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Background. Pulse rate variability monitoring and atrial fibrillation detection algorithms have been widely used in wearable devices,
but the accuracies of these algorithms are restricted by the signal quality of pulse wave. Time synchronous averaging is a powerful
noise reduction method for periodic and approximately periodic signals. It is usually used to extract single-period pulse waveforms,
but has nothing to do with pulse rate variability monitoring and atrial fibrillation detection traditionally. If this method is improved
properly, it may provide a new way to measure pulse rate variability and to detect atrial fibrillation, which may have some potential
advantages under the condition of poor signal quality. Objective. The objective of this paper was to develop a new measure of pulse
rate variability by improving existing time synchronous averaging and to detect atrial fibrillation by the new measure of pulse rate
variability. Methods. During time synchronous averaging, two adjacent periods were regarded as the basic unit to calculate the
average signal, and the difference between waveforms of the two adjacent periods was the new measure of pulse rate variability.
3 types of distance measures (Euclidean distance, Manhattan distance, and cosine distance) were tested to measure this
difference on a simulated training set with a capacity of 1000. The distance measure, which can accurately distinguish regular
pulse rate and irregular pulse rate, was used to detect atrial fibrillation on the testing set with a capacity of 62 (11 with atrial
fibrillation, 8 with premature contraction, and 43 with sinus rhythm). The receiver operating characteristic curve was used to
evaluate the performance of the indexes. Results. The Euclidean distance between waveforms of the two adjacent periods
performs best on the training set. On the testing set, the Euclidean distance in atrial fibrillation group is significantly higher than
that of the other two groups. The area under receiver operating characteristic curve to identify atrial fibrillation was 0.998. With
the threshold of 2.1, the accuracy, sensitivity, and specificity were 98.39%, 100%, and 98.04%, respectively. This new index can
detect atrial fibrillation from pulse wave signal. Conclusion. This algorithm not only provides a new perspective to detect AF but
also accomplishes the monitoring of PRV and the extraction of single-period pulse wave through the same technical route,
which may promote the popularization and application of pulse wave.

1. Introduction

The radial artery pulse wave is an important signal in health
monitoring and disease diagnosis, which contains abundant
physiological information. Different from the ECG signal
which is often used to detect all kinds of arrhythmias [1],
the radial artery pulse wave not only contains the informa-
tion of heart rate and its variability which is widely used in
smart watches and other wearable devices [2–4] but also
can assist conventional methods to diagnose and monitor
the occurrence and development of multiple common dis-

eases such as hypertension, diabetes, and coronary heart dis-
ease [5–10]. In addition, the acquisition of radial artery pulse
wave is much more convenient than ECG. However, except
for atrial fibrillation (AF) detection and other the applica-
tions closely related to pulse rate variability (PRV), most of
the applications depend on the information contained in
single-period pulse waves. Due to the susceptibility of wear-
able devices to interference, it is so difficult to collect valuable
single-period pulse waves with existing wearable devices that
the information contained in the single-period pulse waves is
neglected by wearable device researchers. Even for PRV
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monitoring and AF detection algorithms, it is imperative that
subjects remain stationary during pulse wave acquisition.
The application of pulse wave is restricted by the weak anti-
interference ability.

Time synchronous averaging (TSA) is a widely used sig-
nal processing technique which enables periodic waveforms
to be extracted from noisy signals [11, 12]. It is traditionally
suited for the vibration analysis of mechanical systems which
move circularly such as gearboxes. The noise of such signals
can be effectively averaged out by gradually accumulating
those portions of the signals that are synchronized with the
fiducial points. Different from other noise reduction
methods, TSA can effectively reduce all independent noise
without considering frequency properties and threshold
selection. Moreover, the signal-period pulse wave quality
evaluation method [13] can be incorporated in TSA to iden-
tify and eliminate the seriously interfered periods. That is to
say, we can select the less interfered periods from a pulse
wave series with poor quality to complete TSA, rather than
discarding the whole series (Figure 1). Similar algorithms
have been applied to single-period pulse waveform extraction

[14, 15]. However, in existing applications, the pulse wave
signal is assumed to be a strict periodic signal, and the start-
ing point or the highest point of the waveform is used as the
fiducial point for synchronization without discussing the
basis of these steps. More importantly, the single-period
pulse wave extracted by existing TSA method does not con-
tain the PRV information. It has nothing to do with PRV
monitoring and AF detection. This may be the reason why
TSA is neglected by wearable device researchers.

