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Abstract
Since COVID-19 is extremely threatening to human health, it is significant to determine its impact factors to curb the virus
spread. To tackle the complexity of COVID-19 expansion on a spatial–temporal scale, this research appropriately analyzed the
spatial–temporal heterogeneity at the county-level in Texas. First, the impact factors of COVID-19 are captured on social,
economic, and environmental multiple facets, and the communality is extracted through principal component analysis (PCA).
Second, this research uses COVID-19 cumulative case as the dependent variable and the common factors as the independent
variables. According to the virus prevalence hierarchy, the spatial–temporal disparity is categorized into four quarters in the
GWR analysis model. The findings exhibited that GWR models provide higher fitness and more geodata-oriented information
than OLS models. In El Paso, Odessa, Midland, Randall, and Potter County areas in Texas, population, hospitalization, and age
structures are presented as static, positive influences on COVID-19 cumulative cases, indicating that they should adopt stringent
strategies in curbing COVID-19. Winter is the most sensitive season for the virus spread, implying that the last quarter should be
paid more attention to preventing the virus and taking precautions. This research is expected to provide references for the
prevention and control of COVID-19 and related infectious diseases and evidence for disease surveillance and response systems
to facilitate the appropriate uptake and reuse of geographical data.
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Introduction

A new coronavirus, called coronavirus disease 2019 (COVID-
19), is causing an outbreak of respiratory illness worldwide. It
caused a deadly severe acute respiratory syndrome, WHO
reported, initially found in Wuhan, China (Holshue et al.,
2020; Moghadas et al. 2020; Sha et al., 2020; Yang et al.,
2020). Given coronavirus disease (COVID-19) swept through

the world, everything about people’s mobilities is changed.
COVID-19, as a global social, environmental, and economic
comprehensive crisis, extremely impacts people’s daily lives
and reshapes people’s routine behaviors, especially a perva-
sive sense of quarantine fatigue and panic attacks of getting
infected are challenging human fortitudes (Ahmar and Boj
2020; Bashir et al., 2020; Bilal et al. 2020). Most countries
have been forced to take emergency measures, including clos-
ing cities, suspending school classes, restricting population
movement, and keeping social distances, having great nega-
tive effects on economic development and resident’s health
(Huajie et al. 2021; Yuan et al. 2020; P.D. et al., 2020;
Menut et al. 2021). The USA was called the first country with
the highest confirmed cases of COVID-19 in the world
(Ahmar and Boj 2020; Worldometer. The United States
coronavirus 2020). Until February 5, 2021, there are 27.3
million cumulative cases, 65,236 new cases, 468,780 total
deaths cases, and 1,786 new deaths cases in the USA. A se-
vere economic downturn behind figures was predicted by con-
sidering how policy has supported businesses and families
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since March 2020. The first COVID-19 case in the USA was
confirmed on January 19, 2020, in Washington State
(Harcourt et al. 2020; Holshue et al., 2020; Ellis 2020; Qu,
et al., 2020). From summer to winter in 2020, the virus, as a
perfect storm, virtually spreads on every part of the USA at a
speed unprecedented in American history, according to Johns
Hopkins University data. Ducharme 2021 argued the pandem-
ic had claimed more than three times the American lives that
were lost in the Vietnam War. The coast-to-coast surge is
causing hospitals across the country to the edge of catastrophe.
Doctors and nurses are exhausted, and their intensive-care
units are running dangerously low on beds.

