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Summary

Randomized trials are considered the gold standard for estimating causal effects. Trial findings are 

often used to inform policy and programming efforts, yet their results may not generalize well to a 

relevant target population due to potential differences in effect moderators between the trial and 

population. Statistical methods have been developed to improve generalizability by combining 

trials and population data, and weighting the trial to resemble the population on baseline 

covariates. Large-scale surveys in fields such as health and education with complex survey designs 

are a logical source for population data; however, there is currently no best practice for 

incorporating survey weights when generalizing trial findings to a complex survey. We propose 

and investigate ways to incorporate survey weights in this context. We examine the performance of 

our proposed estimator in simulations by comparing its performance to estimators that ignore the 

complex survey design. We then apply the methods to generalize findings from two trials - a 

lifestyle intervention for blood pressure reduction and a web-based intervention to treat substance 

use disorders - to their respective target populations using population data from complex surveys. 

The work highlights the importance in properly accounting for the complex survey design when 

generalizing trial findings to a population represented by a complex survey sample.
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1 INTRODUCTION

Randomized controlled trials (RCTs) are considered the gold standard for estimating the 

causal effect of a new treatment or intervention; however, they often suffer from poor 

external validity, or generalizability1,2. Evidence from RCTs is frequently used when 

formulating health policy and implementing new large-scale health programs, but poor 

generalizability may hinder policymakers’ abilities to make correct policy decisions for their 

populations. When feasible, trial designs that strategically sample from the target population 

of interest to improve representativeness have been shown to also improve upon the 

generalizability of RCTs3,4,5; however, particularly in medical trials, there are many barriers 

to doing so, such as time, money and location. Recruitment strategies for RCTs that do not 

consider the ultimate target population of interest may lead to non-representative trial 

samples. More formally, if the trial sample differs from the target population on 

characteristics that moderate treatment effect, then the average treatment effect in the trial 

sample (SATE) will not equal the average treatment effect in the target population (PATE)6.

Several classes of post-hoc statistical methods have been developed to address concerns of 

generalizability once a trial has already been completed. One broad strategy uses propensity 

score-type methods to weight the trial so that it better resembles the target population on 

baseline covariates7. Note that this is similar to using propensity score weighting to estimate 

the average treatment effect on the treated (ATT) in non-experimental studies, where instead 

of fitting a model of treatment selection, a model of sample membership (i.e. trial 

participation vs. not) is specified. A second approach involves modeling the outcome as a 

flexible function of the observed covariates in the trial, and then predicting outcomes under 

treatment conditions in the target population. This can be done using Bayesian Additive 

Regression Trees (BART)8,9 or Targeted Maximum Likelihood Estimation (TMLE)10. 

Lastly, doubly robust methods have been proposed, in which models are fit for both the 

outcome and the probability of sample membership11.

The implementation of these methods requires the identification of a dataset for the target 

population of interest, one that contains individual-level data on all relevant treatment effect 

modifiers in the trial. While data availability and quality make this challenging to do12, in 

practice, large nationally representative surveys collected by government agencies are often 

good sources of information on policy-relevant populations. For example, the National 

Health and Nutrition Examination Survey (NHANES) consists of a series of annual surveys 

that collect information on participants’ demographics, socioeconomic status, dietary 

behaviors and health outcomes, with supplemental laboratory tests and medical 

examinations13. NHANES is designed to be representative of the non-institutionalized 

civilian US population across all 50 states and Washington D.C., and may therefore be a 

promising source of population data for implementing generalizability methods.

While surveys like NHANES may provide a wealth of information on the target population 

of interest, the analytic datasets on their own are themselves not representative of the target 

population. These raw datasets are the result of complex survey sampling designs that 

systematically over-sample and under-sample certain demographic groups. Such designs 

may involve stratifying the target population (e.g., first by state, then by county or Census 
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tract) and then selecting primary sampling units (e.g., households, schools, individuals) by 

pre-specified rates, perhaps defined by demographic categories. Some surveys implement 

additional levels of stratification, for example, sampling counties first and then selecting 

individuals within the sampled counties. Selected participants in the final sample are then 

assigned sampling weights inversely proportional to their probability of being selected. 

Additional corrections for non-response and post-stratification are also often applied14. 

These sampling weights are typically included as a variable in the final analytic datasets, 

though note that not all variables used to construct the weights are always available for 

researchers to use. For example, sampling may occur at the zipcode level, but for 

confidentiality reasons, zipcode may be omitted from the final public-use dataset, while a 

correlated variable, such as state or region, may be included.

Given these complex survey design elements, any inferences made by weighting a trial to 

look like one of these survey raw datasets will generally not be accurate for the true target 

population, rather they will just reflect the survey sample’s demographics. In other words, 

when using NHANES as target population data without utilizing NHANES’ survey weights, 

one would be generalizing to the NHANES sample, not to the non-institutionalized civilian 

US population. While several studies have applied these generalizability methods using 

population data from complex surveys, no previous work has formalized an approach for 

properly incorporating survey weights when doing so.

Although the proper incorporation of complex survey design elements has not been not been 

addressed in the generalization context, there are some methodological similarities to be 

found in a limited, yet growing set of papers on using propensity score methods to estimate 

causal effects in non-experimental complex survey data. However, even in that context, there 

is no consensus on how to best use the survey weights when specifying a treatment 

assignment model, whether as weights or as covariates. Zanutto15 argues that survey weights 

do not need to be used in propensity score estimation when using matching methods, so long 

as the survey weights are used in modeling the outcome. Through simulation studies, 

