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C O R O N A V I R U S

Anatomy of digital contact tracing: Role of age, 
transmission setting, adoption, and case detection
Jesús A. Moreno López1,2, Beatriz Arregui García1,2, Piotr Bentkowski1, Livio Bioglio3, 
Francesco Pinotti1, Pierre-Yves Boëlle1, Alain Barrat4,5, Vittoria Colizza1, Chiara Poletto1*

The efficacy of digital contact tracing against coronavirus disease 2019 (COVID-19) epidemic is debated: Smart-
phone penetration is limited in many countries, with low coverage among the elderly, the most vulnerable to 
COVID-19. We developed an agent-based model to precise the impact of digital contact tracing and household 
isolation on COVID-19 transmission. The model, calibrated on French population, integrates demographic, con-
tact and epidemiological information to describe exposure and transmission of COVID-19. We explored realistic 
levels of case detection, app adoption, population immunity, and transmissibility. Assuming a reproductive ratio 
R = 2.6 and 50% detection of clinical cases, a ~20% app adoption reduces peak incidence by ~35%. With R = 1.7, 
>30% app adoption lowers the epidemic to manageable levels. Higher coverage among adults, playing a central 
role in COVID-19 transmission, yields an indirect benefit for the elderly. These results may inform the inclusion of 
digital contact tracing within a COVID-19 response plan.

INTRODUCTION
Intervention measures aiming at preventing transmission have been 
the key to control the first wave of the coronavirus disease 2019 
(COVID-19) pandemic. Many countries have adopted lockdown 
and strong social distancing during periods of intense epidemic 
activity to suppress the epidemic and reduce hospital occupancy 
below saturation levels (1, 2). Because of their huge economic and 
societal costs, these interventions can only be implemented for a 
limited amount of time. The building of population immunity has 
been slow (3–5) so that new waves are possible after temporary lock-
downs and lifting of restrictions. Sustainable strategies are required 
to maintain the epidemic under control while enabling the close-to-
normal functioning of the society. Widespread testing, case finding 
and isolation, contact tracing, use of face masks, and enhanced hy-
giene are believed to be crucial components of these strategies.

Contact tracing aims to avoid transmission by isolating, at an 
early stage, only those individuals who are infectious or potentially 
infectious, to minimize the societal costs associated with isolation. 
Considerable resources are therefore directed at improving surveil-
lance capacities to allow efficient and rapid investigation and isola-
tion of cases and their contacts. To enhance tracing capacities, the 
use of digital technologies has been proposed, leveraging the wide-
spread use of smartphones. Therefore, proximity-sensing applications 
have been designed and made available—e.g., in Australia, France, 
Germany, Iceland, Italy, and Switzerland—to automatically trace 
contacts, notify users about potential exposure to COVID-19, and 
invite them to isolate.

Empirical studies of the impact of these digital applications are, 
however, limited (6–8), and the utility of this intervention is debat-
ed. Some built-in features make it more efficient than manual con-
tact tracing: It is automated, reducing the burden of manual contact 

tracing and limiting recall bias; it is faster, as information can be 
transmitted in real time. However, coverage is uneven. In partic-
ular, most children and elderly do not own a smartphone or are 
less familiar with digital technologies. The overall adoption of the 
app among smartphone owners will also be a limiting factor, as 
well as the fraction of cases actually triggering the alert to the 
contacts and the adherence to isolation of the app adopters who 
receive an alert.

These variables must be gauged in light of the risk factors for 
exposure and transmission driving the COVID-19 epidemic. First, 
individuals of different age contribute differently to the transmission 
dynamics of COVID-19. Younger individuals tend to have more 
contacts than adults or the elderly. On the other hand, a marked 
feature of COVID-19 is the strong age imbalance among cases (9–13), 
which may be explained by both a reduced susceptibility (9, 10) and 
an increased rate of subclinical infections in children compared to 
adults (10, 11, 13). As subclinical cases are harder to detect, this 
implies that identification of cases and of their contacts may be de-
pendent on age. Second, severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) transmission risk varies substantially by setting. 
Transmissions were registered predominantly in households, in 
specific workplaces, and in the community (linked to shopping cen-
ters, meals, parties, and sport classes) (14, 15). This is due, at least in 
part, to the higher risk of contagion of crowded and indoor envi-
ronments (14–16). Notably, contacts occurring in the community 
are also the ones more affected by recall biases, thus more difficult 
to trace with manual contact tracing.

Several modeling studies have quantified the impact of contact 
tracing (17–26), with some of them addressing specific aspects of 
digital contact tracing (18–23). Still, the interplay between age and 
setting heterogeneity in determining the efficacy of this intervention 
is largely unexplored. Here, we provide a systematic exploration of 
the different variables at play. We considered France as a case study 
and integrated different sources of data to realistically describe the 
French population, in terms of its demography and social contact 
behavior. We accounted for the dynamics of contacts according to 
age and setting and for the setting-specific risk of transmission. We used 
COVID-19 epidemiological characteristics for parametrization. We 
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then modeled case detection and quarantining, isolation of their house-
hold contacts, and digital contact tracing, under different hypotheses 
of potential reduction in transmissibility due to other effects (e.g., face 
masks and increased hygiene). We quantified the impact of digital 
contact tracing on the whole population and on different population 
groups and settings, as a function of several variables such as the rate 
of app adoption, the probability of detection of clinical and subclinical 
cases, population immunity, compliance to isolation, and transmission 
potential. Our results provide quantitative information regarding 
the impact of digital contact tracing within a broader response plan.