Texas, as the 28th state of the union in 1845, occupies the
south-central segment of the country and is the largest state in
the area except for Alaska and California. The state extends
nearly 1000 miles (1600 km) from north to south and about
the same distance from east to west. Its average population
growth has exceeded that of the country. Texas is facing issues
associated with increased longevity and an aging population.
The state’s overall population is aging, and about one-tenth of
Texans are over age 65. Considering the total number of co-
ronavirus cases in the USA, Texas plays a significant role in
curbing the spread of COVID-19 in the USA. Therefore, it is
plausible to choose Texas as our study object of COVID-19.
Ostensibly, the Texas government made stringent policy in-
ventions to mitigate the spread of COVID-19 based on unre-
mitting Texas Executive Orders (TEO) and Public Health
Disaster Declarations (PHDD). On March 16, 2020, the
USA promulgated the President’s Coronavirus Guidelines
for America, calling upon Americans to slow down the spread
of COVID-19 by avoiding social gatherings in groups of more
than 10 people, using the drive-thru, pickup, or delivery op-
tions at restaurants and bars, and avoiding visitation at nursing
homes, among other steps. Texas experienced 5 stages of
COVID-19 risk-based guidelines, including the first phase
on April 4, the second phase on May 18, the third phase on
June 3, the fourth phase on July 4, and the fifth phase on
December 15 for Travis County. Stage 5 signifies the most
unfettered spread of the virus and includes the most stringent
guidelines. In addition to curfew considerations, under stage 5
guidelines, it is suggested that only essential businesses re-
main open and that everyone avoids non-essential travel and
gatherings involving people outside a person’s immediate
household. Those recommendations are in addition to social
distancing measures such as avoiding the sick, wearing a fa-
cial covering, and maintaining distance from others. There are
28 executive orders containing the spread of COVID-19 from
Executive Order 8 on March 19 to Executive Order 32 on
October 7. There are 11 times of publishing PHDD from
March 19, 2020, to January 15, 2021. “The novel coronavirus
(COVD-19) has been recognized globally as a contagious
respiratory virus” mentioned on the Gov. Abbott Issues
Executive Order 8. On March 19, 2020, “Tests for human

diagnostic purposes of COVID-19 should submit to Texas
Department of State Health Services (DSHS),” claimed on
March 24, 2020. The spread speed of COVID-19 is outpacing
the density policy updating. Meanwhile, the once-in-a-100-
year, nevertheless, coronavirus disease 2019 took a toll on
Texas counties beyond words, from Facebook to Twitter,
from nursing homes to children’s daycare, from communities
to churches, from groceries to restaurants, and from elemen-
tary schools to universities (Sha et al. 2000). The socioeco-
nomic impact of COVID-19 is well documented as well
(Bashir et al. 2020a, 2020b; Sha et al. 2020a, 2020b; Yang
et al. 2021). When tracing the COVID-19 footprint, the first
case was announced by the Texas Department of State Health
Services on March 4 in Fort Bend County. Texas surpasses
2,433,110 total COVID-19 cases and 128,000 death cases so
far. These figures are dramatically increasing every single day.
Some counties in Texas are already playing out their dystopi-
an worst-case scenarios. In particular, the dead in El Paso have
been shunted to mobile morgues partially staffed by the incar-
cerated (Hogue et al., 2020). Some of the critiques thought
that not controlling the virus spread is mainly responsible for a
potential policy from the Trump Administration, which has
done little to counter the rampant misinformation about the
pandemic and has made numerous incorrect statements about
the virus’s origins, spread, and deadliness. Indeed, it is worth
noting that establishing a long-lasting, real-time, and dynamic
emergency alert system on health will mitigate natural
disasters and lower disaster risks. Accordingly, it is
imperative to tease out the spatial–temporal changes of the
COVID-19 pandemic spread, sensitive areas of vulnerability,
and most vulnerable groups based on the county level. The
objective of this paper is to investigate the spatial–temporal
variability between population (age structure, race, and gen-
der) and COVID-19 cumulative cases at 254 Texas counties,
in the context of considering the impacts of social–economic
(unemployment and annual income) and environmental fac-
tors, via spatial stratified heterogeneity analysis using geo-
graphically weighted regression (GWR) models. This re-
search will facilitate the scientific recognition of COVID-19.
In other words, if the COVID-19 data has a spatial–temporal
resolution to capture the trajectories, both approaches are ad-
equate for the spread of COVID-19 recognition (Câmara
2020).