DuGoff et al.16 show benefit in using the survey weights as predictors in the propensity 

score model, but not in using them to weight the propensity score model. Ridgeway et al.17 

provide theoretical justification for weighting the propensity score model using the survey 

weights, and then weighting the outcome model by the resulting propensity score weights 

multiplied by the survey weights. Lenis et al.18 observe no difference through simulation in 

how the survey weights are incorporated in the propensity score model, and Austin et al.19 

similarly report inconclusive findings on the optimal specification of the propensity score 

model. Overall, though, researchers tend to agree that ignoring survey weights altogether 

yields causal estimates that do not generalize to the target population in which a survey was 

conducted, and may produce invalid inferences when using propensity score methods. An 

important distinction to make is that here, we are not using the survey weights to estimate an 

effect within the survey itself, rather we are using the survey as a target population to 

generalize to. Other recent relevant work by Yang et al.20 demonstrates the benefit of a 

propensity score-type weighting approach when combining a non-probability sample with a 

companion probability sample to enhance population-level estimation. While their approach 

can be extended to our context by viewing RCTs as non-probability samples and surveys as 

population-level data, this work does not provide detailed methodological justification on the 
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proper use of the probability-sample’s survey weights.Other recent advances in the survey 

methodology literature have detailed similar approaches to drawing population inferences 

from non-probability samples, namely by estimating pseudo-weights21,22,23 or through 

developing model-based indices of selection bias in population proportion estimates due to 

non-probability sampling24. There are substantial similarities between the challenges that 

arise when drawing survey inferences or causal inferences in non-probability samples,25 and 

these learnings can be applied here as well when using survey samples as target population 

data to make trial generalizations.

Given this existing relevant literature, we hypothesize that it is crucial to incorporate the 

survey weights, which relate the survey sample back to the target population of interest, in 

order to correctly generalize RCT findings to the target population of interest. The rest of 

this paper is structured as follows: In Section 2, we formally evaluate the consequences of 

ignoring survey weights when generalizing RCT findings to a target population on which 

data are available from a complex survey. We then propose an approach to estimating the 

population average treatment effect while incorporating survey weights in Section 3. In 

Section 4, we examine our hypothesis by conducting a simulation study to investigate when 

the proposed approach improves our population-level inferences. We then apply the methods 

to two generalization examples where population data come from complex surveys in 

Section 5, and we conclude by summarizing the findings and discussing future work in 

Section 6.

2 TRANSPORTING TO A COMPLEX SURVEY POPULATION DATASET

2.1 Definitions and Assumptions

Suppose the goal of a randomized trial is to estimate the population average treatment effect 

(PATE), defined as E[Y (1) − Y (0)] where Y (a) is the potential outcome Y under treatment 

a (a = 1 denotes treatment and a = 0 denotes control). This expectation is defined across a 

well-defined target population of interest of size N. Let S denote sample membership, where 

S = 1 denotes trial membership, S = 2 denotes survey membership, and S = 0 denotes the 

individual is in the target population, but not the trial nor the survey sample (See Figure 1)1. 

Here, we assume no overlap between the trial and survey samples, which is plausible for 

policy-relevant scenarios where the target population is the entire US and the study sample 

sizes are comparatively small. Additionally, let A denote treatment assignment and let X 
denote a set of pre-treatment covariates.

Note that the population of interest is the union of all S levels; however, in practice, we often 

do not have any data on the full population, nor do we observe outcomes for each level of S. 

Suppose all we have are data from the trial itself (S = 1). If the RCT is a simple random 

sample of the target population, then we can unbiasedly estimate the PATE using the trial 

data alone. However, if the treatment effect in the trial is moderated by covariate X, and if 

the distribution of X differs between the trial and the target population, then the naive 

estimate in the trial will be a biased estimate of the PATE26.

In such cases, we can supplement the trial with survey data (S = 2) and transport the estimate 

of the trial to the survey to obtain an unbiased estimate of the PATE7. Note that this requires 
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the survey data to have all Xs related to sample selection and treatment effect heterogeneity 

fully observed, while treatment assignment and outcomes may be missing. Estimating the 

PATE by transporting the trial findings to a complex survey sample require making the 

following assumptions:

1A All members of the target population have nonzero probability of being selected into the 

trial

0 < P Si = 1 < 1 for i = 1, …, N

1B All members of the target population also have nonzero probability of being selected into 

the survey.

0 < P Si = 2 < 1 for i = 1, …, N

2A There are no unmeasured variables associated with treatment effect and trial sample 

selection.

2B There are also no unmeasured variables associated with treatment effect, trial sample 

selection and survey sample selection.

3 Treatment assignment in the trial is independent of trial sample selection and the potential 

outcomes given the pre-treatment covariates.

(Y (0), Y (1)) ⫫ A, S |X

4 The survey sample is a simple random sample of the target population (in other words, the 

survey is “self-weighting”)

P Si = 2|X = P Si = 2

These are all assumptions that the current standard methods for generalizability make, and 

the plausibility of assumptions 1A, 2A and 3 have been discussed and established in 

previous work on generalizability. For instance, Nguyen et al.27 address assumption 2A by 

developing sensitivity analysis methods for unobserved moderators, and this work can be 

extended to address assumption 2B as well.

When using population data that come from complex surveys, however, assumption 4 does 

not hold, thus motivating the work in this paper. In such cases, i.e. when using an already 

designed and collected survey sample as target population data, we replace assumption 4 

with a less restrictive assumption that the model specified to construct the survey sampling 

weights is correct. In other words, one must assume that all variables that were used to 

sample participants were appropriately accounted for in the resulting survey weights that 

appear in the analytic dataset. We now describe how biased the transported estimate will be 
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as an estimate of the PATE when assumption 4 is violated, and particularly, when the 

complex survey weights are ignored.

2.2 Consequence of ignoring survey weights in the PATE

Recall that the estimand of interest here is the PATE, defined as Δ = E[Y (1) − Y (0)]. This 

estimand can be expanded upon and expressed as:

Δ = E
1S = 1AY

e( ∅ )δ−1(X)
−

1S = 1(1 − A)Y
e( ∅ )δ−1(X)

where e(∅) = P (A = a) and δ(X) = P (S = 2|X)
P (S = 1|X) × 1

P (S = 2|X) . In other words, the PATE can be 

re-written in terms of the trial (S = 1) and the relationship between the trial sample and the 

target population (δ(X)). This extends upon a result from Cole Stuart6 by recognizing that

P (S = 2|X)
P (S = 1|X)

Transportability weights 

× 1
P (S = 2|X)
Survey weights 

= 1
P (S = 1|X) (1)

Furthermore, when P (S = 1|X) cannot be estimated directly, as is often the case since RCTs 

are not equipped with “trial selection weights,” it can be conveniently decomposed into two 

estimable quantities: the inverse odds of sample vs. survey membership (transportability 

weights) and the inverse probability of survey sampling (survey weights).