RESULTS
Dynamic multisetting contact network
We modeled the French population integrating available demo-
graphic and social contact data. We collected population statistics 

on age, household size and composition (Fig. 1, A and B), work-
place and school size, smartphone penetration (Fig. 1E), and com-
muting fluxes. Then, by following standard approaches in the 
literature (27, 28), individuals were created in silico with a given age 
and assigned to a municipality, a household, and a workplace/
school according to the statistics. Smartphones were assigned to in-
dividuals depending on their age according to available statistics on 
French users (Fig.  1E) (29). Overall smartphone penetration was 
64%, which represents the upper bound limit of app adoption in the 
population—reached when 100% of individuals owning a smart-
phone download the app. This synthetic population reproduced the 
location statistics of individuals in different settings, yielding the 
basis of a multisetting network of daily face-to-face contacts in house-
hold, school, workplace, community, and transport (Fig. 1H) (30–32). 
We parametrized the network from a social contact survey providing 
information on contacts by age and setting (Fig. 1, C and D) (33). As 
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Fig. 1. Synthetic population. (A to E) Key statistics used as input for the synthetic population reconstruction. (A) Age pyramid for France (source, INSEE). (B) Household 
size (source, INSEE). (C) Ratio of contacts by setting with respect to household contacts (33). (D) Fraction of contacts occurring each day or less frequently (33). (E) Smart-
phone penetration by age. The overall average adoption in the population is 64% (29). (F) Distribution of the number of daily contacts in the model. (G) Cumulative dis-
tribution of the activation rate associated to the contacts in the model, calibrated to be consistent with the information of (D). (H) Sketch of the construction of the contact 
network: Contacts among individuals were represented as a multilayer dynamical network, where each layer includes contacts occurring in a specific setting. (I) Age 
contact matrix computed from the contact network model.
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contacts may occur repeatedly, we associated an activation rate to 
each contact and sampled each day contacts based on their activa-
tion rate (Fig. 1G). We imposed that 35% of the contacts registered 
during 1 day occur with daily frequency, as found in (33). Fig-
ure 1 (F and I) shows that the features of the resulting daily contact 
network matched the data: The distribution of the number of con-
tacts was right-skewed as the empirical one reported in (33), and the 
contact matrix showed age assortativity and the characteristic par-
ent-children (off-diagonal) contact pattern. As a case study, we re-
stricted our study to a municipality with a population size of 
~100,000 individuals (see Materials and Methods and the Supple-
mentary Materials for additional details).

COVID-19 epidemic dynamics
We modeled coronavirus transmission and outcome as shown in 
Fig.  2  (A  and  B). Individuals could be susceptible, S, exposed, E, 
presymptomatic preceding subclinical infection, Ip, sc, presymptomatic 
preceding clinical infection, Ip, c, subclinically infectious, Isc, clini-
cally infectious, Ic, and recovered, R. Subclinical cases had symp-
toms that ranged from no symptoms to mild and continued their 
normal activity throughout the infectious period. Clinical cases had 
moderate to critical symptoms and stayed at home after the onset of 
symptoms (11, 13)—we did not consider hospitalization. Individuals 
in compartments Ip, sc, Ip, c, Isc, and Ic transmitted the infection, with 
subclinical individuals characterized by a lower risk of transmission 
than clinical ones (see Materials and Methods). We accounted for 
the heterogeneous susceptibility and clinical manifestation by age as 
parametrized from (9, 13) (Table 1). To parametrize the infection’s 
natural history, we combined evidence from epidemiological and viral 
shedding studies. We used 5.2 days for the incubation period (34), 
2.3 days for the average length of the presymptomatic phase (35), and 
7 days on average for the infectivity period after symptoms’ onset (35).

We first simulated an uncontrolled epidemic assuming trans-
mission levels corresponding to R0 = 3.1, within the range of values 
estimated for COVID-19 in France at the early stage of the pandemic 
(1, 36). The generation time resulting from our model and parame-
ters had mean value of 6.0 days (95% confidence interval, 12 to 17), in 
agreement with epidemiological estimates (11, 35, 37). Figure 2 
(C  and  D) shows the repartition of cases among age groups and 
settings at the early stage and during the whole course of the epi-
demic. Age-specific infection probability was higher among young 
adults, while clinical infections were shifted toward older popula-
tion with respect to the overall (clinical and subclinical) cases, as 
noted in previous observational and modeling works (10). The age 
profile changed in time with children infected later as the epidemic 
unfolded (10, 38). Transmissions occurred predominantly in house-
hold and workplaces followed by the community setting (14).

Contact tracing
We quantified the impact of combined household isolation and dig-
ital contact tracing considering the possible scenario of a new epi-
demic wave emerging after the release of strict lockdown measures 
in the country. We thus assumed some level of immunity to the 
virus—exploring a range from 0 to 15% of the population. We con-
sidered interventions based on the use of digital contact tracing, 
coupled with testing and isolation of clinical cases and households. 
Fifty percent of individuals with clinical symptoms were assumed to 
get tested after consulting a doctor and to isolate if positive. Higher 
and lower percentages were also considered.