Under the global limelight, COVID-19 research is wide-
spread and interdisciplinary concerning, triggering people’s
brainstorming, swept in the world. For example, social injus-
tice during the pandemic is advanced by Blue et al. 2021
regarding asylum seekers’ immobility/mobility at the US–
Mexico Border during the COVID-19 pandemic. There are
482,958 academic journals that published COVID-19 topics.
In light of Web of Science, 567 articles are being published in
different journals, including health, religion, cultural studies,
history philosophy of science, humanities multidisciplinary,
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and philosophy. COVID-19 in South Korea is investigated in
policies and innovations (Lee and Choi 2020). COVID-19
pandemic and lockdown in India have led to the collapse of
regular mental health services (Grover et al. 2020).
Interestingly, a comparison about COVID-19 response be-
tween the UK, USA, Germany, and South Korea is rooted in
the systemic weaknesses of neoliberalism (Megaloikonomos
et al. 2021; Mellish et al. 2020). Mellish et al. (2020) proposed
that economic recession and austerity impeded health care
investment in the UK and USA. Air quality impacts of
COVID-19 are mentioned in Europe and China (Mellish
et al. 2020; Menut et al. 2021; Liu et al. 2020). From a macro
spectrum perspective, global collaboration and a data-driven
systems approachwill contribute to addressing the COVID-19
pandemic and potential public health crisis (Ros et al. 2021).

Since the COVID-19 spreading represented geographical
dependence, geographic information systems (GIS) can com-
bine divergent spatial datasets based on georeferencing, pro-
moting the integration of health data with contextual charac-
teristics. At the same time, descriptive modeling research that
depends onGIS strength has examined the spatial associations
of COVID-19 with socioeconomic and environmental charac-
teristics (Smith and Mennis 2020). Currently, the uneven dis-
tribution of the COVID-19 pandemic is well enough to repre-
sent patterns of spatial heterogeneity with GIS spatial tools,
which incorporate multidimensional social, economic, and
health consequences, exposing geographical inequity and a
long-term impact on global health accurately, regardless of
linear or nonlinear regressions (Cássaro and Pires 2020;
Rosenkrantz et al. 2020; Smith and Mennis 2020; Guliyev
2020). For instance, Ahmar and Boj 2020 predicted
COVID-19 confirmed cases in the USA with the
SutteARIMA method. Luo et al. (2020) exhibited a spatial
nonlinear analysis of the COVID-19 death rate in the USA.
Unfortunately, GIS spatial–temporal analysis is seldom men-
tioned. Chaowei Yang et al. (2021) put forward a spatial–
temporal COVID-19 paradigm through modeling socioeco-
nomic patterns to analyze at a finer scale using weekly con-
firmed cases in Massachusetts. They merely took into account
the poverty rate, educational attainment, elderly people rate,
and income four variables (Yang et al. 2021). The drawback is
the lack of environmental variables to underpin the model.
Although population mobility, age, and race, as significant
factors, are mentioned in the research, Mollalo only consid-
ered black females infection risk of COVID as an explanatory
variable; it is limited to get the outcome on the most vulnera-
ble groups of COVID-19 (Mollalo et al. 2020; Smith and
Mennis 2020; Lakhani 2020; Rosenkrantz et al. 2020).
Different methods are used to observe the goodness-of-fit test
of the regression (e.g., multiple geographically weighted re-
gression method and geographical weighted random forest
method, but they do not account for the significance of the
single variable. Furthermore, previous study areas are based

on the macro spectrum, involving China, India, Italy, and the
USA (Bag et al. (2020); Cartenì et al. 2021; Mollalo et al.
2020; Xie et al. 2020), regional study of COVID is almost
ignored. As community gathering is the main reason for
COVID-19, micro-study is a dispensable part of COVID-19
research, which could provide useful implications for
preventing the spread of the COVID-19 pandemic. Even if
the spatial–temporal ontology and semantic COVID-19 are
completely performed in the context of big data in the Age
of AI (Sha et al. 2020a, 2020b), longitudinal detection and
explanation of COVID-19 in the USA are essential for dealing
with the linear scenario in a local regression model. On the
other hand, according to an empirical study, it is important to
select variables that reveal the degree of social vulnerability.
This is because disparity of social vulnerability is determined
by location-based variables, which incorporate factors such as
race/ethnicity and socioeconomic status, leading to encode the
vulnerability to adverse health outcomes such as negative ef-
fects of COVID-19.