Note that survey weights are commonly included as variables in publicly available 

government complex surveys. While some researchers have, in practice, incorporated survey 

weights when transporting from a trial to a complex survey sample, none have provided 

methodological details on how exactly they were used, nor have they provided any 

justification for their use. Without such reasoning, it is plausible that some researchers may 

apply current generalization methods with complex survey population data while neglecting 

to incorporate the survey weights. Suppose we were to ignore the survey weights altogether. 

We can refer to this quantity as follows:

Δtransport = E[Y (1) − Y (0) |S = 2] = E
1S = 1AY

e( ∅ )v−1(X)
−

1S = 1(1 − A)Y
e( ∅ )v−1(X)

Note that Δtransport differs from Δ in that we substitute δ(X) for v(X) such that 

v(X) = P (S = 2|X)
P (S = 1|X) . Observe that

Δtransport = Δ × P (S = 2|X)

In other words, if survey weights are ignored, then the estimate of Δtransport will be biased as 

an estimate for Δ, the PATE, by a factor of P (S = 2|X), or the probability of being sampled 

for the survey given covariates X. Note that Δtransport will only be equal to Δ when P (S = 2|

X) = 1, or when the survey is either a simple random sample of the population, or it is the 

entire finite target population.

Ackerman et al. Page 6

Stat Med. Author manuscript; available in PMC 2022 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3 ESTIMATING THE PATE, Δ

We now discuss three different potential estimators to estimate Δ, the last of which will 

incorporate the complex survey weights. First, if we were to use the trial data alone (S = 1) 

to estimate Δ, we could use the following naive estimator:

Δnaive =
∑i1Si = 1AiYi
∑i1Si = 1Ai

−
∑i1Si = 1 1 − Ai Yi
∑i1Si = 1 1 − Ai

However, recall from Section 2 that Δnaive will be a biased estimate of the PATE if the 

treatment effect is moderated by a pre-treatment covariate and sample selection also depends 

on that covariate. To improve upon this, we can transport the estimate to the survey (S = 2) 

with the following inverse-odds of sample membership weighted estimator:

Δtransport =
∑i1Si = 1AiYivi
∑i1Si = 1Aivi

−
∑i1Si = 1 1 − Ai Yivi
∑i1Si = 1 1 − Ai vi

where vi = v Xi, β  and v(X, β) = P (S = 2|X)
P (S = 1|X) . Note that vi Xi, β  can be estimated 

parametrically by fitting a logistic regression model of sample membership (trial vs. survey) 

conditional on pre-treatment observables in a dataset in which the trial and survey data have 

been concatenated. While Δtransport may be unbiased for Δtransport
7, it will still be a biased 

estimate of the PATE, Δ, if the complex survey is not “self-weighting.” We therefore propose 

a modified version of this estimator, one that incorporates the complex survey weights 

relating the survey sample (S = 2) to the target population:

Δsvy.wtd  =
∑i1Si = 1AiYiδi
∑i1Si = 1Aiδi

−
∑i1Si = 1 1 − Ai Yiδi
∑i1Si = 1 1 − Ai δi

where δ i = δ Xi, β  and δ(X, β) = P (S = 2|X)
P (S = 1|X) × 1

P (S = 2|X) . Here δ i can be estimated 

parametrically by fitting a model for P (S = 2|X)
P (S = 1|X) , and multiplying the resulting estimated 

transportability weights by the survey weights. If all related covariates are observed and 

accounted for, then this estimator is unbiased for the PATE, directly following a result from 

Buchanan et al.28 by applying the equality in Equation 1. We will now present a simple 

example to compare each of these estimators when weighting a trial to a target population 

based on a single covariate.

3.1 Toy Example

In order to highlight the consequences of ignoring survey weights when estimating the 

PATE, consider the scenario in Table 1. Suppose that in the true target population of interest, 

50% of people are above the age of 40, while the other 50% are 40 or younger. Suppose data 

on the full target population are not available, but a survey is conducted among the target 

population members, where 200 individuals over the age of 40 and 300 individuals who are 
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40 or younger are sampled. In order for the survey to be representative of the target 

population according to dichotomous age, survey weights are constructed as the inverse 

probability of being sampled into the survey given age category. The older category 

individuals are given a weight of 5
2  while the younger category individuals are assigned a 

weight of 5
3 . In doing so, older survey participants receive greater weight than younger ones 

to reflect that older individuals are undersampled in the survey.

Next, suppose a randomized trial is conducted among a convenience sample from the 

population, and among the recruited participants, 2
3  of them are 40 years or older. 

Additionally, suppose that the treatment effect is truly moderated by age, where younger 

participants experience twice the average effect as older participants. Observe that while 

older members are undersampled in the survey, they are oversampled in the trial, and since 

age moderates treatment effect and differs between the trial and population, the RCT 

findings will not generalize well to this target population.

First, the true PATE can be calculated by averaging over the stratum-specific treatment 

effects in the target population:

Δ = ∑
x

E[Y (1) − Y (0) |X = x]P (X = x) = 2 × 0.5 + 4 × 0.5 = 3

Next, the naive trial estimator for the PATE can be estimated as follows:

Δnaive = ∑
x

E[Y (1) − Y (0) |X = x]P (X = x |S = 1) = 2 × 2
3 + 4 × 1

3 = 2.67

As expected, the naive estimate is an underestimate of the PATE because the trial 

oversampled older participants, while the treatment has a stronger effect for younger 

participants. If we apply the standard transportability weighting methods using the survey as 

the target population dataset, and if we ignore the survey weights, we would weight trial 

members by the inverse odds of trial participation conditional on their age category. Older 

trial participants would be given a weight of 200
100 = 2, and younger trial participants would be 

given a weight of 300
50 = 6. We would therefore estimate the transported estimate as follows:

Δtransport =
∑xE[Y (1) − Y (0) |X = x]P (X = x |S = 1)P (S = 2|X = x)

P (S = 1|X = x)
∑xP (X = x |S = 1)P (S = 2|X = x)

P (S = 1|X = x)

