termination of the epi-

demic difficult and micro-outbreaks occurred when the country re-opened. The estimated

infected population size July 15 to August 15 was 2,100 and 12,200 for October 1–20,

2020.

Conclusions

The results of the model show, that COVID-19 has a low Infection Fatality Rate because the

majority of infected persons are either asymptomatic or with few symptoms. A minority of

the infected persons, therefore, requires hospitalization. That means that for a given infec-

tion pressure of both symptomatic and asymptomatic infected there will be a lower pressure

on the capacity of the health care system than previously predicted. Further the epidemic

will be difficult to terminate since about 84% of the infected individuals are asymptomatic but

still contagious. The model may be useful if a major infection wave occurs in the autumn-

winter season as it could make robust estimates both for the scale of an ongoing expanding

epidemic and for the expected load on the healthcare system. The simulation may also be

useful to evaluate different testing strategies based on estimated infected population sizes.

The model can be adjusted and scaled to other regions and countries, which is illustrated

with Spain and USA.

Introduction

COVID-19 was a new infection that initially hit the Chinese city Wuhan. Therefore, it took

some time before its severity and pandemic properties were realized by China, WHO, CDC

and ECDC. The Chinese outbreak was reported to WHO December 31, 2019 and its Emer-

gency Committee declared a Public Health Emergency of International Concern January 30,

2020 and a global pandemic situation March 11, 2020 [1] The international spread of the

COVID-19 pandemic was facilitated by the Chinese New Year celebration, which took place

January 15—February 11. During this period millions of Chinese people traveled inside China

and from abroad e.g. Europe and North America to China to visit their families and then

returned after the end of the New Year celebration [2]. Wuhan locked down January 23, 2020

and the rest of China subsequently followed that decision [3].

Many Chinese stay and work in large European cities. One of these cities is Milan, Lom-

bardy, Italy south of the Alps. This was the first region in a western country to be heavily hit by

the pandemic officially beginning February 21, 2020 [2, 4]. In February, many schools in

Europe closed for one week for winter holiday over which thousands of adults and children

traveled from all over Europe to the Alps for skiing.

The first case of COVID-19 reported in Denmark came from Northern Italy February 27,

2020 and subsequently 139 Danes came home after ski-holiday in Northern Italy and Austria,
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mostly from Ischgl [5], where they had contracted COVID-19 during the school holiday

period, which in Denmark ended February 23. The epidemic in Denmark (5.82 mil. inhabi-

tants) developed rapidly and Statens Serum Institut (SSI), the Danish national center for dis-

ease control, estimated that the transmission rate per infected person, <0 was 2.6 and the

prevalence increased exponentially until March 11, when WHO declared that the COVID-19

was a pandemic and Denmark closed down in the following days [6]. The adjusted informa-

tion from SSI released June 11, 2020 indicates that altogether 1,488 persons contracted the

infection abroad over the first month of the Danish epidemic, initially mostly from Austria

and Northern Italy. The exact number of infected that started the Danish epidemic is not clear,

so after reviewing the data we decided to approximate the initial infection number to be 690

per February 24, 2020, which is also the number we use as initial conditions in our simulations

[7, 8].

COVID-19 was initially imported from skiing areas in the Alps, but then local spread took

place inside Denmark so the national strategy changed from prevention and containment to

mitigation March 11, 2020 [8], and testing for SARS-CoV-2 was restricted to patients who

needed treatment in hospitals mainly because of a severe shortage of testing equipment. After

April 1st the national testing strategy was changed and more people were gradually tested lead-

ing to more information about the spread of the epidemic. This change to a more comprehen-

sive testing strategy gradually increased and became stable between April 21 and May 17, 2020

[7].

The policies for closing down Denmark were fully implemented by March 17, 2020 and

soon thereafter the number of new hospitalized COVID-19 cases decreased dramatically. The

observed number of hospitalized patients already peaked April 7–8 (535 total hospital patients

Htot, of which 146 were patients in ICUs). Thereafter the numbers gradually decreased.

After Easter a gradual re-opening of Denmark began April 20, 2020, and continued with

fixed intervals of 2–4 weeks until June 8, 2020. Altogether, by August 31, 2020 there had been a

total of 17,084 SARS-CoV-2 positively tested persons, 3,031 of whom were hospitalized

(~17.7%) and 416 of those patients were treated in ICUs (~13.7%), while 625 infected died

(~3.7%). As of August 31st, 2020 there were 20 hospitalized including four in ICUs [8].

There were five local outbreaks in Denmark between April 10 and August 31, 2020, with

the last two starting around August 1, 2020. One outbreak was at a meat processing plant in

the city of Ringsted where the infection was introduced by a Polish worker who then mainly

infected other Polish workers. Approximately 150 workers from the meat processing plant

were infected before the outbreak was eliminated by mid August. The other outbreak was in

the city of Århus and was associated with a soccer game July 26th and associated celebrations,

a university weekend seminar attended by 80 students, the Muslim Eid festival July 30—

August 3, and a funeral of a Somalian rap-musician, which was attended by 500 people. Some

of the infected unfortunately included bus drivers that spread the infection to neighboring

regions. About 2/3 of the Århus cases were among people originating from Somalia and Pales-

tine and the majority of the infected were young people. The highest incidence per 100,000

inhabitants in Århus during the outbreak was 99 and the outbreak was conquered by the end

of August [8].Since we now have more information about the nature of COVID-19, we have

developed a mathematical model and a corresponding simulation of the Danish epidemic. We

calibrate the simulation using the official retrospective Danish hospital, ICUs, death data as

well as a national antibody test conducted late May 2020. Our simulation is used to investigate

the relative frequency of symptomatic versus asymptomatic infected, their relative infective-

ness, <0 during the pandemic, Infection Fatality Rate, as well as the connection to antibody

development among the infected. The model is applicable elsewhere in other regions and

countries [9, 10].
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Material and methods

Main data sources

Total hospital Htot and ICU occupation, non-hospital and total death toll numbers, all pub-

lished daily by SSI [7, 8]. The time-series of these data are shown in Fig 1. Daily hospital admis-

sion data, count of PCR positive individuals both outside and inside of the hospital system to

estimate the transmission contact number (reproduction number), also called "contact num-

ber", <t [8]. For details see S1 File. The mortality of COVID-19 is calculated as Case Fatality

Rate (CFR), which is the proportion of deaths from COVID-19 compared to the total number

of individuals diagnosed with the disease for a particular period. The mortality is also calcu-

lated as Infection Fatality Rate (IFR), which is the proportion of deaths among all infected

individuals, including symptomatic and asymptomatic and undiagnosed subjects (e.g. based

on sero-prevalence studies).

The epidemic model system

Our basic SEIRS (Susceptible—Exposed—Infectious—Recovered—Susceptible) style model

assumes a single population that can be in one of three infectious states: incubation Ii, asymp-

tomatic Ia and symptomatic Is. The Ii state is analogous to the Exposed state in the classical

Fig 1.

https://doi.org/10.1371/journal.pone.0249733.g001
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SEIR model although infection is also possible from the Ii state in our model formulation. The

population starts from being susceptible S after transitioning through incubation Ii into one of

the two infectious states Ia and Is and ends up as either recovered R or dead D. All three of the

infectious states Ix; x = i, a, s can reduce the susceptible population S by transitioning members

thereof into Ii.
A small fraction of the recovered R slowly moves back to the susceptible population S as

only a time limited immunity is assumed, which we refer to as the population’s average immu-

nological memory. Since there likely is a significant difference in the immunological memory

for the symptomatic and the asymptomatic infected we have disaggregated the recovered pop-

ulation R into Ra and Rs with short and long immunological memory respectively. The rate of

recovered population members once again becoming susceptible is given by ξyRy; y = a, s,
which is reflected in the positive terms in the first expression in Eq (1).