Analysis of the relationship between these possible risk
factors (e.g., AQI, race, and gender) and COVID-19 in differ-
ent counties will help develop policies to prevent and control
the spread of COVID-19 technically. The spatial–temporal
distribution of COVID-19 will also contribute to county-
driven COVID-19 real-time and dynamic monitor systems.
The advantage is that the results are directly used to draw up
community containment strategies, which are fundamental
public health measures used to control the spread of commu-
nicable diseases, including isolation and quarantine (Mollalo
et al. 2020). Therefore, this paper unveils spatial–temporal
heterogeneity on the county level within a state, providing
real-time scientific evidence for creating an effective disease
surveillance system in COVID-19.

Methodology

Data source

Demographical factors such as age structure, gender, and race
are examined to detect the most vulnerable groups. Since
PM2.5 and Air Quality Index (AQI) are used to measure the
severity of air pollution, which is highly related to respiratory
diseases, PM2.5 and AQI are also considered explanatory
variables. COVID-19 data (cumulative cases and new cases)
as dependent variables are from the Centers for Disease
Control and Prevention (CDC), COVID-19 fatality data based
on death certificates. A fatality is counted as a COVID-19
fatality when the medical certifier attests to the death certifi-
cate that COVID-19 is a cause of death. Mortality is equal to
fatalities divided by cumulative cases. Hospitalization (i.e.,
THB and BPC) from the Texas Department of State Health
Services (DSHS) is reported daily by hospitals through eight
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Hospital Preparedness Program providers that coordinate
health care system preparedness and response activities in
Texas. They are viewed as explanatory variables over 2020.
Population data (e.g., race, diverse age group, gender, and
population density) as explanatory variables are from the
2019USCensus Bureau. Economic data (e.g., annual income)
as explanatory variables are from the Texas Association of
Counties, and the statistical period is 2019. Environmental
data is the result through interpolating limited samples, which
are from the US Environmental Protection Agency (i.e., AQI
and PM2.5) and National Weather Service (i.e., temperature
and precipitation); statistical period is the whole year of 2020,
categorizing four quarters. Quarterly data are real-time raw
data at the end day of each quarter (Table 1).

Study area

In this paper, 254 counties of Texas are our research objects.

Spatial–temporal study framework

For the temporal study in the paper, time series models were
classified into four layers according to four seasons in 2020.
Quarterly statistical data are based on environmental and
social-economic indexes at the end of the season in response

to COVID-19 NC and TC at that time. The temporal study
framework is in Fig. 1.

From a spatial study perspective, we explore correlations
between variables with SPSS before building GWR models,
no matter what kinds of variables. Since dependent variables
must meet the assumption of a normal distribution, we have to
describe their statistical characteristic property and spatial au-
tocorrelation analysis. Simultaneously, all explanatory vari-
ables after standardization should be examined by principal
component analysis to eliminate multicollinearity. After that,
we try to model simple ordinary least squares (OLS) and geo-
graphically weighted regression between variables. Finally,
via two models’ comparisons, we pay more attention to their
differences in spatial heterogeneity and analyze how did it
happen, as shown in Fig. 2.

Data preprocessing and preparing

In Fig. 3, the number of NC and CC in the first season is the
same as 3604. The number of NC in the second season is five
times more likely than the first season. The number of NC in
the third season is tetra more likely to the second season. The
number of NC in the last season is double more likely to the
third season. From the number of CC perspective, the number
of CC is taking a surge without turn points. That means the