=
2 × 2

3 × 2 + 4 × 1
3 × 6

2
3 × 2 + 1

3 × 6
= 3.2

As a result, the estimate is unbiased for the ATE in the survey; however, it is still biased as 

an estimate of the PATE. Our inferences here reflect that older participants are oversampled 
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in the survey, and so in this case we are overestimating the true PATE. Finally, if we utilize 

the survey weights by multiplying the inverse odds transportability weights by the inverse 

probability of survey selection, we would obtain weights of 200
100 × 500

200 = 5 and 300
50 × 500

300 = 10

for the older and younger trial participants, respectively, thereby accurately weighting them 

to the target population age distribution. We would estimate the PATE using this approach as 

follows:

Δsvy.wtd =
∑xE[Y (1) − Y (0) |X = x]P (X = x |S = 1)P (S = 2|X = x)

P (S = 1|X = x)
1

P (S = 2|X = x)
∑xP (X = x |S = 1)P (S = 2|X = x)

P (S = 1|X = x)
1

P (S = 2|X = x)

=
2 × 2

3 × 5 + 4 × 1
3 × 10

2
3 × 5 + 1

3 × 10
= 3

Observe that our estimate of the PATE is now unbiased, as we are accounting for the fact 

that our survey is not “self-weighting” and the survey weights must therefore be used to 

make inferences relevant to the true target population of interest.

3.2 Estimating Δsvy.wtd with a weighted sample membership model

When accounting for a small set of covariates, such as in the example above, one can 

directly construct and multiply the transportability weights by the survey weights. When 

using a survey equipped with pre-estimated survey weights, though, this is not plausible. We 

therefore propose a two-stage weighting approach, where we first weight the sample 

membership model using the survey weights before constructing the inverse odds 

transportability weights. This is equivalent to the multiplication of weights in the simple 

approach above, because by weighting survey participants in the sample membership model, 

we are recognizing that each participant represents a particular number of individuals in the 

true target population. For example, if a survey participant has a probability of survey 

selection of 0.02, the corresponding weight of 1
0.02 = 50 suggests that the individual should 

count for 50 people in the population when estimating population effects with the survey. 

Weighting the survey participants in the sample membership model allows us to therefore 

compare the trial demographics to the target population, and not to the survey sample.

The first step entails fitting a weighted logistic regression model of sample membership 

using a pseudo-likelihood approach29, where trial participants are assigned a weight of 1 

while survey participants are assigned weights equal to their inverse probability of survey 

selection. Again, these weights are typically included in complex survey datasets and are 

meant to be used in analyses to relate the survey back to the target population of interest. 

The second step entails using the predicted probabilities from the sample membership 

model, e i to construct the inverse odds weights δ i  that are used to estimate Δsvy.wtd, where 

trial participants are assigned a weight of 
1 − ei

ei
 and survey participants are assigned a weight 

of 0. It is important to note that, in theory, this approach will yield an unbiased estimate of Δ 

only when we account for all covariates that impact treatment effect heterogeneity and 
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sample selection. However, it may be the case that certain variables used to construct the 

survey weights may not be available in the trial data, or even in the survey dataset itself. In 

other words, if a moderator is accounted for in the survey weights, but cannot be directly 

accounted for in the transportability weights as well, the PATE estimate may still be biased.

3.3 Variance Estimation

When using a complex survey sample as target population data for trial generalizations, 

questions also arise regarding appropriate variance estimation for our PATE estimator. The 

first option would be to treat the transport weights as fixed, known quantities when fitting 

the sample membership model, and to use a standard Horvitz-Thompson-type sandwich 

variance estimator with the resulting transport weights. However, it is important to consider 

that these weights are estimated and not known. Buchanan et al.28 derive a variance 

estimator that accounts for this, handling uncertainty from fitting the sample membership 

model. Still, with both approaches, there is an additional complication related to the 

complex survey weights. Typically, the complex survey weights accompanying a survey 

dataset are also estimated, using a combination of pre-specified sampling proportions, post-

stratification, and adjustments for non-response. It is plausible that this introduces another 

source of uncertainty that may not be captured by the two variance estimators mentioned. 

We therefore propose using a stratified double bootstrap to estimate the variance, where both 

the trial and the survey are resampled with replacement prior to fitting the survey 

membership model. We define strata for survey re-sampling by survey probability deciles, 

and adjust the survey weights in each bootstrap sample according to Valliant et al.14 (see 

Appendix for details). We will now describe a simulation study to compare our two-stage 

weighting approach to the standard transported estimator and the naive trial sample 

estimator, as well as to compare the three variance estimation approaches when 

implementing two-stage transport weighting.

4 SIMULATION

We conducted a simulation study to assess the performance of the two-stage weighting 

approach described in the Section 3. We first simulated a finite population of size N = 

1000000 with six covariates using the multivariate Normal distribution with mean vector 0, 

and a variance-covariance matrix where each variable had variance 1, and pair-wise 

correlation (i.e. X1 and X2, X3 and X4, X5 and X6) of ρ. We paired the covariates in this way 

and varied ρ to look at scenarios where a covariate related to the sample selection 

mechanisms was not available in the analytic datasets, but a variable correlated with the 

missing covariate was available for use in its place. For example, survey participants may be 

sampled proportional to their zipcode, but the survey dataset might only include state as a 

geographic indicator for privacy purposes.

We then assigned probabilities of survey selection and trial selection to everyone in the 

population according to the following two models:

P Si = 1 = expit γ1 X1i + X2i + 2X3i + 0X4i + X5i + 0X6i
P Si = 2 = expit γ2 2X1i + 0X2i + X3i + X4i + X5i + 0X6i
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We used scaling parameters γ1 and γ2 to control the magnitude of difference between the 

two samples and the population, while fixing the relative impacts of each covariate for each 

model. As the scaling parameters increase, the samples differ more greatly from the target 

population. The coefficients for the covariates were set to different values in each model to 

ensure that the sampling mechanisms for the trial and the survey differed from one another. 

Next, we generated potential outcomes for the entire population as Y (0) ~ N (0, 1) and 

Y (1) N 2 + γ3 ∑i = 1
6 Xi , 1 , such that the PATE = 2, and the γ3 scaling parameter controlled 

the amount of treatment effect heterogeneity due to the covariates. Note that when γ3 = 0 

(no treatment effect heterogeneity), all of the PATE estimates should be unbiased.