During the infection a fraction of the symptomatic population Is can become seriously ill

and are either transferred to a hospital H or an ICU. From the regular hospital unit H patients

can recover, move to ICU, or die D. Patients from ICU can either move to H or die D. Seriously

ill individuals can also die at home or in an eldercare facility. These non-hospital deaths are

indicated by M, where terminally ill patients arrive directly from Is. A flow diagram of the

infection and healthcare dynamics is shown in Fig 2. The differential equations that define the

flow in Fig 2 are given in Eqs (1) and (2).

The epidemic dynamics is defined by SEIRS model as follows:

dS
dt
¼ � biIi þ baIa þ bsIsð ÞS=N þ xsRs þ xaRa

dIi
dt
¼
ðbiIi þ baIa þ bsIsÞS

N
� giIi ð1Þ

dIa
dt
¼ 1 � rsð ÞgiIi � gaIa

dIs
dt
¼ rsgiIi � gsIs

dRa

dt
¼ gaIa � xaRa

dRs

dt
¼ ð1 � hfrac � mfracÞgsIs þ rh;rghH � xsRs

where the parameters are further discussed in Table 1. Negative terms in the above equations

indicate loss of respective population members with time, while positive terms indicate popu-

lation member growth. The equation for the change in the susceptible population S describes

how susceptible are infected from three different populations Ii, Ia, and Is with different rates

βi, βa, and βs normalized by the population size N. The fraction of incubated that moves from

Ii to Is is defined by ρs and the fraction of incubated that moves from Ii to Ia is therefore 1 - ρs.
A discussion of the size of ρs can be found in S1 File.

Recovered individuals slowly becomes susceptible again as they lose their immunity, where

we assume a longer immunity time of 1/ξs days for the recovered symptomatic Rs and a shorter
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immunity time of 1/ξa days for the recovered asymptomatic Ra. The newly infected are moved

from S to Ii, the incubating population where they on average reside for 1/γi days. On average

1 –ρs of the incubated Ii becomes asymptomatic Ia where they on average reside for 1/γa days.

Also, ρs of the incubated Ii becomes symptomatic Is where they on average reside for 1/γs days.

A further discussion of the immunological memory can be found in S1 File.

A small fraction hfrac of the Is population becomes severely ill and are hospitalized, see Eq

(2), while another small fraction mfrac becomes so ill that they are not moved into the hospital

system but stay at home or in a home care facility before dying, see Eq (2). All asymptomatic

individuals Ia recover and are moved into Ra where we assume they retain some immunity for

an average of 1/ξa days. Finally, most symptomatic infected recover Rs directly from Is, as well

as from the hospital system H, see Eq (2), where we assume they retain some immunity for an

average of 1/ξs days.

Fig 2.

https://doi.org/10.1371/journal.pone.0249733.g002
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The dynamics of the hospital including its ICU and their deaths, as well as the non-hospital

death dynamics are defined as follows:

dH
dt
¼ ahfracgsIs þ ricu;hgicuICU � ghH

dICU
dt
¼ 1 � að ÞhfracgsIs þ rh;icughH � gicuICU ð2Þ

dDtot

dt
¼ rh;dghH þ 1 � ricu;h

� �
gicuICU þ gmM

dM
dt
¼ mfracgsIs � gmM

dDm

dt
¼ gmM

where the parameters are further discussed in Table 1. Severely ill symptomatic individuals

enter the hospital system at a rate given by hfracγsIs where a fraction αhfracγsIs goes directly to

the regular hospital unit while (1 –α) hfracγsIs directly enters into an ICU. The size of hfrac is crit-

ical for the scaling of the pandemic as the hospital data are the central empirical data by which

the simulation is adjusted. We use the age disaggregated data for hospital admissions from Fer-

guson et al. 2020 [11] together with the actual age distribution within Denmark to estimate an

Table 1. Table with input parameters to the combined SEIRS, hospital and home care model.

Parameter List

Parameters Definitions Default values References

βi incubation infection rate variable SE

βa asymptomatic infection rate variable SE

βs symptomatic infection rate variable (1.09/day) SE

γi 1/(incubation period) 1/(5 days) (1)

γa 1/(asymptomatic period) 1/(10 days) (1)

γs 1/(symptomatic period) 1/(10 days) (1)

ρs symptomatic fraction variable (0.16) SE

ξa 1/(immunological memory for Ra) 1/(60 days) see section II C

ξs 1/(immunological memory for Rs) 1/(700 days) see section II C

hfrac Is fraction hospitalized including ICU variable (0.0820) (2)

mfrac Is fraction terminal ill non-hospitals variable (0.0081) SE

α fraction to H 0.85 SE

ρh,r H fraction to R variable (0.775) SE

ρh,icu H fraction to ICU variable (0.135) SE

ρicu,h ICU fraction to H 0.72 (3) and SE

ρh,dh H fraction to DH variable (0.09) SE

γm 1/(non-hospital terminal ill period) 1/(8 to 10 days) SE

γh 1/(hospitalization period) 1/(8 days) (3) and SE

γicu 1/(ICU period) 1/(10 days) (3) and SE

SE = simulation estimates. The table parameter values, sometimes in parentheses, refer to a "standard run". It will be indicated in the text if different parameters are

used. Note that ρh,r + ρh,icu + ρh,dh = 1.

https://doi.org/10.1371/journal.pone.0249733.t001
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expected aggregated hfrac, see S1 File for details. The regular hospital H also receives a certain

fraction ρicu,h of the improved patients from the ICU as expressed by ρicu,hγicuICU, while

patients from H leave the hospital after an average period of 1/γh days. Patients from H either

recover into Rs, or become more ill and move into an ICU, or die and move into Dtot. The ICU
population, as mentioned above, receives (1 –α)hfracγsIs directly from Is as well as ρh,icuγhH
patients from H. ICU patients leave the population with the rate γicuICU and either improve

and move to H with the already mentioned rate ρicu,hγicuICU, or die with the rate (1 –ρicu,h)

γicuICU. The accumulated death toll stems from the hospital rate as ρh,dγhH, from the ICU rate

as (1 –ρicu,h)γicuICU and from the non-hospital (and non ICU) associated rate as γmM. Finally,

the symptomatic population that eventually dies in a non-hospital location M is given by

mfracγsIs, with a sick period of an average 1/γm days. The non-hospital death tally is accounted

for separately on a weekly basis in Dm, while they also are counted in the total death toll Dtot.