However, if we take two adjacent periods as the basic unit
to calculate the average signal, it can be expected that with the
increasement of PRV, the waveform of the second period will
be gradually distorted due to the misalignment (Figure 2).
The difference between waveforms of the two adjacent
periods obtained by TSA may provide a new measure of
PRV. Compared with traditional PRV measures, it may have
some potential advantages under the condition of poor signal
quality. And this index mainly reflects the irregular changes
of heart rate. For patients with premature contraction (PC)
which usually have regular changes in heart rhythm, the dif-
ference between adjacent periods may not be large because
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Figure 1: General steps of TSA combined with signal-period pulse wave quality evaluation method. (a) A pulse wave series was segmented
into periods. (b) The signal quality of each segment was evaluated, and the abnormal segments were eliminated. (c) All the normal segments
were synchronized with the starting points. (d) The noise was suppressed by averaging the synchronized signals.
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there are still a considerable number of second period wave-
forms are synchronous. The new index may effectively distin-
guish AF from PC and sinus rhythm (SR).

The objective of this paper was to develop a new measure
of PRV by improving existing TSA and to detect atrial fibril-
lation by the new measure of pulse rate variability.

2. Methods

2.1. Data. In this study, the radial artery pulse wave signals
were taken from 112 inpatients who had underwent an elec-
trocardiographic (ECG) examination at Shanghai Shuguang
Hospital between July 2019 and January 2020, including 11
cases with AF, 8 cases with PC, and 93 cases with SR. For each
subject, a left radial artery pulse wave signal with a length of
60 seconds was taken by a wrist-type pulse wave monitor
(type: Smart TCM-I, product by: Shanghai Asia & Pacific
Computer Information System CO, Ltd, Shanghai, China)
after the subject was either sitting or lying down for at least
5min. ECG examination and pulse wave acquisition were
performed on the same day but not simultaneously.

2.2. Preprocessing. The steps of preprocessing, including
period segmentation and signal quality evaluation, are illus-
trated in Figure 3.

To segment the pulse wave series into periods, the deriv-
ative of the original signal was used to locate segmentation
points by the threshold method (Figure 4). During threshold
determination, each pulse wave series was segmented with 9
trial thresholds (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9). All
the obtained segments were evaluated by a logistic regression
model [13] which can divide the segments into normal seg-
ments and abnormal segments. The threshold with which

the maximum number of normal segments were obtained
was selected for the next steps.

During signal quality evaluation, the segment obtained
by period segmentation were divided into normal and abnor-
mal segments by the same logistic regression model as used
in threshold determination. The abnormal segments were
eliminated, and the range of normal segment was expanded
by 50% on both sides to prepare for the measurement of
PRV (Figure 5).
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Figure 2: The average pulse wave with a basic unit of two adjacent periods. (a) The average pulse wave of a normal individual. The waveforms
of the two adjacent periods are similar. (b) The average pulse wave of a patient with AF. The waveform of the second period is seriously
distorted.
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Figure 3: Steps of preprocessing. During period segmentation, the
original pulse wave series were segmented into periods by
threshold method. During signal quality evaluation, the segment
obtained by period segmentation were divided into normal and
abnormal segments by a logistic regression model. The abnormal
segments were eliminated, and the range of normal segment was
expanded by 50% on both sides to include the information of
adjacent periods.
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2.3. Time Synchronous Averaging.How to average the single-
period pulse waves with different lengths in the same
sequence and what is the appropriate fiducial point with
the strongest anti-interference ability are questions that have
not been fully discussed in current applications of TSA.