Table 1 A list of variables used for geostatistical analysis

Variable category Variable name Acronym Variable description

Economic Annual income PCI Annual income per 1000 residents

Unemployment UEM Percent of residents who do not have job

Environmental Precipitation PCN Mean precipitation per month

Temperature TPE Mean temperature per month

PM2.5 PM2.5 Mean PM2.5 per day

Air quality AQI Mean air quality per day

Land area LA Total land area per county

Demographic Population density POD Population density

Total population TP Total population

Male population PMP Percent of residents who are male

Black population PBP Percent of residents who are black

Population between 20 and 59 P59 Percent of residents who are between 20 and 59

Population beyond 80 P80 Percent of residents who are beyond 80

Health Total hospital beds THB Total hospital beds

Beds per capital BPC Incidents per 1000 residents

COVID-19 Cumulative case CC Cumulative case number

New case NC New case number per season

Incidence rate IRP Percent of case on total population

COVID-19 Fatalities TF Total death number

Mortality rate I MR1 Percent of fatalities case on total case

Mortality rate 2 MR2 Incidents per 10,000 residents
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spread of COVID-19 is monotonically increasing without
controlling.

Data standardization is the process of making sure
that your dataset can be compared to other datasets. It
is a key part of the research, and standardized data is
essential for accurate data analysis. It is also easier to
make clear conclusions about current data when there
are other data to measure it against. The condition of
standardization with the Z-score is that the data mean is
equal to 0 and the standard deviation is equal to 1.

To reduce the dimensionality of the dataset down to
fewer explanatory variables, principal component analy-
sis (PCA) is one of the common techniques to avoid
multilinearity without losing the attribution of variables.
PCA could increase interpretability but at the same time

minimize information loss. It does so by creating new
uncorrelated variables that successively maximize vari-
ance. In the PCA procedure, a set of possibly correlated
variables is transformed into a set of linearly uncorre-
lated variables using the orthogonal transformation. This
set of linearly uncorrelated variables is also called a PC.
The number of PC extracted from PCA is less than or
equal to the number of previous possibly correlated var-
iables (Gray et al. 2017).

Stepwise regression (SR) is an automatic variable selection
procedure that selects from a couple of candidates the explan-
atory variables, which are the most related. We used the uni-
directional forward methods. Forward selection begins with
no variables in the model, examining each variable with a
chosen model-fit criterion until none of the remaining
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The 2nd Quarter Spatial Model

The 3rd Quarter Spatial Model

The 4th Quarter Spatial Model

Fig. 1 Temporal study
framework

Fig. 2 Data flow
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variables improve the model to a statistically significant extent
(Guidolin and Pedio 2020).

Method

Ordinary least squares

In regression analysis, ordinary least squares (OLS) is a tradi-
tional method for estimating a linear regression between de-
pendent variables and independent variables.

Simple OLS is the estimation of a linear relationship be-
tween two variables, Yi and Xi, of the form

Y i ¼ αþ βXi þ ui i ¼ 1; 2;…:n ð1Þ
where Yi denotes the ith observation on the dependent variable
Y which could be CC, and Xi denotes the ith observation on
the independent variable X which could be synthetic factors.
OLS assumptions involve the disturbances, have zero mean
and constant variance, and in addition to are not correlated.
The explanatory variable X in OLS is non-stochastic.

Geographically weighted regression

According to the first law of geography, there is more simi-
larity between more adjacent geographical entities (Tobler
1970). Meanwhile, due to the unbalanced distribution of nat-
ural resources endowment and socioeconomic factors in dif-
ferent provinces, there also exists interregional spatial corre-
lation and spatial heterogeneity. And because of these, such
global-regression-model-related assumptions do not hold any-
more, for instance, data values are independent of geograph-
ical location, there exists no spatial correlation, and sample
data are balanced. Therefore, it is impossible to properly ex-
plain an individual situation, and herein spatial heterogeneity,
by using global overall parameters. Based on Foster’s spatial
varying parameter regression, a geographically weighted

regression (GWR) model (Fotheringham and Charlton 2002)
was further proposed by Fotheringham using a local smooth
processing method to solve the spatial heterogeneity. With
spatial heterogeneity taken into consideration, geographic co-
ordinates and core functions are utilized to carry out local
regression estimation on adjacent individuals of each group.
The equation of the GWR fitted model is in Eq. (2) (Nakaya
2016).