Case tracing was assumed to start when a case with clinical 
symptoms tested positive and was isolated, with an average delay of 
~1 day. Household members were also invited to isolate—we as-
sumed that 90% of them accepted to isolate and that their isolation 
occurred at the same time as the detected case. If the index case had 
the app installed, then the contacts he/she registered in the previous 
D = 7 days were notified and could decide to isolate with a compli-
ance probability of 90%; lower values of compliance were also ex-
plored. Note that only contacts occurring between individuals who 
both use the app can be registered, so only app adopters can be no-
tified. We explored several levels of app adoption in the population. 
In addition to the detection of clinical cases, we assumed that a pro-
portion of subclinical cases were also identified. These may be cases 
with very mild, unspecific symptoms who decided to get tested as 
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Fig. 2. Modeling COVID-19 epidemic. (A and B) Compartmental model summa-
rizing the epidemic states and transitions between states. Parameters and their 
values are reported in Table 1. (C) Cases by age for an uncontrolled epidemic. We 
show all cases (clinical and subclinical) in red and clinical cases in black. The gray 
line shows the clinical cases in the early stage of the epidemic (here defined as the 
first 30 days), with fewer cases among children than in later stages. (D) Transmis-
sion by setting (H, W, S, C, and T stand for household, workplace, school, community, 
and transport, respectively). The simulations were done with  = 0.25 correspond-
ing to R0 = 3.1. Additional aspects of the outbreak are reported in the Supplemen-
tary Materials.
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part of vulnerable groups (i.e., comorbidity) or because they were 
highly exposed to the infection (health care professionals). We hy-
pothesized this proportion to be small in the baseline scenario (5%), 
and we later varied it up to 45%. Isolated individuals resumed nor-
mal daily life if infection was not confirmed. We took 7 days as the 
time needed for being confirmed negative because of multiple tests 
and some delay since the exposure is needed for a negative result to 
be reliable. Infected individuals got out of quarantine after 14 days 
unless they still have clinical symptoms after the time is passed. 
They may, however, decide to drop out from isolation each day with 
a probability of 2% if they do not have symptoms (21, 26).

Figure  3 summarizes the effect of the interventions. We com-
pared the uncontrolled scenario (R = R0 = 3.1) with scenarios where 
the transmissibility is reduced because of the adoption of barrier 
measures (R down to 1.5). We also assumed 10% of the population 
to be immune to the infection (36). Figure 3 (A and C) shows the 
results for R = 2.6 and R = 1.7. With R = 2.6, the relative reduction 
of peak incidence due to household isolation only would be 27%. 
The inclusion of digital contact tracing would increase the relative 
reduction to 35% with ~20% app adoption and to 66% with ~60% 
app adoption—i.e., 90% of individuals owning a smartphone use 
the app. This corresponds to an additional mitigation effect ranging 
from 30 to 144% provided by contact tracing compared to house-
hold isolation only. With R = 1.7 (Fig. 3, B and C), we find that 
~20% app adoption would reduce the peak incidence by 45% (addi-
tional mitigation effect of 25%), while the reduction would reach 
89% in a scenario of ~60% app adoption (additional mitigation ef-
fect of 147%). According to the projections in (1), intensive care 

units occupation would remain below the saturation level with inci-
dence below 0.4 per 1000 habitants. In the scenario with R = 1.7, this 
would be reached with app adoption greater than ~30% (gray dashed 
line in Fig. 3B). Stronger reductions could be obtained with more effi-
cient detection of clinical cases (obtained with R = 2.6;Fig. 3, E and H) 
and of subclinical ones (R = 2.6; Fig. 3L). The relative reduction in 
peak incidence produced by ~20% app adoption would be 47% with 
an 80% detection rate of clinical cases, compared to the 35% relative 
reduction obtained with 50% detection rate. Results show similar 
trends across different levels of population immunity, with higher 
relative impacts predicted for low immunity (R = 2.6;Fig. 3, F and I). 
Compliance to isolation of household contacts had an appreciable 
effect at low app adoption (R = 2.6;Fig. 3K). Fifty percent compli-
ance would reduce peak incidence of 19%, compared to 27% reduc-
tion for 90% compliance, in the case of household isolation only. 
Compliance of notified contacts to isolation, instead, has a larger 
effect on peak incidence only when app adoption is high, as expected. 
For example, if the app was adopted by 60% of individuals, the re-
duction in peak incidence would pass from 55 to 66% if compliance 
changed from 50 to 90% (R = 2.6;Fig. 3J).

We analyzed the simulation outputs to characterize index cases 
and their contacts and relate this to the reduction in number of cases 
by age and setting. We found that adults represented most of the 
index cases (Fig. 4D), while their household contacts were mostly 
children. The app registered mostly contacts with adults, and the 
tracked contacts were occurring predominantly in workplaces and 
in the community (Fig. 4A). This results in a heterogeneous reduc-
tion in transmission [relative reduction in transmission (TRR)] by 

Table 1. Compartmental model parameters and their values.  