Infection parameters and relative frequency of symptomatic and

asymptomatic infected

With ρs we express the relative frequency by which an individual moves from the incubation

state to the symptomatic state, while ρa = 1 –ρs expresses the frequency of movement to the

asymptomatic state. We may now define the relation between the infection parameters βi, βa,
βs in the SEIRS model as follows:

ba ¼ zbs ð3Þ

bi ¼ ðrsbs þ ð1 � rsÞbaÞt ð4Þ

bi ¼ bsðrs þ ð1 � rsÞzÞt ð5Þ

assuming that βi and βa can both be defined relative to βs and 0< z� 1.0 since we assume the

asymptomatic are always less infectious than the symptomatic infected. The value of βi in Eq

(4) is defined as the weighted sum of individuals that eventually become symptomatic and

asymptomatic respectively, and where τ may be viewed as the fraction of the incubation time

they are infectious. If we e.g. assume the incubating individuals are infectious the last 1.5 days

(0.3) of the average 5 day incubation time (22) we get

bi ¼ ðrsbs þ ð1 � rsÞbaÞ0:3 ð6Þ

We may use clinical data to estimate a reasonable z value. Clinical investigations indicate

the viral load in saliva from symptomatic and asymptomatic is comparable and that the peak

viral load in saliva is found the last day of the incubation time [1, 12–15]. Symptomatic chil-

dren and adults have the same amount of SARS-CoV-2 in the upper respiratory tract [16].

From [17] it is further assumed that the relative infectiousness for the last day of pre-symp-

tomatic (incubated that turns symptomatic) can be set to 1.00, while the average of the severe

symptomatic, the weak symptomatic and the asymptomatic can be set to 0.89, 0.44 and 0.11

respectively during their infection time. In our study we do not distinguish between weak

symptomatic and asymptomatic so the corresponding numbers for our model are 1.00, 0.89

and ((0.44+0.11)/2 = 0.275). We can now adjust Eqs (3) and (4) so that they satisfy these
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relative infectiousness numbers

ba ¼ zbs ð7Þ

z ¼
0:275

0:89
¼ 0:309 ð8Þ

bi ¼
bs

0:89
rs

0:5þ 1:0

5
þ 1 � rsð Þ

0:16þ 0:32

5

� �

ð9Þ

where βs and ρs are defined as earlier, and we assume an incubation time of 5 days. We use Eqs

(7)–(9) for our standard simulations. The main difference between this infection model and

the simpler infection model given by Eqs (3)–(6) is a slightly higher level of relative infectious-

ness for the incubating population for standard parameters. Simulation experiments with both

types of infection models convinced us that we could obtain better fits with data if we adopt a

higher weight to the incubating population. This is particularly clear when investigating the

shape of the initial infection peak in the hospital data. See S1 File for more details.

As neither the proportionality factor z between βs and βa nor the frequency ρs of symptom-

atic versus asymptomatic in Eqs (4) and (9) are well known (October 2020), the initial part of

this work is to explore the epidemiological impact of the relationship between z, βs, βa and βi as

well as ξs, ξa and ρs under different assumptions. Note that both infection models Eqs (3)–(6)

and Eqs (7)–(9) assume a free epidemic. Policy interventions may be implemented by modify-

ing the appropriate β parameters.

The mathematical models defined in Eqs (1) and (2) have a variety of parameters, where

some are well defined, e.g. from clinical data, while most are restricted by the necessity for the

simulations to reproduce the measured antibody data, the historical hospital and ICU occupa-

tion data as well as the death data both from the hospital system and elsewhere.

All data fittings of model parameters are based on available data from the onset of the Dan-

ish epidemic through August 31, 2020. Further discussions of the pandemic in September and

October 2020, as well as hypothetical scenarios further into the future are all based on these

estimated model parameters.

The relationship between the infection parameters βi, βa, and βs is based on clinical studies,

recall Eqs (3)–(6) and Eqs (7)–(9). The value of ρs, the fraction of symptomatic infected, is

mainly determined by the observed serological antibody response, which was conducted May

8–28, 2020, and published in early June 2020 [8], together with the average antibody decay-

times 1/ξa, 1/ξs from the asymptomatic and symptomatic infected respectively.

The average antibody decay times 1/ξa, 1/ξs are estimated based on existing knowledge

about SARS and other corona viruses. Despite these restrictions a few parameter combinations

still have some degrees of freedom, in particular hfrac [11] and mfrac that scale the size of Is and

thus the whole pandemic. Also, it has been difficult to obtain explicit data for the fraction of

the seriously ill that are directly admitted to a hospital H (α) versus ICU (1 –α), as well as ρh,icu

and ρh,d the fraction that are moved from a hospital to an ICU and the fraction that dies from a

hospital without going to ICU respectively.

Our current study seeks to provide useful information about "What if?" scenarios, including

potential infection wave scenarios assumed to follow the well-known winter influenza pat-

terns. Such a model is presented in Fig 2 and Eqs (1) and (2). Further, by adding noise to the

mean field approach defined in Eqs (1) and (2), we can also interpret the impact of localized

micro-outbreaks of the pandemic, as well as other fluctuations found in the empirical data.

Finally, our study also seeks to obtain a better understanding of the relationship between the
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critical parameters βs (and thus <0), z, ρs and the ξs, ξa pair that together characterize the

COVID-19 pandemic.

<0 for the SEIRS model

The basic reproduction number <0 can be derived from our SEIRS model system, recall Eq

(1), and is given below. See S1 File for details.

R0 ¼
bi
gi
þ
ð1 � rsÞba

ga
þ
rsbs
gs

ð10Þ

Here βx is the average infection parameter for each of the infected subpopulations Ix, x = i,a,s;
γx is one divided with the average infection period for each of the infected subpopulations, and

ρs is the fraction of the incubating that becomes symptomatic. In the following sections we

shall, when appropriate, estimate the numerical value for <0 during the different stages of the

Danish epidemic. For details, see S1 File.

Lockdown and re-opening of the country

March 11, 2020 the Danish Prime minister announced that the country would be closing

down in the following days, which meant that all non-essential professional activities would be

shut down, social distancing (2 meters) and enhanced hand sanitation were imposed, only

essential shopping was recommended (food and pharmacy), at most 10 individuals were

allowed to gather at the same time, movement between different parts of the country was dis-

couraged, international borders were closed, but face masks were not made mandatory. Fur-

ther, any symptomatic individuals with influenza-like symptoms were highly encouraged to

self-isolate and seek medical advice and everybody who had been in contact with an infected

were also highly encouraged to self-isolate. Therefore, in the following we assume Is remains

at the low level ~1% of the free pandemic value, both during lockdown and after the country

reopens.

We model the closing and the reopening of the country in a similar manner, i.e., by initially

decreasing βa and βi during the closedown dates followed by increasing βa and βi the dates

where the national reopening policies change. The reopening started April 20 with the reopen-

ing of schools for the youngest kids (K-5) together with a number of small businesses including

dentists, hairdressers and other businesses where services are rendered and where close physi-

cal proximity between a provider and a costumer is necessary. Later reopening activities were

implemented May 7, 20, June 8, and August 14, 2020 [18].

We model the closedown process of the country as a sigmoid function for the infection

parameters βs, βa, and βi over a period of approximately 7 days, see S1 File for details. We

model the reopening process as a slow (linear) increase of βa and βi over that interval, se S1

File for details. A graphical depiction of the closedown and reopening dynamics is shown in

Fig 3. For more details see S1 File.