yi ¼ β0 ui; við Þ þ ∑kβk ui; við Þxk;i þ εi ð2Þ

where i denotes the individual sample; (ui, vi) is the coor-
dinates of sample i; βk(ui, vi) is the kth regression parameter of
sample i; yi is the dependent variable of sample i, xk,i is the kth
independent variable for the sample i, εi is random error term
which obeys normal distribution when the variance is a con-
stant; thus, the parameter estimation value of sample i is given
by

ui; við Þ¼ XTW ui; við ÞX� �−1
XTW ui; við Þy ð3Þ

where W is the spatial weight matrix, whose selection and
setting are the core issues of GWR regression. And its calcu-
lation consists of twomajor steps. The first step is the selection
of a proper kernel function to express a spatial relationship
between the observed units. Specifically, four major kernel
functions are being used in existing research, namely, fixed
Gaussian, fixed Bi-square, adaptive Bi-square, and adaptive
Gaussian. Since the merits of a kernel function play a direct
and decisive role in obtaining the most accurate possible re-
gression parameter estimation of spatial heterogeneity, after
careful analysis and comparison, fixed Gaussian was chosen
as the kernel function in the paper, which is expressed as

wij ¼ exp −d2ij=θ
2

� �
ð4Þ

where wij represents the distance weight from sample i to
sample j; dij is the Euclidean distance between sample i and
sample j; θ is the bandwidth, which determines the speed at
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Fig. 3 Texas cases changes over
time in 2020
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which the spatial weight attenuates with distance. The second
step of spatial weight matrix calculation is the selection of
optimal bandwidth which could contribute to a higher fitting
degree. According to the GWR4.09 User Manual (Nakaya
2016), bandwidth selection criteria include AIC (Akaike in-
formation criterion), AICc (small sample bias-corrected AIC),
BIC, and CV (cross-validation). Since it is more suitable for
the Gaussian model and its robust performance, the CV meth-
od was adopted in the article to determine the optimal band-
width. At the same time, the ANOVA test method was used to
test the null hypothesis that the GWR model has no improve-
ment over the OLS model. Finally, the statistical significance
of all local regression coefficients was determined using the
pseudo t values calculated by GWR (Clement et al. 2009).

Results and findings

Normal distribution

The precondition of regression analysis is that the dependent
variable should meet the normal distribution. The request for
normal distribution has two conditions. The first is that the
uncertain variable is symmetric about the mean and the other
is that the uncertain variable is more likely to be in the vicinity
of the mean than far away. Thus, a normal distribution is
conducted in 5 dependent variables quarterly. After logarithm
transformation, quarterly CC within is qualified as a normal
distribution except for the first quarter in Fig. 4. When model-
ing GWR regressions, the first quarter CC is overlooked as a
skewed distribution.

Correlation

According to Table 2, the first quarter CC is positively signif-
icant to THB, POD, PCI, TP, PBP, and P59. It is negatively
significant to P80. The second quarter CC is positively signif-
icant to TPE, PCN, THB, POD, TP, PBP, UEM, and P59 and
negatively significant to P80. The third quarter CC is

positively significant to TPE, PCN, AQI, THB, POD, TP,
PBP, UEM, and P59. While it is negatively significant to
P80. The last quarter CC is positively significant to TPE,
PCN, AQI, THB, POD, TP, PBP, UEM, and P59 and nega-
tively significant to P80. As a result, the correlation from the
second quarter to the fourth quarter is similar.

Spatial autocorrelation

The spatial autocorrelation (global Moran’s I) tool measures
spatial autocorrelation based on both feature locations and
feature values simultaneously. Given a set of features and an
associated attribute, it evaluates whether the pattern expressed
is clustered, dispersed, or random. In this paper, global
Moran’s I and local Moran’s are implemented. The results
of global Moran of the accumulative case are more than 2.
58, indicating quarterly CC is remarkable and clustered. In
Anselin local Moran’s I (Fig. 5), the second season CC is
classified into four clusters including HH, HL, LH, and LL.
HH is distributed in northern Texas at 39 counties, HL is
distributed at 11 counties, LH is limited at 6 counties, and
LL occupied the south and east of Texas at 41 counties. In
the third season, HH is distributed in northern Texas at 44
counties, HL is distributed at 7 counties, LH is limited at 6
counties, and LL is distributed in the south and east of Texas at
48 counties. In the fourth season, HH is distributed in northern
Texas at 37 counties, HL is distributed at 7 counties, LH is
limited at 7 counties, and LL is distributed in the south and
east of Texas at 31 counties.