Parameter Description Values Source

IP Incubation period 5.2 days (34)

p Rate of developing symptoms for 
presymptomatic individuals

(2.3 days)−1 (35)

ϵ Rate of becoming infectious for 
exposed individuals

(2.9 days)−1  IP −   p  −1  

 Recovery rate (7 days)−1 (35)

I Transmissibility rescaling according 
to the infectious stage

0.51 for Ip, sc, Isc
1 for Ip, c, Ic

(1)

s Transmission risk by layer 1 for H layer
0.3 for C layer
0.5 otherwise

(16, 33)

 Transmission rate Explored between 0.1 to 0.25

A Susceptibility 0.23 for A in [0,14]
0.68 for A in [15,64]

1 for A in 65+

(9)

  p sc  A   
Proportion of subclinical cases 0.27 for A in [0,1]

0.48 for A in [2,6]
0.57 for A in [7,19]

0.43 for A in [20,29]
0.38 for A in [30,39]
0.30 for A in [40,49]
0.24 for A in [50,59]
0.15 for A in [60,69]
0.11 for A in [70,79]
0.12 for A in [80,89]

0.26 for A in 90+

(13)
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Fig. 3. Impact of digital contact tracing and household isolation on the epidemic. (A and B) Incidence (clinical cases) according to app adoption for R = 2.6 and R = 
1.7, respectively. The black curve shows the scenario with no intervention (NI). Other curves correspond to app adoption levels ranging from 0% (household isolation 
only) to 57% (90% of smartphone users). Incidence threshold level corresponding to intensive care unit saturation is shown as a dashed gray line in (B). inc., incidence; 
hab., habitants. (C) Relative reduction (RR) in attack rate (AR) and peak incidence (PI) as a function of the app adoption for the scenarii shown in (A) and (B). RR is comput-
ed as    x  ref   − x _  x  ref     , where x is either PI or AR, and xref is the value of the quantity with no intervention. Attack rate is computed as cumulative incidence discounting initial immu-
nity (10%). (D and G) Peak incidence and attack rate according to reproduction ratio R and app adoption. (E and H) Peak incidence and attack rate according to app 
adoption and percentage of clinical cases detected. (F and I) Peak incidence and attack rate according to app adoption and initial immunity. (J) Peak incidence according 
to app adoption and compliance to isolation of contacts notified by the app. (K) Peak incidence according to app adoption and compliance to isolation of household 
contacts. HH, household. (L) Peak incidence according to app adoption and percentage of subclinical cases detected. Except as otherwise indicated, parameter 
values were as follows: initial immunity, 10%; clinical case detection, 50%; subclinical case detection, 5%; compliance to isolation of contacts notified by the app, 90%; 
and compliance to isolation of household contacts, 90%, R = 2.6.
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setting and age group. Household isolation reduced transmission in 
all settings, with the smallest effect in workplaces (Fig. 4B). Digital 
contact tracing has instead a high TRR at work, in the community, 
and in transports (Fig.  4C). Household isolation reached mostly 
children (<15 years old) and the elderly (especially the 75+ group) 
with the smallest effect in the 15- to 59-year-old group (Fig. 4E). 
Adopting digital contact tracing led to an increased TRR with age, 
even among the oldest age range (Fig.  4F). This result shows the 
indirect effect of digital tracing: Because of the central role of adults 
in the transmission of SARS-CoV-2 toward all age groups, avoiding 
adult infections led to less transmission to the elderly. We also tested 
the case in which elderly people (70+) owning a smartphone did not 
install the app at all, assuming that they are less familiar with digital 
technologies, and we found no appreciable effect. These results and 
additional details are provided in the Supplementary Materials.

Traced and isolated individuals
Feasibility of contact tracing depends on the number of traced con-
tacts who require assistance and virological tests. In a scenario with 
high detection rate (80%), we found that for each detected case, 

1.5 contacts were identified on average through household isolation 
but up to 7.5 with app adoption at 57% for R = 2.6 and 10 for R = 1.7 
(Fig. 5D). This number was, however, subject to fluctuations 
(Fig. 5A). Overall, the maximal fraction of the population quaran-
tined at any given time was ~50 per 1000 habitants in a scenario 
with R = 2.6 and was between ~1 and ~ 4.5 per 1000 habitants when 
R = 1.7 (Fig. 5, B and E). The latter case corresponded to the situa-
tion in which high levels of app adoption were able to strongly re-
duce spreading; thus, the proportion of isolated individuals declined 
in time, signaling the success of quarantining in preventing the 
propagation of the infection. A total of 30 per 1000 habitants were 
isolated in a scenario with R = 1.7, assuming high app adoption. At 
R = 2.6, 1030 per 1000 habitants were isolated at the end of the epi-
demic, meaning that certain individuals were isolated more than 
once. In all scenarios, the increase of app adoption inevitably deter-
mined an increase in the proportion of people that were unneces-
sarily isolated, i.e., of individuals who were not infected but still 
isolated (Fig. 5, C and F): This proportion increased from 61 to 84% 
with the increase of app adoption from 0 to 57% (note that the case 
of 0% app adoption implies that 61% of individuals who were isolated 

A B C

D E F

Fig. 4. Effect of digital contact tracing and household isolation by age and setting. (A) Repartition among the different settings of the contacts detected by contact 

tracing (57% app adoption). (B) TRR by setting obtained with household isolation (HHI). The relative reduction in transmission is here defined as  TRR(s ) =   I ref  
s    −  I   s  _  I ref  

s      , where Is is the 
total number of clinical and subclinical cases infected in setting s, in the given intervention scenario considered (here household isolation) and   I ref  

s     is the same quantity in 
the reference scenario (here the scenario with no intervention). (C) TRR obtained with digital contact tracing with respect to household isolation only, for three values of 
app adoption. (D) Repartition among the different age groups of the index cases and of the detected contacts, in a scenario with household isolation only, and with the 
inclusion of digital contact tracing (57% app adoption). The repartition of index cases is very similar in the two scenarios; thus, only the one with household isolation is 
shown for the sake of clarity. (E) TRR by age group of the infected as obtained with household isolation only. (F) TRR of digital contact tracing with respect to household 
isolation only. We assume R = 2.6, immunity 10%, and probability of detection 50%.
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through household isolation were not infected). These numbers were 
similar for the two tested values of R = 1.7 and 2.6 (Fig. 5, C and F).