In each simulation run, we then randomly sampled approximately 600 trial participants and 

approximately 4000 survey participants according to each individual’s respective selection 

probabilities. In order to do this, we scaled each individual’s originally generated P (Si = 1) 

by 0.0006 and their P (Si = 2) by 0.004, and estimated their probability of not being selected 

into either study as P (Si = 0) = 1 − P (Si = 1) − P (Si = 2). This type of scaling combined the 

specified selection models with the desired sampling proportions from the population, and 

allowed us to then randomly generate an S of 0, 1 or 2 for each individual using a 

multinomial distribution. In other words, the parameters γ1 and γ2 were used to specify the 

relative importance of the covariates in each of the sample selection mechanisms, and the 

constant scaling of 0.0006 and 0.004 were used to specify the desired sample sizes (See 

Figure B3 for the distributions of the simulated sample sizes). For the survey participants (S 
= 2), we retained their P (Si = 2) as their known survey sampling probabilities to construct 

survey weights. For the trial participants, we generated a randomized binary treatment 

variable A, as well as the observed outcome Y = A × Y (1) + (1 − A) × Y (0).

Once the trial and survey data were simulated, we estimated the PATE in the following three 

ways: 1) Naive trial estimator Δnaive  , 2) transported estimator (trial-to-survey) while 

ignoring the survey weights Δtransport  and 3) transported estimator (trial-to-survey) using 

the survey weights to fit a weighted sample membership model Δsvy.wtd . For the two 

transportability estimators, we predicted the probabilities of sample membership by fitting 

models with logistic regression, generalized boosted models (GBM) and the Super Learner. 

GBM is a flexible, iterative algorithm that has been demonstrated to perform well when used 

to estimate propensity scores in non-experimental studies, capturing nonlinear relationships 

between covariates and treatment assignment30. The Super Learner fits a series of models 

based on a user-specified library of methods, combining the resulting estimates such that the 

overall performance is no worse than the performance of the best individual method31. We 

considered two Super Learner libraries32,33, and fit each of the estimators described above 

using the ‘WeightIt’ package in R34,35.

Lastly, in order to investigate scenarios where variables used to construct survey weights are 

omitted from the survey dataset, we fit the sample membership model by using all of the 

covariates, by omitting X1, and by omitting X1, X3 and X5. To evaluate the performance of 

each method, we calculated the bias and the empirical 95% coverage of each estimator, 

using PATE = 2 as the truth. Standard error estimates were obtained by using a robust 

sandwich variance estimator from the ‘survey’ R package36, which assumes the transport 
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weights are known. For comparison, we also estimated the standard error using the derived 

variance estimator from Buchanan et al.28 that accounts for when the transport weights are 

unknown (Results not shown, as they were quite similar between the two estimators under 

all scenarios). For a subset of simulation scenarios, we also calculated coverage using the 

stratified double bootstrapping approach. The results presented in the next section are 

averaged over 1000 simulation runs, and are stable to the 2nd decimal place across different 

seeds.

4.1 Simulation Results

We now present the findings of the simulation study. Given the number of parameters to 

vary, we present figures where ρ = 0.3 (pairwise X correlation) and γ3 = 0.3 (treatment 

effect heterogeneity). Note though that as expected, when γ3 = 0, all estimators were 

unbiased for the PATE across all scenarios.

When ρ = 0.3 and γ3 = 0.3, Figure 2 shows the bias of the three PATE estimators across 

simulation scenarios. Each column signifies a different setting regarding which variables are 

omitted from the sample membership model: on the left, all variables are included, and on 

the far right, X1, X3 and X5 are all missing from the analytic datasets, but they were used to 

calculate the survey weights in the survey. Within each plot, the x-axis depicts the absolute 

standardized mean difference (ASMD) of the predicted probability of survey sampling 

between the survey sample and the target population (see Figure B2 for the relationship 

between γ2 and ASMD). In other words, moving from left to right along the x-axis, the 

survey sample becomes increasingly different from the target population on baseline 

covariates. The top row depicts when γ1 = 0, or when the trial is a simple random sample 

from the target population. Notice that the naive estimate is unbiased, as is the transported 

estimate that uses the survey weights. However, when the ATE is transported from a 

representative trial to a non-representative survey and the survey weights are not used, the 

transported ATE estimate becomes increasingly biased as the survey becomes less 

representative of the population. This suggests that if findings from a trial are already 

generalizable, yet researchers implement transportability weighting methods without survey 

weights to a complex survey that is not representative of the target population, then they may 

actually obtain a more biased PATE estimate than had they not transported at all.

As the trial differs more greatly from the target population (moving down the rows, γ1 = 0.3 

to γ1 = 0.9), the naive trial estimate becomes increasingly biased as expected. When the 

survey is slightly different from the target population of interest, the transported estimate 

that ignores survey weights is less biased then the naive estimate. However, once the survey 

differs enough from the target population, ignoring the survey weights when transporting 

yields similar bias to the naive estimator, and in some cases, even greater bias. On the other 

hand, the transported estimate that uses the survey weights to fit a weighted sample 

membership model is uniformly less biased than the other estimators across all scenarios. In 

other words, it seems as though using the survey weights in the sample membership model 

can help prevent any additional bias introduced from the survey not being a simple random 

sample from the population.
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Between the different methods used to fit the trial membership model, there is little to no 

difference in terms of PATE bias for Δsvy.wtd, except for when the trial differs greatly from 

the target population. In such cases, predicting the probability of trial membership using 

GBM appears to yield the least biased ATE estimates, with notable differences in 

performance between the two SuperLearner libraries considered. It is also worth observing 

that when the trial is substantially different from the target population of interest (i.e. γ1 = 

0.9), even the best-performing method is still slightly biased. This represents a rather 

extreme scenario where there is likely a lack of common support. One should therefore 

consider if it is truly appropriate in this case to generalize findings from the trial to that 

particular target population.

Next, observe that the transported estimators perform best when the selection model is fit 

using all covariates used to calculate the survey weights. However, when one of the variables 

influencing survey selection (i.e. X1) is not available in the survey dataset, the bias of the 

transported estimators increases, and continues to increase as fewer variables impacting 

survey selection are included in the analytic dataset. However, as the pairwise correlation of 

the missing and non-missing covariates increases, the bias decreases. In other words, and not 

surprisingly, if X1 is unavailable to use in the sample membership model, but X2 is available, 

the more X2 and X1 are correlated, the less it matters that X1 is missing in terms of bias.