As shown in Figure 2, even in the pulse wave of a patient
with AF, all the systoles have similar lengths and shapes, and
the difference of cardiac cycle duration is mainly caused by
the difference of diastolic duration. It is because the process
of myocardial contraction and the state of arterial vessels are
relatively stable for the same individual, and the duration of
diastole does not significantly affect the left ventricular end-
diastolic volume due to the low rate of left ventricular filling
during late diastole. The initial condition and process of sys-
tole are basically stable. It is an appropriate averaging method
to accumulate and average the preprocessed data without any
stretching or compression, becausemost of the common time-

domain features except the duration of cardiac cycle and dias-
tole are extracted from the pulse wave of systole.

Figure 4 shows a pulse wave series and its derivative. The
derivative of the original signal is almost entirely unaffected
by baseline wander and shows clearer segmentation points.
The spikes of the derivative are formed by the periodic rapid
ejections of blood from the left ventricle. Different from the
starting point or the highest point of a period where the
waveform is relatively gentle and easy to be distorted by
external interference, the spikes of the derivative have stron-
ger anti-interference ability because the change of pulse wave
caused by rapid ejection of blood is more significant than that
caused by external interference. Moreover, the QRS complex,
which is the most frequently used heartbeat fiducial point to
calculate the heart rate in ECG [16], is formed by the same
cardiac event. Using the peak of the derivative in each period
as the reference point, the calculated results may have better
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Figure 4: Pulse wave and its derivative with an applied threshold. The derivative of the original signal is almost entirely unaffected by baseline
wander and shows clearer segmentation points. The first zero point of the derivative before each threshold point was defined as the period
segmentation point, and the corresponding segments of the original signal between two adjacent period segmentation points were single-
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comparability with the results of ECG. Therefore, the peak of
the derivative is an appropriate fiducial point for synchroni-
zation of TSA.

Therefore, during TSA, the expanded single-period pulse
waveforms obtained by preprocessing were synchronized

with the maximum derivative value of each period, and all
the waveforms from one pulse wave series were averaged
directly without stretching or compression. After synchro-
nizing, all the expanded single-period pulse waveforms were
unified to the same length by filling with 0. If Xi = fx1, x2,
⋯, xng was an expanded single-period pulse waveform and
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Figure 6: Steps to generate the simulated training set. (a) 50 single-period pulse waveforms were extracted from pulse wave signals of the 50
selected cases by TSA. (b) 1000 single-period pulse waveforms were generated by stretching or compressing the original single-period pulse
waveform to make its length equal to Tb. (c) 60 single-period pulse waveforms were generated by stretching or compressing the
corresponding single-period pulse waveform generated in (b) to make its length equal to Tb + ΔT separately. Only the waveforms of
diastole were stretched or compressed in this step. The pulse wave series of each training sample were subsequently obtained by
connecting the 60 single-period pulse waveforms end to end.
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Figure 7: The first ascending limb and the second ascending limb of
expanded single-period pulse wave. (a) The first ascending limb is
defined as the data between the minimum value and the
maximum value in the first half of the expanded single-period
pulse waveform. (b) The second ascending limb is defined as the
data starting from the minimum value between the maximum
values of the first half and the second half of the expanded single-
period pulse waveform and with the same length as the first
ascending limb.
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N was the number of normal segments in the sequence, the
average expanded single-period pulse waveform of the
sequence was given by

Xa =
1
N
〠
N

i=1
Xi: ð1Þ

2.4. Measure of PRV and Detection of AF. To find an effective
index of PRV, 50 cases with SR were randomly selected from
the data set to generate the simulated training set with a
capacity of 1000. The testing set consisting of the other 62
cases (AF:11, PC:8, SR:43) was used to test the ability of the
selected index to detect AF. The training set was generated
according to a simple and commonly used identification cri-

terion for irregular heart rhythm—there is a variation of
more than 0.16 seconds between the longest cardiac cycle
duration and the shortest cardiac cycle duration [17]. The
detailed steps to generate the simulated training set are as fol-
lows (Figure 6):

(1) 50 single-period pulse waveforms were extracted
from pulse wave signals of the 50 selected cases by
TSA