DISCUSSION
Quantifying the impact of digital contact tracing is essential to 
envision this strategy within a wider response plan against the 
COVID-19 epidemic. We modeled this intervention together with 
household isolation assuming a 50% detection of clinical cases. In a 
scenario of high transmissibility (R = 2.6), we found that household 
isolation by itself would produce a reduction in peak incidence of 
27%, while the inclusion of digital contact tracing could increase 
this effect by 30% for a reasonably achievable app adoption (~20% 
of the population) and by 144% for a large-scale app adoption 
(~60%). At a moderate transmissibility level (R = 1.7), the app 
would substantially damp transmission (36 to 89% peak incidence 
reduction for increasing app adoption), bringing the epidemic to 
manageable levels if adopted by 32% of the population or more. The 
app-based tracing and household isolation have different effects 
across settings, the first intervention efficiently preventing trans-
missions at work that are not well targeted by the second. More-
over, app-based contact tracing also yields a protection for the 
elderly despite the lower penetration of smartphones in this 
age category.

Lockdown and social distancing have been effective in reducing 
transmission in the first epidemic wave in many countries. However, 
their huge societal and economic costs made their prolonged imple-
mentation impossible. Phasing out lockdown occurred at the begin-
ning of the summer in Europe, with high temperatures, increased 
ventilation, and outdoor activities helping to reduce the risk of con-
tagion (16). The relaxation of almost all restrictive measures, the 
start of activities in the fall, and the cold season accelerated trans-
mission, reaching a point in which strict nonpharmaceutical inter-
ventions were again necessary to curb the epidemic increase. At the 
time of writing, national or local lockdowns were restored in several 
countries in Europe (39). This highlights the need for exit strategies 
based on sustainable nonpharmaceutical interventions, able to sup-
press COVID-19 spread while having limited impact on the economy 
and on individuals’ daily life (1).

Many countries have increased their capacity to detect cases and 
track their contacts. In France, thousands of transmission clusters 
have been identified and controlled since the end of the first lock-
down period (40). Underdetection of cases was, however, estimated 
over summer, and the system was predicted to deteriorate rapidly 
for increasing epidemic activity (41). The automated tracking of 
contacts could then provide an important complementary tool. 
Here, we found that digital contact tracing could reduce attack rate 
and peak incidence, in agreement with previous works (18, 19, 26). 

A B C

D E F

Fig. 5. Impact of combined digital contact tracing and household isolation on the isolation of individuals. (A) Distribution of the number of isolated individuals per 
detected case (DC) for 57% of app adoption. (D) Average number of isolated individuals per detected case as a function of app adoption. (B and E) Percentage of the 
population isolated as a function of time for R = 1.7 (B) and R = 2.6 (E). ind., individuals. (C and F) Fraction of unnecessary isolated, i.e., fraction of contacts isolated without 
being positive.
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The impact of the measure would depend on population immunity; 
thus, geographical heterogeneities should be expected, as regions 
were differentially hit by the first wave of the epidemic (4). On the 
other hand, app adoption as well may be higher in these areas be-
cause of risk aversion behavior (42). In addition, higher participa-
tion rates may be expected in dense urban areas to protect from 
exposure from random encounters (e.g., in public transports).

Under realistic hypotheses, the intervention would not be able 
alone to bring the epidemic under control in a scenario where trans-
mission is high (18, 19, 26), mainly because of the strong role of as-
ymptomatic transmission in fueling the epidemic (11, 12, 43). We 
explored different values of the reproductive number R, to effectively 
account for nonpharmaceutical measures mitigating the epidemic 
and for the adoption of preventive measures substantially hindering 
SARS-COV-2 transmission. We found that a reduction of the epi-
demic to a manageable level would be possible with a moderate 
R (e.g., R = 1.7 explored here).

Improved case finding is the first step toward a successful con-
tact tracing intervention. We found that the increase in detection of 
clinical cases substantially reduced peak incidence and improved the 
efficacy of contact tracing. Many countries progressively increased 
testing capacity (41) and lifted restrictions on access to testing (44). 
Easy access to testing is essential to detect cases, because of the sub-
stantial fraction of subclinical cases and the similarity of COVID-19 
clinical presentation to the one of other respiratory infections. In 
the period from September to November 2020, the French network 
of virological surveillance run by general practitioners reported that 
only 22.7% of acute respiratory infections were caused by SARS-
CoV2, against 46.5% attributed to rhinovirus (45). Given that most of 
the cases do not require hospitalization, case detection effectiveness 
is also influenced by the consultation rate. This has been estimated 
to be ~30% with peaks at ~45% by the participatory surveillance 
platform covidnet.fr (40, 41). Increased population awareness is thus 
essential for the efficient monitoring of the epidemic and its con-
tainment through contact tracing.

Little information is available on compliance to isolation. Low 
compliance to isolation was reported in the United Kingdom and in 
a university campus in the United States (46,  47). However, this 
may vary greatly according to cultural, socioeconomic, and demo-
graphic context. Because of a self-selection bias, individuals who 
decided to download and use the mobile application may be more 
akin to follow the recommendation and isolate if they receive a no-
tification. Step-by-step recommendations provided by the app can 
further help in increasing compliance. Strengthened communica-
tion and compensations (such as paid work leave, loss-of-income 
payments for self-employed professionals, and medical school- 
absence certificates) should be implemented to increase the accept-
ability of isolation (48).