Figure 3 shows the empirical 95% coverage of the three estimators across simulation 

scenarios. Note that a standard sandwich variance estimator was used for all weighting 

approaches here, and results were fairly similar when using the double bootstrap approach as 

well (see Appendix for results). Across the top row, where the trial is representative of the 

target population, the coverage of the naive estimator is around 95%, as expected (as is the 

coverage of the transported estimator using the survey weights). However, the coverage of 

the transported estimator that ignores the survey weights rapidly decreases as the survey 

becomes less representative of the population. Note that this corresponds to when the bias of 

the transported estimator without survey weights increases as well. As the trial becomes 

more different from the population, the empirical coverage of the naive estimator drops to 

zero. The transported estimator that incorporates the survey weights maintains much better 

coverage than the estimator that ignores the survey weights as the survey becomes less 

representative of the population. Also, when the trial differs substantially from the target 

population, the Δsvy.wtd  estimate using GBM to fit the trial membership model results in the 

best coverage of the Δsvy.wtd estimates. The variability in the performance of Δsvy.wtd using 

the two Super Learner libraries is also notable, highlighting the method’s sensitivity to 

library choice. Lastly, note that the transported estimator performs best when all variables 

included in the survey selection model are available in the survey dataset, and the empirical 

coverage declines as fewer of those variables become available for use in the sample 

membership transportability model (as ρ increases, the empirical coverage improves slightly 

across scenarios as well).
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5 DATA EXAMPLES

We now present two applications of these methods to generalizing trial findings to well-

defined target populations. First, we generalize findings from PREMIER, a lifestyle 

intervention trial for reducing blood pressure, to the National Health and Nutrition 

Examination Survey (NHANES). Next, we generalize results from CTN-0044, a trial 

examining the use of a web-based intervention for substance use disorder (SUD) treatment, 

to the National Survey on Drug Use and Health (NSDUH). In both examples, data on the 

respective target populations come from publicly available government surveys with 

complex survey sampling designs, where each participant is assigned a survey weight 

indicative of the number of individuals they represent in the target population. For each 

example, we illustrate the importance of utilizing the survey weights when comparing 

covariate distributions between the trial and survey, and demonstrate how the use of the 

survey weights affects PATE estimation. Given the simulation findings, we fit the sample 

membership model using GBM in both examples.

5.1 Lifestyle Intervention Trial for Blood Pressure Reduction

PREMIER was a multi-center randomized trial in which 810 participants were randomized 

to either one of two behavioral interventions, comprised of a mix of diet and exercise 

recommendations, or to standard care. The primary goal of the trial was to study the effect of 

these lifestyle interventions on blood pressure reduction. The original report on the trial 

found evidence supporting the interventions’ effectiveness on blood pressure reduction, and 

concluded that “results from PREMIER should influence policy pertaining to 

implementation of lifestyle modification in the contemporary management of patients with 

above-optimal blood pressure through stage 1 hypertension”37. For illustrative purposes, we 

combine the two intervention arms into a single “lifestyle intervention treatment” group, and 

select our outcome of interest as change in systolic blood pressure (SBP) between baseline 

and 6-month study followup.

We will now further investigate how these findings generalize to a potentially policy-relevant 

target population. To do so, we use population data from NHANES, a national survey 

funded by the Centers for Disease Control and Prevention (CDC) with extensive measures 

on participants’ dietary behaviors and health outcomes. Using a complex and multistage 

probability-based sampling design, NHANES participants are carefully sampled according 

to sex, age, race, ethnicity and income, resulting in a sample that is representative of the 

entire non-institutionalized civilian US population38. To define the target population of 

interest, we subset the NHANES sample to individuals who are 25 years of age or older with 

BMI between 18.5 and 40 (due to PREMIER inclusion criteria). To better determine how 

PREMIER findings may impact a population of adults with “above-optimal blood pressure,” 

we further limit the NHANES sample to individuals with either SBP greater than or equal to 

120 or diastolic blood pressure (DBP) greater or equal to 80. This results in a sample size of 

2180 representing a population of over 85 million US adults.

Figure 4A shows the covariate distributions in the trial and survey samples, as well as in the 

weighted survey sample (indicating the target population of interest). Observe that while 

some variables, such as sex and BMI, are distributed quite similarly between the unweighted 
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and weighted NHANES samples, other variables, such as race, age and education, differ a 

fair amount between the two. These differences show the NHANES survey sampling 

methodology, and how the true population characteristics may differ from the raw analytic 

sample. If we generalize to the NHANES survey sample (i.e. fit the transportability 

estimator ignoring the survey sampling weights), we would be generalizing to a population 

that is younger, less educated, and more racially diverse than our true target population of 

interest. Figure 4B shows the covariate balance between the trial and target population 

before and after transport weighting. Note that weighting the trial to resemble either the 

NHANES sample or the target population results in better covariate balance; however, only 

the latter is truly relevant to our interests.

The effect of the lifestyle intervention on change in SBP is shown in Figure 5, with the naive 

trial estimate on the left, the transported estimate in the middle, and the transported estimate 

using survey weights on the right. The naive trial estimate of −4.66 and 95% confidence 

interval of (−6.10, −3.23) indicate a positive effect of the lifestyle intervention 

recommendations in lowering systolic blood pressure among study participants, as originally 

reported in the trial findings. In this example, there are no substantial differences between 

the naive estimates and the transported estimates, nor between the two transported estimates 

(ignoring vs. incorporating the survey weights). Note, though, that both weighted estimators 

have larger standard errors. Given the consistent estimates, these generalized findings 

provide further evidence to support the original trial’s claims, that PREMIER’s results 

should be used to influence blood pressure management policies related to persons with 

above-optimal blood pressure in the United States.