Results

Identifying of infection parameters

The typical infection dynamics and corresponding hospital and non-hospital dynamics gener-

ated by the SEIRS model, see equation system (1) and (2), are discussed in Figs 4 and 5. For

this simulation the fraction of symptomatic infected is ρs = 0.16 and the infection model is

defined by Eqs (7)–(9). Parameter settings for the infection model are shown in S1 File. These

parameters are selected by visual inspection of simulation output ensuring an infection scale
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such that ~ 79,700 individuals had been infected by May 28, 2020 [8]. Alternatively, we can uti-

lize a Monte Carlo based Least Squares (MC-LS) optimization method to identify the different

βs, βa and βi. The results from this procedure is shown in Fig 6, and the found parameter values

are shown in S1 File. The hospital occupation data has a "shoulder" after the peak (Fig 12 in S1

File),. This means there is an extended period in mid April 2020 with close to constant hospital

admissions. Thus, the MC-LS algorithm selects a βs
0 that underestimates the observed impact

on the health care system as the LS error becomes smallest if the simulated hospital curve is

close to as many observed data points as possible. Therefore, the MC-LS estimate misses the

full scale of the hospital occupation peak. As a consequence of the initial underestimation of

b
0

s ¼ 1:0583, the MC-LS algorithm appropriately compensates by slightly increasing the esti-

mate for b
lockdown
a ¼ 0:1366� b

0

a. Compare Figs 5 and 6.

Impact of noise

Yet another way to interpret the Danish COVID-19 pandemic data is to view the macroscopic

infection dynamics as described by the SEIRS model and the microscopic events as superim-

posed noise. Thus, the noise can be interpreted as microscopic, localized infection events. We

may assume the impact of noise in the hospital data only becomes visible around April 1, as

singular microscopic events would be difficult to distinguish earlier because of the dominating

macroscopic growth of the pandemic given by b
0

s and the successive macroscopic disruption

of the infection dynamics due to the sudden lockdown of the whole country. Inspecting the

data from April 1 to August 31 supported by<t [8] measured from both hospital admissions

and observed infected numbers, yields five distinct peaks corresponding to microscopic events,

Fig 3.

https://doi.org/10.1371/journal.pone.0249733.g003
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(S12(5,6) Fig in S1 File). Thus, we may estimate f as 5 events/150 days = 0.033 events/day. Fig 7

shows 100 Monte Carlo realizations of the epidemic with noise added micro-outbreaks with a

frequency of 0.033 events/day and an amplitude of size A(t) = 2,500 for April 1–20, and 1,000

after April 21, 2020. For further details on the scale of the local outbreaks, see S1 File.

Fig 4.

https://doi.org/10.1371/journal.pone.0249733.g004
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Fig 5.

https://doi.org/10.1371/journal.pone.0249733.g005
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Symptomatic versus asymptomatic populations

In the current study we define the symptomatic infected population as consisting of individu-

als with serious symptoms, while the asymptomatic population for simplicity includes individ-

uals with no symptoms as well as weak symptoms, e.g., minor symptoms from upper airways

(nose, throat) and no fever. Thus, in our model a symptomatic infected individual knows that

Fig 6.

https://doi.org/10.1371/journal.pone.0249733.g006

PLOS ONE COVID-19 dynamics in Denmark

PLOS ONE | https://doi.org/10.1371/journal.pone.0249733 April 9, 2021 14 / 30

https://doi.org/10.1371/journal.pone.0249733.g006
https://doi.org/10.1371/journal.pone.0249733


Fig 7.

https://doi.org/10.1371/journal.pone.0249733.g007
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he or she is sick and will likely seek medical advice as well as self-isolate, while an asymptom-

atic individual likely would continue his or her daily routines at home, go to school or go to

work as well as engage in social activities. In some model studies asymptomatic and weakly

symptomatic are treated separately [17].

Because historical total hospital Htot and ICU occupations as well as death data only stem

from the symptomatic infected population Is, and we assume a constant fraction of seriously ill

individuals are in need of hospitalization [11], the symptomatic population size is at any given

time constrained by these real life data. The same is true about the non-hospital deaths. In con-

trast, the asymptomatic population could in principle vary freely if we did not include addi-

tional empirical information. We may use the Danish serological test study for SARS-CoV-2

antibody prevalence per May 28, 2020, to scale the pandemic: i.e., to estimate the relative scale

of the symptomatic versus the asymptomatic populations. For details see S1 File. Since we find

the prevalence to be about 1.37% (~ 79,700 recovered individuals), we get ρs’ 0.16 that means

approximately 16% of the infected are symptomatic while 84% of the infected are asymptom-

atic; thus ~ 5.2 times more asymptomatic than symptomatic infected individuals. Note that as

Denmark only had one published prevalence study per August 31, 2020, our estimated scale of

the pandemic significantly relies on this one measurement.

Iso-symptomatic infection diagram

The parameters (i) z: the relative infectiousness of asymptomatic versus symptomatic; (ii) ρs:
the relative fraction of infected (incubated) that becomes symptomatic; (iii) b

0

s : the initial

infection parameter (and the initial <0, that depends on the three previous parameters) define

critical properties of COVID-19 and other communicable infectious diseases. Our goal is obvi-

ously to identify the most realistic combinations of these critical parameters so that we can

reproduce the historical hospital and death data and at the same time satisfy existing clinical

knowledge about these parameters. However, a priori and without introduction of extra data,

infinitely many, although only very particular, combinations of z, ρs and b
0

s can reproduce the

historical hospital and death data. It is this very particular relationship between z, b
0

s , ρs, and

<0 we explore in Fig 8 as it defines some deeper characteristics of the COVID-19 pandemic.

Fig 8 shows the relationship that exists between z, b
0

s ,<0, and ρs, which we may call an iso-
symptomatic infection diagram. We assume the infection parameters z, ρs, and βs are constant

over time and throughout a free (non-restricted) pandemic. Thus bs ¼ b
0

s together with the

initial <0 define for the initial free pandemic period. Note, that we have estimated the actual

(z, b
0

s , ρs <0) values for the Danish epidemic. This in part from clinical studies that defines z

[14] and in part from the antibody prevalence study for blood donors 18–65 years in late May

2020 together with PCR testing which includes children <18 years until end of August 2020

[8]. These additional data together with our SEIRS model define b
0

s (and <0) and ρs. The iso-

symptomatic infection diagram is constructed from multiple Monte Carlo—Least Square

parameter optimized simulations that all match the observed Danish COVID-19 hospital

occupation data at the onset of the pandemic. In this construction we use the more generic

infection model with variable z as defined in Eqs (3)–(6). For more details, please see S1 File.

Estimation of mortality rates of the Danish COVID-19 epidemic

The estimated Infection Fatality Rate (IFR) as of August 31, 2020, based on the simulations

that include asymptomatic cases, can be calculated by dividing the total number of deaths by

the total number of recovered: 628/173,544 = 0.0036 or ~ 0.4%.
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The official calculations of mortality of COVID-19 in Denmark in the beginning of the pan-

demic were based on hospitalized patients. The value was found to be 3.3% April 3, 2020, just

before Easter, and 4.8% June 19, 2020, when the testing strategy had been changed for about

2 months to also include non-hospitalized individuals. However, asymptomatic cases of

COVID-19 were not included in these calculations and therefore the numbers were Case Fatal-

ity Rates (CFR). Thus, according to our calculations the true mortality rate of COVID-19 in

Denmark has been overestimated by a factor of approximately 10.