App adoption remains the key factor determining the efficacy of 
digital contact tracing. Adoption levels were initially low (<5%) in 
many countries (e.g., Italy and France), increasing later as the sec-
ond wave was rising, likely because of increased concerns of the 
population. As of November 2020, 17 and 13% of the population 
had downloaded the app in Italy and France, respectively (49, 50). 
Higher levels were observed, e.g., in Australia (6 million downloads, 
25% of the population) (51) and Iceland (~150 thousand, 38%) (52).
Official figures may overestimate real adoption levels, because 
many individuals may download the application without using it. 
In France, this proportion was 60% among university students (53). 

Individuals may be more inclined to use the app if they perceive a 
direct and immediate benefit from its use. This may be implemented 
through, e.g., easy access to testing in case they are notified as con-
tacts and assistance by public health professionals. Moreover, even 
if the application preserves users’ privacy and can be downloaded 
on a voluntary basis in many countries, increased transparency and 
ethical debate remain essential to reassure the population about 
data treatment (53–55).

The results presented here are based on an agent-based model 
that describes age-specific risk factors for exposure and transmis-
sion: contact rates, contacts by location, susceptibility to the virus, 
probability of being detected, and rate of app adoption. The inter-
play between these features has a profound impact on COVID-19 
spread and affects the efficacy of household isolation and digital 
contact tracing. To account for contact heterogeneities, we used sta-
tistics on population demography, combined with social contact 
surveys to build a multisetting contact network, similarly to previ-
ous works (17, 21, 26, 30–32). The network is also dynamic in time 
as it captures the repetition of a certain number of contacts (e.g., 
relationships) and the occurrence of random encounters. Social 
contact data provide an invaluable information source to study the 
current COVID-19 outbreak (1, 36). Previous projections on the 
impact of contact tracing rely on a similar approach in some cases 
(17, 24, 26). Other works make use of high-resolution data (18, 19, 22), 
which are more reliable than contact surveys, but are restricted to 
specific settings or population groups. Despite the difference in the 
data source and approach, the results of these studies are consistent 
and in agreement with our work on the overall impact of the 
intervention.

We modeled age-specific epidemiological characteristics based 
on available knowledge in the literature. Children are less affected 
by the COVID-19 epidemic (9–13). This may be explained by re-
duced susceptibility and severity, with accumulating evidence that 
both effects are acting simultaneously (10). The strength of these 
effects is still debated, and the infection risk for children should not 
be minimized. However, these differences have implications for 
digital contact tracing. It is precisely in the group that plays a central 
role in transmission and where cases are more likely symptomatic 
(i.e., adults) that the app coverage is already the highest. Our model 
shows that together, these characteristics reinforce the impact of 
digital tracing and provide indirect protection in the elderly popu-
lation. This occurs even if no adoption is registered in the elderly 
population.

Our study is affected by limitations. First, we analyzed the effect 
of digital contact tracing on COVID-19 incidence in the general 
population. Crucial information for public health authorities would 
be to quantify the effect in time of these measures on hospitaliza-
tions. This would require to couple our model for COVID-19 trans-
mission in the general population with a model describing disease 
severity and within-hospital patient trajectories (17,  21,  26). Sec-
ond, the model does not account for transmission in nursing homes. 
This setting is where most of the transmissions among elderly oc-
curred. At the same time, however, the response to the COVID-19 
epidemic in this setting relies mostly on routine screening of symp-
toms and frequent testing of residents, together with face masks and 
strict hygiene rules for visitors. Third, results may be conservative 
as clustering effects and large fluctuations in the number of contacts 
per person (56) are only partially captured by the model thanks to 
the repetition of contacts, but effects may be larger in real contact 

http://covidnet.fr
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patterns. This also includes crowding events playing an important 
role in the transmission dynamics (15). Overall behaviors obtained 
with our synthetic network of contacts are, however, compatible 
with findings obtained with real contact data (18). In a future work, 
the description of temporal and topological properties of contacts 
in workplaces, schools, and community could be improved by using 
modeling frameworks informed by detailed contact data, which have 
become available for specific settings (57–59). For this purpose, 
frameworks such as hidden variable models or other recent dynam-
ical models for social networks could be used (60–62). Fourth, other 
assumptions may be instead optimistic, regarding the probability of 
detection of index cases and compliance to isolation, for example. 
Few data are available to inform these parameters that may also vary 
over time (depending on the epidemic context and increased popu-
lation fatigue) and across countries (depending on cultural aspects 
and regulations in place). While we explored a range of parameter 
values, more detailed information will be needed to contextualize 
our approach to a specific epidemic situation in a given country.

MATERIALS AND METHODS
Synthetic population
The model simulates the population of Metropolitan France repre-
senting individual inhabitants. This approach is similar to studies 
done previously, e.g., for Italy (27) and for the United States (28). 
The French synthetic population is based on the National Institute 
of Statistics and Economic Studies (INSEE) censuses. Individuals were 
assigned to municipalities according to the administrative borders. 
The number of households and the age structure of their inhabi-
tants, sizes of schools and workplaces, and fluxes of commuters be-
tween municipalities also followed the distribution of these statistics 
found in the INSEE data. Population size was kept constant through 
a simulation as we aimed at simulating one season of the epidemic.