(2) Considering that the cardiac cycle duration is usually
between 0.6 s and 1 s, for each single-period pulse
waveform, 20 random numbers (denoted by Tb)
which obey the uniform distribution U (0.6,1) were
generated to simulate different cardiac cycle dura-
tions of different individuals. A total of 1000 base car-
diac cycle durations were generated for the 1000
expected training samples

(3) 1000 single-period pulse waveforms were generated
by stretching or compressing the original single-
period pulse waveform to make its length equal to
Tb. All the 1000 single-period pulse waveforms were
randomly divided into arrhythmia group and control
group with 500 waveforms in each group

(4) Each training sample consists of 60 cardiac cycles,
and the duration of each cardiac cycle fluctuates
around the base duration Tb. The duration of each
cardiac cycle is given by T = Tb + ΔT . In arrhythmia
group, ΔT obeys the uniform distribution U (-0.09,
0.09). Whereas in control group, ΔT obeys the uni-
form distribution U (-0.07, 0.07). A sequence of 60
durations was generated for each training sample.
In arrhythmia group, the variation between the max-
imum value and the minimum value of 60 durations
is less than 0.18 but usually more than 0.16. Whereas
in control group, the variation between the maxi-
mum value and the minimum value of 60 durations
is less than 0.14. It is in accordance with the identifi-
cation criterion for irregular heart rhythm

(5) 60 single-period pulse waveforms were generated by
stretching or compressing the corresponding single-
period pulse waveform generated in step 3 to make
its length equal to the 60 durations separately. The
pulse wave series of each training sample were subse-
quently obtained by connecting the 60 single-period
pulse waveforms end to end. Considering that the
systolic duration of an individual is almost constant,
only the waveforms of diastole were stretched or
compressed to satisfy the requirement of cardiac
cycle durations in this step

After the training set was generated, the average
expanded single-period pulse waveform of each training
sample was extracted by TSA. The difference between the
first ascending limb and the second ascending limb were
tested to distinguish between arrhythmia group and control
group. The first ascending limb is defined as the data between
the minimum value and the maximum value in the first half

Table 1: Comparison of De in different groups of testing set by
Kruskal-Wallis test.

Groups Test statistic Standard error p

SN-AF 32.049 6.096 <0.001
PC-AF 24.659 8.383 0.010

SN-PC 7.390 6.947 0.862
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of the expanded single-period pulse waveform. The second
ascending limb is defined as the data starting from the mini-
mum value between the maximum values of the first half and
the second half of the expanded single-period pulse wave-
form and with the same length as the first ascending limb
(Figure 7). Considering that Euclidean distance (De), Man-
hattan distance (Dm), and cosine distance (Dc) are commonly
used distance measures between two vectors, these 3 candi-
date indexes were tested on the training set to distinguish
between arrhythmia group and control group. If Xf = fxf 1,
xf 2,⋯, xf ng and Xs = fxs1, xs2,⋯, xsng were the data of first
ascending limb and the second ascending limb, respectively,
De, Dm, and Dc were given by

De =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

〠
n

i=1
xf i − xsi
� �2

s

,

Dm = 〠
n

i=1
xf i − xsi
�

�

�

�,

Dc =
∑n

i=1xf ixsi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1xf i2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1xsi2

p

:

ð2Þ

The receiver operating characteristic (ROC) curve was
used to evaluate the performance of the indexes. The
index with the maximum area under ROC curve (AUC)
was selected to detect AF on the testing set. The distribu-
tion of the selected index in different groups of the testing
set was compared by Kruskal-Wallis test. And the AF
identification performance on the testing set was evaluated
by ROC curve.

3. Results

3.1. Performance of Candidate Indexes on Training Set. The
ROC curves of 3 candidate indexes on the training set are
shown in Figure 8. The AUC of De, Dm, and Dc were 0.857,
0.801, and 0.516, respectively. Both De and Dm can effectively
identify irregular pulse rhythm, and De performed best in
this task.