In another location of the Danish Kingdom, the Faeroe Islands (52,484 inhabitants), test-

ing was far more extensive from the beginning of the epidemic (109,233 tests as of September

14, 2020) to detect and isolate all contacts. They have recorded 423 COVID-19 cases (0.8%

including asymptomatic cases) and no deaths (both IFR and CFR) (0% - 95% c.l. 0.0–0.9%)

[8]. Note that our estimated mortality of 0.4% in Denmark is in the middle of their confi-

dence interval.

In Iceland (364,260 inhabitants), a serological study estimated that 0.9% of the population

had been infected with SARS-CoV-2 and that the IFR was 0.3%, which is again similar to our

estimates [19].

Fig 8.

https://doi.org/10.1371/journal.pone.0249733.g008
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Quasi steady state approximation

For extended periods the hospital occupation may be approximately constant indicating a

steady state situation of the pandemic. For example, we saw that for the period July—August,

2020. If we assume a steady state pandemic situation we approximately have:

dIi
dt
¼
dIa
dt
¼
dIs
dt
¼
dHtot

dt
¼ 0 ð11Þ

We can then use our model to estimate the sizes of the infected background populations Ii,
Ia, and Is as we can calculate backwards from a known approximately constant hospital occu-

pation. In a steady state situation we have hfracγsIs−(1 –ρh,icu)γhH–(1 –ρicu,h)γicuICU = 0 that

expresses: what goes into the hospital system equals what leaves the hospital system. With

known parameters hfrac, γs, ρh,icu, γh and known H and ICU populations the size of Is can be

estimated. Then Ia = ((1 –ρs)/ρs)Is and Ii = (Ia + Is)/2, as the average incubation time is half the

average infection time of both the symptomatic and asymptomatic. See S1 File for further

details. The key population numbers for different Htot population sizes are estimated and tabu-

lated in Table 2 based on the steady state approximation (all numbers are calculated on a com-

puter with double precision and then rounded to integer values).

Since hfrac is a critical parameter both for these steady state studies and our simulations, we

investigate the impact of varying this value around the standard value of 0.082 or 8.2%. Please

see S1 File for this analysis.

Testing efficiencies

From mid-July to mid-August, 2020 the nationwide voluntary testing program together with

medically recommended testing and contact tracing [20]. in average identify and isolate Td ~

85 infected/day from the contagious populations. By comparing the number of identified

infected Td with the number of estimated contagious individuals Iobs gives a simple indicator

of the testing efficiency. We may define a single day detection efficiency as the detected num-

ber within a day divided with the estimated number of infected on that same day: DTabs =

Td /Iobs = 85/1615 = 0.0526 or approximately 5.3%. So, in a theoretical situation where every

Table 2. Estimated infected population sizes and infection rates as a function of hospital population using Eqs.

Hospital & Infected Populations

Hospital population Infected population Daily infected Observable population

10 1,053 70 807

20 2,106 140 1,615

50 5,265 351 4,036

100 10,530 702 8,073

250 26,324 1,755 20,182

500 52,649 3,501 40,364

1,000 105,297 7,020 80,728

6,000 631,784 42,119 484,367

15,000 1,579,459 105,297 1,210,918

30,000 3,158,918 210,595 2,421,837

60,000 6,317,835 421,189 4,843,674

(S32)—(S38). Note the linear proportionality between the numbers; e.g., 10 times higher hospital population yields 10 times higher infected populations and infection

rates. See text for details.

https://doi.org/10.1371/journal.pone.0249733.t002
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individual in the country could be tested in a single day, all observably infected would be iden-

tified in one day with a total efficiency of 100%.

However, from an operational point of view a more relevant efficiency number is DTdaily
the net daily detected and isolated compared to the daily newly infected defined Inew. Obvi-

ously, the impact of the detection and isolation critically depends on which time point in an

infected individual’s disease process it occurs. Since an explicit modeling of the infection and

contact tracing processes is outside of the scope of our current study, we will only provide

upper and lower bounds for the impact of the infection and contact tracing processes.

The impact would be maximal if the detection and isolation of all individuals occur during

the incubation period and before the incubating infected become contagious, i.e., in the first

3.5 days of the incubation period. Thus, we can calculate an upper bound of the impact of the

net daily detection and isolation efficiency as DTmax
daily ¼ Td=Inew ’ 85=140 ¼ 0:6071 or approx-

imately 61%.

The impact would be minimal if the detection and isolation of all individuals are asymp-

tomatic infected occurs the very last day of their time as infectiousness. However, we need to

recall that throughout this study we have assumed that almost all the symptomatic infected are

detected and isolated in Denmark, so part of the daily identification and isolation process

involves the symptomatic infected. Since Is = 225 in the steady state, we can deduce that the

epidemic produces Isγs = 22.5 new symptomatic infected each day that are assumed detected.

So, 85 detections/day minus 22.5 detections/day = 62.5 detections/day are available for detec-

tion from Ia at their last contagious day. In our model there are 11.5 days of infectiousness for

both the symptomatic and asymptomatic populations: 1.5 days of the incubation times plus 10

days of the symptomatic or asymptomatic time. If for simplicity we assume equal contagious-

ness every day we get that the symptomatic can only infect 1.5 days during the incubation time

as we assume they are detected and isolated once they become symptomatic. The asymptom-

atic can infect 1.5 days during the incubation time and 9 days during the asymptomatic infec-

tion period, because they are only detected on the 10th and last day of this period.

Thus, we get a lower bound on the net daily detection efficiency

DTmin
daily ’

11:5� 10:5

11:5
� 62:5þ 11:5� 1:5

11:5
� 22:5

� �
=140 ¼ 0:1786 or approximately 18.0%.

We now have estimates for a lower and upper bound on the daily testing efficiency for the

period July 15 and August 15, 2020 given as 18%< DTdaily< 61%. As we have no detailed

knowledge about the details of the infection and contact tracing processes, we may use the

average (center point) of the upper and the lower bound as a rough estimate for the daily test-

ing efficiency: (18 + 61) / 2’ 39.5 or approximately 40%. Obviously, more accurate estimates

could be calculated from an explicit modeling and simulation of the involved infection and

contact tracing activities.

Similarly, for the period October 1–20, 2020 (see S1 File for details on the estimated

infected population sizes), we obtain a single day detection efficiency DTabs = Td /Iobs = 407/

9,351 = 0.0435 or approximately 4.4%. DTmax
daily ¼ Td=Inew ’ 407=831 ¼ 0:501 or approximately

50% while DTmin
daily ’

11:5� 10:5

11:5
� 1301

10

� �
þ 11:5� 1:5

11:5
� 407 � 130ð Þ=813 ’ 0:3102

��
or approxi-

mately 31%. Thus, a rough estimate for the daily testing efficiency is (50.1 + 31.02) /2 = 40.55

or approximately 41% that within rounding errors is the same daily testing efficiency as over

the summer.