5.2 Web-Based Intervention for Treating Substance Use Disorders

We now turn to our second illustrative example using a trial from the Clinical Trials 

Network (CTN), a publicly available data repository for substance use-related RCTs funded 

by the National Institute of Drug Abuse (NIDA). The trial of interest, CTN-0044, evaluated 

the effectiveness of Therapeutic Education System (TES), a web-based behavioral 

intervention including motivational incentives, as a supplement to SUD treatment. A total of 

507 individuals in treatment for SUDs were randomized to either treatment as usual or 

treatment plus TES, and the reported trial results suggested that TES successfully reduced 

treatment dropout and improved upon abstinence39. Our outcome of interest is a binary 

indicator of drug and alcohol abstinence in the last week of the study.

We generalize these findings from CTN-0044 to a population of US adults seeking treatment 

for substance use disorders using NSDUH, a survey on drug use in the United States. In its 

sampling design, NSDUH systematically over-samples adults over the age of 26 in order to 

better estimate drug use and mental health issues in the US. This suggests that the raw 

NSDUH survey sample is likely not reflective of the target population on key demographics. 

We subset the NSDUH sample to individuals over the age of 18 who have reported any illicit 

drug use in the past 30 days in order to best reflect our target population of interest. The 

resulting NSDUH sample has 5645 participants representing a target population of around 

20 million people.
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The distribution of covariates across the trial and survey samples are shown in Figure 6A. 

Note that, pre-transport-weighting, there are substantial differences between the trial and raw 

survey samples with respect to age, though when the survey sample is weighted to the target 

population using the survey weights, these age differences decrease. Other variables like 

race, education and prior substance use treatment are actually more different between the 

trial and target population than they are between the trial and unweighted NSDUH sample. 

This further highlights the importance of incorporating the survey weights in order to make 

inferences on the true target population of interest when transporting. Figure 6B shows the 

covariate balance between the trial sample and (survey-weighted) target population before 

and after weighting. Points in green show covariate balance when the trial is weighted to the 

raw survey sample, while points in purple show covariate balance when the trial is weighted 

to the target population (the survey-weighted survey sample). Overall, both weighting 

methods yield better balance (and therefore better resemblance) between the trial and the 

population, though it should be noted again that only the points in purple reflect when the 

trial is weighted to resemble the true target population (i.e. the survey weights are used in 

the sample membership model).

Figure 7 depicts the three PATE estimates, or the risk difference of substance abstinence. As 

reported in the original trial, the naive estimate is statistically significant, with a risk 

difference of 0.10 and 95% confidence interval of (0.01, 0.20), suggesting that TES was 

effective in increasing substance abstinence in the trial. However, when this estimate is 

transported to the NSDUH sample (middle, green), this point estimate drops to around −0.07 

and the confidence interval width increases (−0.35, 0.20). While the lower and negative risk 

difference may suggest qualitative differences in TES’ effectiveness, the transported estimate 

indicates no significant difference in abstinence rates between the two treatment arms in the 

NSDUH sample. When the survey weights are included in the sample membership model, 

and the estimate therefore generalized to the target population of interest, the wide 

confidence interval of (−0.03, 0.33) indicates a similar not-significant conclusion, though the 

point estimate of 0.15 more closely mirrors what was estimated in the original trial. This 

example highlights that if the survey weights are left out when making generalizations, 

different qualitative conclusions may be reached.

6 CONCLUSION

Existing methods for improving RCT generalizability with propensity score-type weights 

make an implicit assumption about the population data: that they are either 1) a simple 

random sample drawn from the true target population, or 2) the complete finite target 

population. When transporting trial findings to a population dataset that come from a 

complex survey, this assumption no longer holds. Our work demonstrates that it is crucial to 

incorporate the survey weights from the complex survey population data in order to obtain 

the best estimate of the PATE with these methods. Omitting the survey weights can be 

thought of as generalizing to an entirely different population, one that has the demographics 

of the survey sample rather than the target population of interest. While the demographic 

differences between a survey sample and its intended target population may not be that large 

for some analytic survey datasets, it can be particularly noticeable for others where great 

amounts of over- or under-sampling of certain groups are implemented.
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Our work has shown that fitting a sample membership model weighted by survey weights 

can only improve upon our ability to draw population-level inferences from RCTs, and that 

failing to do so (i.e. using standard transportability weights alone) may actually result in 

more biased estimates. Given that complex survey data often come ready for use with a 

variable containing the necessary survey weights, implementing this approach does not 

require specifying any additional models other than those needed for the standard 

transportability weighting methods. Still, there are still a few limitations to this work. First, 

as noted earlier in this paper, we can obtain an unbiased estimate the PATE when we assume 

that all covariates impacting survey selection, trial selection, and treatment effect 

heterogeneity are fully observed and accounted for in both datasets. In practice, certain 

variables used to construct the survey weights may not be publicly available at the 

individual-level in the survey sample. While we demonstrated the performance of these 

methods when we use a correlated proxy for one such variable, it is also conceivable that 

certain key covariates may be unobserved in one or both datasets completely. Further 

research is needed to extend upon sensitivity analyses for partially and fully unobserved 

treatment effect modifiers, particularly when the population data come from a complex 

survey. Second, while we explored the benefit of double-bootstrapping methods for variance 

estimation, there may be additional concerns over uncertainty introduced by using a small 

survey sample that represents a huge target population. Additional research is warranted to 

assess the impact of the proportion of population sampled on estimate variability. 

Subsequent studies should also consider cases when a nontrivial fraction of the population 

survey is also recruited for the trial of interest, and assess any impacts on both PATE and 

variance estimation. Third, our simulation design was limited by our ability to specify 

models for the trial and survey sampling models, but not the trial-to-survey transportability 

model. In other words, while we directly varied how similar or different the two samples 

were compared to the target population, we were unable to simultaneously specify the exact 

relationship between the two samples. Therefore, we did not have a true reference point for 

the model specification of the transportability model. Future simulation studies in this space 

should attempt to control for this as well, so as to examine the method performance under a 

broader range of true transportability models. Finally, the propensity score-type weighting 

method explored in this paper is only one post-hoc statistical approach for estimating 

population effects from RCTs. Outcome-model-based approaches have also been shown 

beneficial, where a model is fit using trial data, and predictions are generated under 

treatment and control conditions in the target population data. Future work should build 

upon such methods when using complex survey population data as well. Nevertheless, our 

two-stage weighting method will ultimately allow researchers to draw more accurate 

inferences from trials to be used in policy formation and population-level decision making.
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APPENDIX A