3.2. Comparison of De in Different Groups of Testing Set. The
comparison result of De in different groups of testing set by
Kruskal-Wallis test is shown in Table 1. And the box-plot

of De in different groups of testing set is shown in Figure 9.
The result indicated that De in AF group is significantly
higher than that of the other two groups, and there was no
significant difference between the PC and SN group. There-
fore, De can be used as an indicator to detect AF.

3.3. Performance of De to Detect AF on Testing Set. The ROC
curve of De to identify AF on the testing set are shown in
Figure 10. The AUC was 0.998, and the accuracy, sensitivity,
and specificity were 98.39%, 100%, and 98.04%, respectively,
with the threshold of 2.1. De can effectively detect AF from
pulse wave signals.

3.4. Comparison with Other Works. With the popularity of
wearable devices, the research of AF detection based on pulse
wave is increasing in recent years (Table 2). However, except
Shannon entropy, most of the features used to detect AF are
based on the interbeat interval (IBI) series, which makes the
accurate calculation of the cardiac cycle duration a prerequi-
site for AF detection. Therefore, the sensitivity to external
interference has become a common weakness of these

Table 2: Comparison of recent pulse-wave-based AF detection techniques.

Reference Methods Accuracy (%)

McManus DD, et al. (2013) [18] RMSSD and Shannon entropy 96.76

Krivoshei L, et al. (2017) [19] Shannon entropy and other IBI features 87.5

Fallet S, et al. (2019) [20] Bagging decision tree based on IBI features 88.5

Kabutoya T, et al. (2019) [3] Irregular heartbeat ratio 98.3

Kashiwa A, et al. (2019) [21] IBI features 97.3

Zalabarria U, et al. (2020) [22] ANN with foot point detection 93.68

Han D, et al. (2020) [23] Random forest with Poincare plot 95.32

This paper De between adjacent periods based on TSA 98.4
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Figure 11: A typical average pulse wave of PC. There are still
enough synchronized second ascending limbs in pulse wave of PC
to form a similar average waveform with the first ascending limbs.
The other second ascending limbs will form the bulge in the red box.
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studies. As indicated in Table 2, the method proposed in this
paper is one of the most accurate methods. And it does not
rely on IBI series, consequently, and may have stronger
anti-interference ability.

4. Discussion

In this paper, we propose a new measure of PRV based on
TSA. It was discovered that this new index can effectively
detect AF from pulse wave signals. It can not only be
applied to the seriously interfered signal by combining
with single-period pulse wave quality evaluation method,
but also extract a high-quality single-period pulse wave-
form at the same time, which can be used in other pulse
wave-related applications. In addition, it can distinguish
AF and PC, which has long been a problem in the identi-
fication of AF [21].

Figure 11 shows a typical average pulse wave of PC.
Although the PRV of patient with PC is large, the change of
its cardiac cycle durations is usually regular. Therefore, there
are still enough synchronized second ascending limbs to
form a similar average waveform with the first ascending
limbs. The other second ascending limbs will form the bulge
in the red box of Figure 9. This feature is usually located in
the diastolic of the average waveform. The diastolic pulse
wave of healthy people usually decreases gradually without
obvious features. This feature may be used to detect PC in
the future.

In summary, the new index provides a new perspective to
measure PRV and to detect AF. Moreover, it accomplishes
the monitoring of PRV and the extraction of single-period
pulse wave through the same technical route, which may pro-
mote the popularization and application of pulse wave. How-
ever, this study also has limitations: (1) the sample size is so
limited that we had to use simulated data instead of real clin-
ical data to screening candidate indexes. Therefore, De may
not be the best choice for real clinical data. (2) The ECG
and pulse wave are not collected simultaneously, which
may lead to incorrect label. (3) The anti-interference ability
has not been verified because the new index was not tested
on seriously interfered data set.

In the future, we hope to improve this algorithm by
collecting more real clinical data and screening more dis-
tance measures. In addition, it has been discovered that
there is a unique characteristic on the average pulse wave
of PC. It is also one of the future research directions to
develop an automatic PC detection algorithm based on
this characteristic.
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