There are two important lessons from the above estimates:

(i) The testing, contact tracing, and isolation program in Denmark both provides a key indica-

tor for the current geographic infection trends, but also takes part in balancing the back-

ground infection increase. This is particularly true when geographically focused efforts are
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undertaken. Removing and isolating on average 85 infected per day July 15—August 15,

2020 together with behavioral restrictions had a significant impact in controlling the epi-

demic. Without the testing and the resulting daily removal of infected individuals the Dan-

ish pandemic would likely have been in an expansion phase during this period.

(ii) The Danish testing program, which is among the most ambitious in the world, has a testing

efficiency of approximately 40% for both periods investigated, while the single day infection

tracing efficiency indicator is found to be 5.3% mid July to mid August 2020 and 4.4% for

October 1–20, 2020.

Hospitalized and estimated infected populations in other regions: Spain

and USA

If we assume the biology of the COVID-19 pandemic is similar in Denmark, Spain and the US,

and we further assume that the hospital system including ICUs in these countries at least quali-

tatively function in a similar manner regarding treatment of COVID-19 patients, we may scale

the Danish hospitalization numbers and the corresponding infected population estimates to

larger populations. Obviously more detailed studies are necessary to verify—or falsify—the

validity of such a comparison, but as a simplified first approximation we believe such estimates

provide appropriate order of magnitude estimates.

In Table 2 we list estimates for infected and observed population sizes based on the total

hospitalized population size and the quasi steady state approximations given in Eqs. (S32) to

(S38). For the estimates we assume the number of intensive care unit patients are approxi-

mately one fifth of every patient, thus ICU = 0.2 ×Htot (k = 0.8 in Eq. (S38)).

Potential healthcare differences across different countries can be adjusted by adjusting the

appropriate healthcare system parameters in Eq. (S32).

By the end of August, 2020, Spain had about 6,000 hospitalized with COVID-19 [21], which

according to our estimates corresponds to a total infected population of about 630,000 with

about 484,000 observable and about 42,000 newly infected per day. In late August Spain

detected and isolated a little less than 10,000 positive COVID-19 cases/day [22]. Thus, the

Spanish single day testing efficiency indicator is approximately 10,000/484,000’ 0.0207 or

2.1%.

To estimate the net daily detection efficiency, we need to approximate

ðDTmax
daily þ DTmin

dailyÞ=2. DTmax
daily ¼ Td=Inew ’ 10; 000=42; 000 ¼ 0:2381 or approximately 24%.

To calculate DTmin
daily we note that Is’ 67,390, so Isγs’ 6,739 new symptomatic infected are

produced every day that we assume are detected. Since Td’ 10,000, 10,000–6,739 detections

are thus available for individuals in Ii and Ia, recall discussion in the last subsection.

DTmin
daily ’

11:5� 10:5

11:5
� 6; 739þ 11:5� 1:5

11:5
� 10; 000 � 6; 739ð Þ

� �
=42; 119 ’ 0:0812 or approxi-

mately 8.1%. This gives an approximate net daily detection efficiency of (23.81 + 8.12)/

2 = 15.965 or approximately 16% by the end of August 2020.

By the end of September, 2020, the US had two hospitalization peaks, both with about

60,000 patients, one in mid- April and one in late July 2020 [23], as well as two valleys, both

with about 30,000 patients, one in mid-June and one mid- September 2020. The corresponding

estimates from Table 2 indicate that 30,000 hospitalizations correspond to about 3.16 mil.

infected while 60,000 hospitalizations correspond to about 6.32 mil. infected. The daily detec-

tion average for the US during September 2020 was about 40,000 while the daily newly infected

average was about 210,000. Thus, the single day testing efficiency in the US during September

was about 40,000/2,420,000’ 0.0165 or 1.7%.
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To estimate the net daily detection efficiency, we need to approximate ðDTmax
daily þ DTmin

dailyÞ=2.

DTmax
daily ¼ Td=Inew ’ 40; 000=210; 595 ¼ 0:1899 or approximately 19%. To calculate DTmin

daily we

note that Is’ 336,951, so Isγs’ 33,695 new symptomatic infected are produced every day that

we assume are detected. This assumption seems less appropriate with the actual numbers

involved as almost all of the detections would then stem from symptomatic infected. However,

to keep consistency in the estimations we keep this assumption. Since Td’ 40,000, 40,000–

33,695 detections are thus available for individuals in Ii and Ia, recall discussion in last subsec-

tion. DTmin
daily ’

11:5� 10:5

11:5
� 33; 695þ 11:5� 1:5

11:5
� 40; 000 � 33; 695ð Þ

� �
=210; 595 ’ 0:0399 or

approximately 4%. This gives an approximate net daily detection efficiency of (18.99 + 3.99)/

2 = 11.49 or approximately 11.5% during September 2020.

The above estimates from Spain and the US should only be viewed as an illustration of the

method developed in Eqs. (S32)—(S38) applied to other countries. Healthcare differences

across different countries should be implemented by adjusting the appropriate healthcare sys-

tem parameters in Eq. (S32) as well as our assumption about detection and isolation of symp-

tomatic infected.

"What if?" scenarios

Best case scenario: Continued micro-outbreak scenarios with <0’ 1. Since April 2020

Denmark has experienced a number of localized micro-outbreaks that were contained due to

isolation, contact tracing, and increasingly more extensive testing. A narrative discussion of

these micro-outbreaks was given in the Introduction, while in the Results Section we discuss

how we model and simulate the impact of such micro-outbreaks by means of added internal

noise.

Previously we used noise to trigger injections of newly infected into the population to gen-

erate local micro-outbreaks. Local fluctuations in the behavior from time to time triggers

micro-outbreaks probably in part caused by a combination of events or places where many

people are gathered and super-spreaders are present. In these situations the general back-

ground dynamics is characterized by<0 slightly smaller than 1.0 so that the background

dynamics and the noise induced micro-outbreaks together generate a close to steady state

infection level that corresponds to what we may call a macroscopic effective <0’ 1. We inter-

pret the general background dynamics as the sum of the behavior of the general population

together with the testing and contact tracing activities that result in a daily removal of infected

from the epidemic, which together defines a<0 that is smaller than one.

It should be emphasized that there is a critical difference between injecting additional

infected into the general population versus changing the behavior in the general population. If

the background infection is decreasing, <0 < 1, an injection of newly infected has the same

impact whether they e.g., are returning travelers that were infected elsewhere or they stem

from a local micro-outbreak from within the country. In an <0 > 1 situation both effects add

equally to an already expanding pandemic.

From August 14–31, 2020, Denmark adjusted the reopening of the country. The most sig-

nificant changes included opening of higher educational and vocational institutions as well as

longer opening hours of restaurants and bars. However, the restaurant and bar openings were

partly rolled back in the first part of September together with a number of additional restric-

tions due to observed increase in infection levels and hospitalizations [18].

If, as a "best case scenario" we assume no changes in the general human behavior compared

to the summer of 2020, as well as no impact by the cooler fall and winter temperatures, we

obtain the results shown in Fig 9. We still assume recurring localized micro-outbreaks with the
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same frequency and amplitude as previously had, which is an optimal dynamical regime to

operate in until a vaccine becomes available.

Since the pandemic dynamics are operating around <0 ~ 1, a quasi steady state can occur

for any hospital occupation level. A low hospital occupation is obviously the most desirable.