To generate the population, we defined several statistics derived 
from INSEE publicly available data:

1) The list of municipalities (“les communes de France”) of Met-
ropolitan France (2015) with each municipality described by its IN-
SEE code, population size, number of schools of six different levels 
(from kindergarten to university), number of workplaces in given 
size categories (0 to 9, 10 to 49, 50 to 99, 100 to 499, 500 to 999, and 
over 1000 employees) (Populations légales 2017, INSEE, www.insee.
fr/fr/statistiques/4265429?sommaire=4265511).

2) Statistics regarding the percentage of people in given age groups en-
rolled in each of six school levels, employed and unemployed (Bilan 
démographique 2010, INSEE, www.insee.fr/fr/statistiques/1280950).

3) The age pyramid for France as the population fractions of in-
dividuals of a given age (Bilan démographique 2010, INSEE, www.
insee.fr/fr/statistiques/1280950).

4) The number of people commuting to work between each pair 
of municipalities (Mobilités professionnelles en 2016: déplacements 
domicile - lieu de travail, INSEE, www.insee.fr/fr/statistiques/4171554).

5) The number of people commuting to school between each 
pair of municipalities (Mobilités scolaires en 2015: déplacements 
domicile - lieu d’études, INSEE, www.insee.fr/fr/statistiques/3566470).

6) The probability distributions of sizes of households in France 
(Couples  - Familles  - Ménages en 2010. INSEE, www.insee.fr/fr/
statistiques/2044286/?geo=COM-34150).

7) The probability of individuals belonging to a particular age 
class, given their role in the household: child of a couple, child of a 

single adult, adult in a couple without children, and adult in a cou-
ple with children (Couples - Familles - Ménages en 2010. INSEE, 
www.insee.fr/fr/statistiques/2044286/?geo=COM-34150).

With the above statistics, the synthetic population was generated 
in the following steps:

1) Initialization of all the municipalities with an appropriate 
number of schools of each type and workplaces of given sizes.

2) Creation of schools in each municipality according to given 
statistics.

3) Creation of workplaces in each municipality according to giv-
en statistics.

4) Definition of the commuter fluxes between municipalities.
Each municipality has a defined number of inhabitants, and in-

dividuals are created (one by one) until this number is reached. 
Each individual was assigned an age, a school, or a workplace (or is 
assigned to stay at home) according to probability distributions de-
rived from the data mentioned above.

The numbers of households within each municipality were not de-
fined explicitly but depended on the number of individuals. The munici-
pal population size and statistics regarding family demographics 
constrain the number of households. Additional details on the algo-
rithm for the population reconstruction are provided in the Supple-
mentary Materials.

Face-to-face contact network
The synthetic population encodes information on the school, work-
place, household, and community to which each individual belongs. 
We used this information to extract a dynamic network represent-
ing daily face-to-face contacts. We parametrized this network based 
on contacts’ statistics for the French population (33).

First, we generated a time aggregated network representing all 
contacts that can potentially occur; we will call this the acquain-
tance network, with some abuse of language because it includes also 
sporadic contacts. Second, to each contact, we assigned a daily rate 
of activation. Then, in the course of the simulation, we sampled 
contacts each day based on their rate.

The acquaintance network has five distinct layers representing 
contacts in household (layer H), workplace (layer W), school (layer 
S), community (layer C), and transports (layer T). The household 
layer is formed by a collection of complete networks linking indi-
viduals in the same household. The W, S, C, and T layers are formed 
by collections of Erdős-Rényi networks generated in each location i, 
with average degree i. A location can be a workplace (W layer), a 
school (S layer), and a municipality (C and T layers). i is extracted at 
random for each place and depends on the type and size of the location. 
In particular, when the size of a location is small, we assume that 
each individual enters in contact with all the others frequenting the 
same place. As the size increases, the number of contacts saturates.

Once the acquaintance network was built, a daily activation rate 
x was assigned to each link according to a cumulative distribu-
tion that depends on the layer s. For simplicity, we assumed this 
distribution to be the same for s = W, S, C, while we allowed it 
to be different in household (where contacts are more frequent) 
and in transports (where contacts are sporadic). Parameters were 
tuned on the basis of average daily number of contacts, propor-
tion of contacts by setting, and contact frequency as provided in 
(33) (Fig.  1,  C  and  D). Additional details on the network recon-
struction and parametrization are provided in the Supplementary 
Materials.

http://www.insee.fr/fr/statistiques/4265429?sommaire=4265511
http://www.insee.fr/fr/statistiques/4265429?sommaire=4265511
http://www.insee.fr/fr/statistiques/1280950
http://www.insee.fr/fr/statistiques/1280950
http://www.insee.fr/fr/statistiques/1280950
http://www.insee.fr/fr/statistiques/4171554
http://www.insee.fr/fr/statistiques/3566470
http://www.insee.fr/fr/statistiques/2044286/?geo=COM-34150
http://www.insee.fr/fr/statistiques/2044286/?geo=COM-34150
http://www.insee.fr/fr/statistiques/2044286/?geo=COM-34150
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Transmission model
We defined a minimal model of COVID-19 spread in the general 
population that accounts for two levels of symptoms: none to mild 
(subclinical cases, Isc), and moderate to severe (clinical cases, Ic). 
We assumed that clinical cases stay at home after developing symp-
toms. Susceptible individuals, if in contact with infectious ones, 
may get infected and enter the exposed compartment (E). After an 
average latency period ϵ−1, they become infectious, developing a sub-
clinical infection with probability   p sc  