A DERIVATION OF POPULATION ESTIMAND E[Y(A)] FOR SINGLE BINARY 

X

E[Y (a)] = ∑
x

E[Y (a) |X = x]P (X = x) Total expectation

= ∑
x

E[Y (a) |X = x, S = 1]P (X = x) S ⫫ Y (a) |X

= ∑
x

E[Y (a) |A = a, X = x, S = 1]P (X = x) A ⫫ Y (a) |X, S = 1

= ∑
x

E[Y |A = a, X = x, S = 1]P (X = x) Consistency

= ∑
x

E[Y |A = a, X = x, S = 1]P (X = x |S = 1) × P (S = 1)
P (S = 1|X = x) Bayes thm

E[Y (a)] = ∑
x

E[Y |A = a, X = x, S = 1]P (X = x |S = 1) × P (S = 2|X = x)P (S = 1)
P (S = 1|X = x)P (S = 2) × P (S = 2)

P (S = 2|X = x) multiplying by 1

B DOUBLE BOOTSTRAP

In order to account for uncertainty in the survey when using it for generalizations, we 

propose using a double-bootstrapping approach to estimate the variability of the PATE 

estimates. Similarly to how a bootstrap involves sampling with replacement many times and 

looking at the distribution of estimates across bootstrap runs, we sample both the trial and 
the survey with replacement in each bootstrap run. Within each bootstrap iteration, we re-

sample the trial with replacement (sample size equal to that of the trial). We also re-sample 

the survey using a stratified approach described by Valliant et al.14. We define survey strata 

by deciles of the survey weights. For stratum h with sample size nh, we sample with 

replacement mh = nh − 1 subjects. We adjust the survey weight dk of subject k to equal

dk* = dk
nℎ

nℎ − 1mℎi*

where mℎi*  is the number of times subject k is sampled for that given bootstrap run. 

Therefore, if the subject is selected once, their new weight is equal to dk
nℎ

nℎ − 1 . If they are 

selected twice, their new weight is equal to dk
2nℎ

nℎ − 1 , and so forth. Figure B1 compares the 

empirical 95% coverage of the transported estimators using this double bootstrap approach 

on a subset of the simulation scenarios to the standard sandwich variance estimator used for 

Figure 3. Note that the results across the different approaches are quite similar, though the 

double bootstrap yields slightly better coverage when the trial differs more from the target 

population (bottom row).
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FIGURE B1. 
Empirical coverage of the transportability estimators using the double bootstrap approach to 

estimate the variance.
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FIGURE B2. 
Relationship between γ2, the scaling parameter for survey selection, and the ASMD of 

survey selection probabilities between the survey sample and the target population.

FIGURE B3. 
Distributions of the simulated sample sizes for the trial and survey samples across the 1000 

simulation runs.
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FIGURE 1. 
Scenario of how data sources relate to each other and to the target population. The entire 

grey region denotes the target population, S = 1 denotes the RCT, S = 2 denotes the complex 

survey sample, and S = 0 denotes members of the target population not sampled into either 

study. Only individuals with S = 1 or S = 2 are observed, while data on individuals with S = 

0 are assumed unavailable. This three-level “S” variable also assumes no overlap between 

trial and survey participants. This is a plausible assumption to make for policy-relevant 

scenarios, where the target population may be the entire US, and the study sample sizes are 

on the magnitudes of a few thousand.
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FIGURE 2. 
Bias of estimating the PATE by weighting method. Each column represents a different 

scenario of missing a variable used to calculate survey weights in the analytic survey dataset. 

From top to bottom row, the γ1 “scale” parameter for how much the trial differs from the 

population by the Xs increases. The different colors represent the different weighting 

approaches: Naive trial estimate (blue), transported estimate ignoring the survey weights 

(green), and transported estimate using the survey weights (purple). This figure appears in 

color in the electronic version of this article.
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FIGURE 3. 
Empirical 95% coverage of the PATE estimates by weighting method. Each column 

represents a different scenario of missing a variable used to calculate survey weights in the 

analytic survey dataset. From top to bottom row, the γ1 “scale” parameter for how much the 

trial differs from the population by the Xs increases. The different colors represent the 

different weighting approaches: Naive trial estimate (blue), transported estimate ignoring the 

survey weights (green), and transported estimate using the survey weights (purple). This 

figure appears in color in the electronic version of this article.
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FIGURE 4. 
A) Covariate Distributions in PREMIER (trial) and NHANES (survey sample), along with 

the weighted NHANES sample (target population). B) Absolute standardized mean 

difference (ASMD) of covariates between the trial and target population. Points in blue 

reflect covariate differences between the raw trial sample and the weighted survey sample 

(i.e. the target population demographics). Points in green show the differences between the 

transport-weighted trial and survey sample. Points in purple show the differences between 

the transport-weighted trial and population (where the trial is weighted to be more similar to 

the target population).
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FIGURE 5. 
Blood pressure reduction PATE estimates by transportability method. Points in blue reflect 

the naive PATE estimate, points in green show the transported PATE estimate ignoring 

survey weights. Points in purple show the survey-weighted transportability estimate.
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FIGURE 6. 
A) Covariate Distributions in CTN-0044 (trial) and NSDUH (survey sample), along with the 

weighted NSDUH sample (target population). B) Absolute standardized mean difference 

(ASMD) of covariates between the trial and target population. Points in blue reflect 

covariate differences between the raw trial sample and the weighted survey sample (i.e. the 

target population demographics). Points in green show the differences between the transport-

weighted trial and survey sample. Points in purple show the differences between the 

transport-weighted trial and population (where the trial is weighted to be more similar to the 

target population).
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FIGURE 7. 
Substance abstinence PATE estimates by transportability method. Points in blue reflect the 

naive PATE estimate, points in green show the transported PATE estimate ignoring survey 

weights. Points in purple show the survey-weighted transportability estimate.
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TABLE 1

Toy example of a population (not observed), a survey sampled from the population with weights to reflect the 

population demographics distribution, and a trial sampled from the population (by convenience sampling)

E[Y (1) − Y (0)|X] Target pop Survey RCT

age > 40 2 500 200 100

age ≤ 40 4 500 300 50

Stat Med. Author manuscript; available in PMC 2022 February 28.
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