Fig 9.

https://doi.org/10.1371/journal.pone.0249733.g009
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Aggressive infection scenario following the seasonal influenza pattern. If all behavioral

and policy restrictions are lifted without a universally available vaccine, a new aggressive infec-

tion wave would immediately emerge. If we further assume that we still keep the symptomatic

infected effectively isolated, i.e. bs ¼ 0:01b
0

s , we get a scenario where the pandemic is governed

by a free infection spread almost solely by the asymptomatic Ia and incubating Ii populations.

Such a scenario yields (Eqs (7)–(10)),

R0 ¼
b

0

i

gi
þ
ð1 � rsÞb

0

a

ga
þ
rs0:01b

0

s

gs

¼
b

0

s ðrs þ ð1 � rsÞzÞ0:351

gi
þ
ð1 � rsÞ0:309b

0

s

ga
þ
rs0:01b

0

s

gs
ð12Þ

¼ 3:004 � 3:0 ð13Þ

Both the initial growth in the Htot observations as well as the simulations indicate that the

initial pandemic February—March 2020 with <0 ~ 5.4 had a doubling time of ~ 2.4 days while

a pandemic with <0 ~ 3.0 would have a doubling time of ~ 4.2 days. Thus, as long as we effec-

tively isolate the symptomatic infected a worst case scenario of such an infection wave cannot

be as aggressive as the initial wave we experienced early 2020. Thus, future infection waves

would be expected to emerge with <0� 3.0 and a doubling time of� 4.2 days.

The most vulnerable period for an aggressive Danish COVID-19 infection wave would

likely be at the time the country usually experiences it’s yearly influenza epidemic (Fig 14 in

S1 File).

Fig 10 shows an aggressive scenario with <0 = 3.0 and bs ¼ 0:01b
0

s , which means that 99%

of all symptomatic infected are isolated, where the scenario is adapted to the yearly seasonal

epidemic influenza pattern. To explore the full impact of such an infection, we further assume

no policy interventions for asymptomatic and incubating individuals, which means that incu-

bating and asymptomatic individuals move freely to interact with and potentially infect the

susceptible population. In particular, note that due to the assumed limited immunological

memory for the asymptomatic infected (1/ξa = 60 days; decay time) the pandemic does

not "burn out" as the susceptible population is continuously replenished by the recovered

population.

Without intervention the pandemic peaks for Ii December 30, 2020 and January 7, 2021 for

Ia and Is, and by February 7, 2021, approximately 4,071,000 people (~ 70% of the population)

would have been infected and recovered from the pandemic. The simulated hospital impact

peaks around January 17, 2021 with ~ 19,680 hospitalized and January 20, 2021 with’ 4,786

in ICUs which would completely overwhelm the Danish healthcare system. It is estimated that

the Danish ICU capacity is about 1,000 beds and the total hospital capacity is about 15,000

beds. A year after the onset of this infection wave (November 1, 2021) about 56,690 people

would have died from the SARS-CoV-2 virus, which is about the same as the total number of

deaths in Denmark in the year 2019: 53,958 [24].

Free pandemic: Worst case scenario. "What would have happened if no policy interven-

tions were imposed at the beginning of the pandemic?" In Fig 11 data are generated in simula-

tion using the standard parameters also used in Figs 4 and 5, but assuming no behavioral

modifications or policies imposed at the onset of the pandemic, thus <0’ 5.36. This is a hypo-

thetical scenario where the pandemic rages freely.
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The pandemic does not "burn out" in this scenario either, as the susceptible population is

continuously replenished by the recovered population (Fig 11). This means that a relatively

stable hospital population of about Htot’ 6,500 by October 2020 would slowly decrease to’

4,500 in October 2021. A conservative estimate of the expected excess deaths from such a free

pandemic is’ 64,960 after one year, by February 24, 2021, which is more than all the deaths in

Denmark in 2019 (53,958) [24].

Fig 10.

https://doi.org/10.1371/journal.pone.0249733.g010
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Fig 11.

https://doi.org/10.1371/journal.pone.0249733.g011
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Discussion

The goal of this work is to provide a theoretical platform to help understand the details of the

Danish COVID- 19 epidemic that can hopefully also provide useful insights about the nature

of the pandemic in other countries and regions. Our models and simulations can easily be

adapted to other regions or countries where hospital, ICU and death data are available.

We have chosen a simple macroscopic description and used a differential equation-based

simulation of the pandemic and health care system dynamics that seems appropriate for most

of the issues we seek to address, although a microscopic agent-based simulation scheme would

have been more appropriate e.g. to capture the dynamics of the observed micro-outbreaks.

Our approach is also limited in two other aspects. We neither have a geographic representation

of the pandemic nor do we have an age disaggregated population although reported data

clearly show features caused both by geography and age differences in the population.

However, by adding noise to our model and conducting Monte Carlo simulations of large

ensembles of the system we can to some extent compensate for the shortcomings caused by

the lack of geographic representations and the occurrence of localized micro-outbreaks. This

approach is further supported because Denmark is a small country with a relatively high

mobility and population mixing. The missing age distribution does not cause serious problems

for understanding the initial epidemic dynamics, but for the later micro-outbreaks we in prin-

ciple need to know the nature of their age distribution as this significantly impacts the health

care system. We have not implemented such parameter changes in our simulations. All param-

eters are kept constant over time in each of our simulations except the externally imposed lock-

down and reopening policies/behaviors. By adjusting the amplitude and frequency of the

added noise we can adjust the expected impact on the health care system from such micro-

outbreaks.

The micro-outbreaks since late July 2020 began in a slaughterhouse in the city of Ringsted.

Then came the outbreaks in the three largest cities in Denmark: first in Århus and then around

September 1, 2020 in Odense and Copenhagen. These outbreaks were driven by young people

aged 20–29 years and immigrants from Middle East and Somalia who live in rather closed

communities. The outbreaks spread to other groups, but fewer old and vulnerable persons

became infected compared to the epidemic in the spring. The number of patients hospitalized,

in particular patients treated in ICUs and the number of deaths, remained very low in the early

and mid-fall period compared to the spring epidemic although it was still the old people who

dominated the hospitalizations and deaths. In each of the micro-outbreaks non-pharmacologi-

cal measures were re-introduced and the <t of each micro-outbreak went from above 1.5 to

approximately 0.8 within a month, which probably is to be expected considering the epidemic

dynamics of COVID-19.

The testing capacity during these outbreaks went up to nearly 1% of the whole Danish pop-

ulation each day and by October 7, 43% of the population had been tested for SARS-CoV-2.

This means that many persons who contacted SARS-CoV-2 positive persons including asymp-

tomatic persons were detected. Therefore, of the 9,623 SARS-CoV-2 positive persons in the fall

outbreak only 34 (0.37%) died, whereas 434 (4.8%) of the 8,851 SARS-CoV-2 positive patients

who were hospitalized during the spring epidemic died. The reduced mortality is similar to an

case-fatality rate of 0.4% in a recent report from Hong Kong [25]. The early high rate mainly

reflects that only patients who were hospitalized were tested for SARS-CoV-2 in the spring

epidemic and is therefore CFR. The IFR of the spring epidemic could not be calculated and,

therefore, the true mortality was estimated too high. This is important to realize, because a

restricted testing capacity may mislead the health-care system, the population and the precau-

tions taken to manage the epidemic, e.g., based on the calculated <0 and <t. The burden on
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the hospitals and ICUs was much lower in the outbreaks in the fall. The spring/fall ratio of the

maximum number of normal hospital unit COVID-19 patients was 535/147 while the corre-

sponding ratio for ICU patients was 153/20. The improved treatment of COVID-19 patients

with e.g. Remdesevir, dexamethasone, and prophylaxis and treatment of bleeding disorders

[26, 27], is probably the reason for the proportionally lower number of hospitalized patients

who in the fall were treated in ICUs or died.