A    and a clinical infection otherwise. 
From E, before entering in either Isc or Ic, individuals enter first a 
prodromal phase (either Ip, sc or Ip, c) that lasts, on average,    p  −1   days 
and where individuals do not show any sign of illness, despite being 
already infectious. Contact tracing, population screening, and modeling 
studies provide evidence that infectivity is related to the level of symp-
toms, with less severely hit individuals being also less infectious 
(11, 43). Therefore, we assumed that subclinical cases Ip, sc and Isc have 
a reduced transmissibility compared to Ip, c and Ic. This is modulat-
ed by the scaling factor I. We neglected hospitalization and death 
and assumed that with rate  infected individuals become recovered.

The impact of COVID-19 is heterogeneous across age groups (9–13). 
This may be driven by differences in susceptibility (9), differences 
in clinical manifestation (11, 13), or both (10). We considered here 
both effects in agreement with recent modeling estimates (10). Sus-
ceptibility by age, A, was parametrized from (9), while clinical man-
ifestation,   p sc  

A   , was parametrized from a large-scale descriptive study 
of the COVID19 outbreak in Italy (13).

Transition rates are summarized in Fig. 2B, and parameters and 
their values are listed in Table 1. The incubation period was esti-
mated to be around 5.2 days from an early analysis of 425 patients 
in Wuhan (34). COVID-19 transmission potential varies across set-
tings, populations, and social contexts (14–16). In particular, in-
door places were found to increase the odds of contagion 18.7 times 
compared to an open-air environment (16). In our model, we as-
sumed that all contacts at work, school, and transport occur indoor 
and have the same transmission risk (S). In the contact survey of 
Béraud et al. (33), 46% of contacts in the community were occur-
ring outdoors. Combining this information with the 18.7 indoor 
versus outdoor risk ratio leads to a 60% relative risk of community 
contacts with respect to workplace/school/transport contacts. Con-
tacts within households are generally associated to a higher risk 
with respect to other settings, because they last longer and there is a 
higher risk of environmental transmission. We assumed that the 
transmission risk associated with them is twice the one in workplace/
school/transport. For the basic reproductive ratio of COVID-19, we 
took R0 = 3.1 (1, 36). We also explored lower levels of transmission 
potential, i.e., reproductive ratios R down to 1.5, to effectively account 
for behavioral changes and adoption of barrier measures. Our defi-
nition of R does not integrate population immunity. We explicitly 
indicate the initial level of population immunity to disentangle the 
relative role of the two quantities.

Modeling contact tracing
Self-isolation and isolation of household contacts
Self-isolation and isolation of household contacts was modeled ac-
cording to following rules:

1) As an individual shows clinical symptoms, s/he is detected 
with probability pd, c (baseline value 50%, additional explored values 
30 and 80%). If detected, then case confirmation, isolation, and 
contacts’ isolation occur with rate rd, c = 0.9 upon symptom onset.

2) Subclinical individuals are also detected with probability pd, sc 
(baseline value 5%, additional explored values 25 and 45%) and rate 
rd, sc = 0.5.

3) The individual’s family members are isolated with probability 
pc, h = 0.9 (0.5 and 0.7 were also explored).

4) We assume that the contacts are tested and the follow-up 
guarantees that all individuals who got infected before isolation are 
detected. Thus, contacts who are negative (either susceptible or re-
covered at the time of isolation) terminate their isolation after 7 days. 
The index case and the positive contacts are isolated for 14 days. 
Contacts with no clinical symptoms have a daily probability pdrop = 0.02 
to drop out from isolation.

5) For both the case and the contacts, isolation is implemented 
by assuming no contacts outside the household and contacts within 
a household having an associated transmission risk (i.e., the weight 
H) reduced by a factor  = 0.5.
Digital contact tracing
We assumed that contact tracing is adopted in combination with 
self-isolation and isolation of household members. Therefore, we 
added the following rules to the ones outlined above:

At the beginning of the simulation, a smartphone is assigned to 
individuals with probability   p sm  A   , based on the statistics of smart-
phone penetration (0% for [0,11], 86% for [12,17], 98% for [18,24], 
95% for [25,39], 80% for [40,59], 62% for [60,69], and 44% for 
[70+] (29).

1) Each individual with a smartphone has a probability pa to 
download the app (we explored values between 0 and 0.9).

2) Only contacts occurring between individuals with a smart-
phone and the app are traced.

3) If the individual owns a smartphone and downloaded the app, 
then the contacts whom s/he has traced in the period since D = 7 
days before his/her detection are isolated with probability pc, a = 0.9 
(0.5 and 0.7 were also tested).

4) We assume that contacts are tested and the follow-up guaran-
tees that all individuals who got infected before isolation are detected. 
Thus, contacts who are negative (either susceptible or recovered at 
the time of isolation) terminate their isolation after 7 days. The index 
case and the positive contacts are isolated for 14 days. Contacts with 
no clinical symptoms have a daily probability pdrop = 0.02 to drop 
out from isolation.

5) For both the case and the contacts, isolation is implemented 
by assuming no contacts outside the household and contacts within 
a household having an associated transmission risk (i.e., the weight 
H) reduced by a factor  = 0.5.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/15/eabd8750/DC1
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