The estimated percentage of symptomatic infected that needs hospital care hfrac is a critical

parameter as it scales the connection between the main observables, the time series for H and

ICU occupations, the death toll, and the infection dynamics. We have used an age aggregated

estimate for hfrac = 8.2% based on the age distribution of health care needs from [11]. With an

increase of hfrac to 13.9% the simulation still corresponds reasonably well to the observed data

we have access to, while a decrease in hfrac to 6.1% does not allow the simulation to both satisfy

the time series of our main observables and the measured seroprevalence of May 28, 2020. See

S1 File for details on this analysis.

For our hospital model we have also chosen simplicity over including more details that

potentially could help capture the health care dynamics in greater detail. The simple hospital

model is nonetheless able to reproduce both the historical hospital and death data quite well,

but it has difficulties reproducing some of the reported data details. For example, both the

reported Htot and ICU occupation time series have sharper peaks at the onset of the pandemic

than the simulated peaks. Also to enable the simulated ICU data to follow the reported time

series data in a reasonable manner we need to use an average ICU occupation time 1/γicu = 10

days, which is shorter than the reported average occupation time in the spring of 13 days,

although it should also be noted that a more recent improved treatment of COVID-19 patients

means that fewer have a severe course [26, 27].

Requiring our healthcare model to reproduce the historical hospital Htot and ICU data, the

simulation underestimates the total accumulated number of hospital patients Htot by 7–14%

and it also underestimates the accumulated number of ICU patients. Thus, our simple health

care model has difficulties simultaneously matching both the time series data (daily hospital

occupation numbers) and the accumulated data (total number of hospitalized patients).

There is an ongoing discussion of the best value for average period of infectiousness both

for the symptomatic and asymptomatic populations, where (1) suggests 1/γs = 1/γa = 10 days

while (30) suggests 7 days as a better estimate. Lowering the infectious period 1/γs and 1/γa
both for the symptomatic and the asymptomatic populations from 10 to 8 days in our simula-

tion makes it difficult to reproduce the total hospital occupation numbers (too fast a decline of

simulation numbers after lockdown), while for the simulated death numbers from the hospi-

tals (too fast a rise). However, shorter 1/γs and 1/γa values make it easier to reproduce the ini-

tial relatively sharp peak for the ICU occupation number. To compensate for the lower 1/γa
and 1/γs values the β values must increase a bit. With lower infection times minor adjustments

are needed for the parameters associated with hospitals, ICUs, and death tolls.

We can use MC optimization of the parameters where we minimize the LS difference

between the reported and the simulated time series of the total hospital occupation (H + ICU).

Despite the minor mismatches between what the MC-LS parameter optimization yields and

what visual parameter inspection yields, the MC-LS capability enables us to do large scale

explorations of the parameter impacts.

Using a steady state approximation for the background infection that is indicated by

approximately constant low values in our main observables, i.e., H and ICU occupations and

death data, enables us to make simple analytical estimates of the sizes of the corresponding

infected populations Ii, Ia and Is. These analytical estimates are robust to most parameter per-

turbations and they are confirmed by numerical simulations using steady state conditions.
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This approach and the corresponding infected population estimates should give more accurate

predictions of the actual sizes of the infected populations than direct infection testing of the

daily scale currently being done.

Another general finding coming out of this study is the tight relationship that exists

between βs,<0, ρs and z, which can be represented by an iso-symptomatic-infection diagram,

that is made possible by using MC-LS optimization for each βs, <0, ρs and z parameter combi-

nation. We propose such diagrams could readily be constructed for most infectious diseases,

so that one diagram would hold crucial and comparable quantitative information about critical

parameters that define the dynamic characteristics of a pandemic.

Conclusions

Our computational platform explores the connection between the dynamics of the epidemic,

the national health care system and the imposed policies.

The relative frequency between symptomatic and asymptomatic infected was 16% and 84%

respectively. The <0 was ~ 5.4 for the initial free pandemic, <0 ~ 0.4 for the lockdown period,

and <0 ~ 0.8–1 for most of the successive reopening periods with short bursts where <0 > 1,

especially in localized areas.

Over the summer Denmark has been operating with <0 ~ 1 from June through August

2020. The estimated infected population sizes for the quasi steady state period mid-July to

mid-August, 2020 are Ii’ 702; Ia’ 1,179; Is’ 225; Itot’ 2,106; and Iobs’ 1,615, while the

daily infection rate is Inew’ 140.

The daily net testing efficiency was approximately 40% for the periods July 15—August 15,

2020 and October 1–20, 2020. The single day identification efficiency indicator in these peri-

ods, defined as the number of positively identified infected over the estimated observable

infected population the same day, is about 5%.

Since the symptomatic infected are effectively isolated from the population, and if behav-

ioral policies are kept in place and observed, future COVID-19 infection waves fortunately

would not be as aggressive as the first wave assuming the SARS-CoV-2 pathogenity does not

change significantly due to mutations. A new infection wave will have a lower bound with dou-

bling time of more than 4.2 days and less than <0 ~ 3.0 compared to the initial wave with a

doubling time of about 2.4 days and <0 ~ 5.4.

Our simulation platform is suitable for exploring forecasting scenarios for the upcoming

winter and beyond or until large scale vaccination becomes available. Our results indicate that

it is possible to more precisely than previously [28, 29] to calculate the burden on the hospitals

and ICUs of new COVID-19 infection waves or a new pandemic. Thereby, our simulation

might help minimize the impact on hospital treatment of non-COVID-19 patients.

We have shown that the mortality (IFR) of COVID-19 in Denmark is only 0.4% like the

IFR in Iceland, the Faeroe Islands and the CFR in Hong Kong. Our simulation indicates that

had Denmark not adopted any behavioral measures to counteract the Danish pandemic the

death toll would be’ 64,960 by February 24, 2021 one year into the pandemic. That surpasses

the total number of deaths (53,958) in Denmark in the year 2019 [24]. This simulation based

COVID-19 death estimate is conservative, as we have assumed a fully functional healthcare

system that can scale up to the needed capacity. The free pandemic in such a scenario would

have resulted in a hospital Htot and ICU occupation peaks in late April, 2020 that would have

completely overwhelmed the Danish health care system with’ 22,850 hospitalized and’

5,472 in ICUs. Per January 1, 2021 there would still be’ 5,860 hospitalized and’ 1,500 in

ICUs in a free COVID-19 pandemic according to such a simulation scenario.
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Clearly Denmark’s adopted behavioral modifications, lockdown, measured reopening, test-

ing, and contact tracing procedures, have been highly successful in mitigating the epidemic

from the onset through August 2020.
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