Factor analysis

Through PCA, the dataset was examined using Kaiser–
Meyer–Olkin (KMO) and Bartlett’s test of sphericity. The
KMO test compares the correlation statistics to identify if
the variables include sufficient differences to extract unique
factors. A KMO value of 0.616 for 14 explanatory variables is
more than the threshold value of 0.5. The Bartlett’s test of
sphericity (BTS) value of 0.0 was significant (p < 0.001),

1
st 

Season CC 2
nd

Season CC 3
rd

Season CC          4
th

Season CC

Fig. 4 CC distribution graph Himmelstein et al. 2020
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validating that the correlation between variables does exist in
the GWR models.

Communality is a common variance between 0 and 1,
using the remaining variables as factors, and was used to de-
termine if any variables should be excluded from the factor
analysis. A 0.7 threshold is used to determine the significance
of explanatory variables (David et al. 2012).

PCA was conducted as the factor analysis method within
this paper. Given an eigenvalue threshold greater than 1.0, 6
components in the second quarter and 5 components in the
third quarter and the fourth quarter are produced, explaining
cumulative 76.57% (the second quarter), 70.60% (the third
quarter), and 70.81% (the fourth quarter) of the variance with-
in the models. A varimax rotation was used to assist in the
interpretation of the PCA analysis. The rotated component
matrix was examined for variables with a cutoff threshold of

0.7. In the second quarter, the first factor exhibited high load-
ing on variables related to THB, POD, and TP, indicating
COVID-19 cases are positively related to hospitalization and
total population. That means the population and medical care
are two main indicators of COVID-19. Factor 2 was a com-
posite age structure index related to P59 and P80; COVID-19
CC is positively related to the 20–59 population but negative-
ly related to the 80 population. That means the 20–59 popu-
lation directly contributes to COVID-19 patients, and P80
leads to CC reduction. That means race and weather are two
underlying elements of COVID-19. Factor 3 is air quality,
directly positive relevant to COVID-19 CC, indicating air
quality improvement plays a positive role in COVID-19 re-
duction. Factor 4 represents the economic index, including
PCI and UEM. It represents annual income is negatively re-
lated to COVID-19 (i.e., a decrease of annual income, a high

Table 2 Person correlation
between CC and explanatory
variable

Explanatory variables CC quarter 1

Coef./Sig.

CC quarter 2

Coef./Sig.

CC quarter 3

Coef./Sig.

CC quarter4

Coef./Sig.

TPE 0.155/0.088 0.128*/0.042 0.365**/0.000 0.292**/0.000

PCN 0.038/0.679 0.307**/0.000 0.378**/0.000 0.325**/0.000

AQI 0.106/0.246 0.021/0.744 0.249**/0.000 0.260**/0.000

THB 0.645**/0.000 0.481**/0.000 0.495**/0.000 0.509**/0.000

BPC 0.154/0.091 0.047/0.454 0.036/0.573 0.097/0.123

POD 0.749**/0.000 0.570**/0.000 0.581**/0.000 0.600**/0.000

LA 0.133/0.145 −0.430/0.499 −0.066/0.297 −0.031/0.628
PCI 0.335**/0.000 −0.020/0.753 −0.048/0.450 −0.024/0.702
TP 0.690**/0.000 0.512**/0.000 0.526**/0.000 0.541**/0.000

PBP 0.243**/0.007 0.455**/0.000 0.398**/0.000 0.362**/0.000

UEM −0.073/0.422 0.161**/0.010 0.181**/0.004 0.165**/0.008

PMP −0.174/0.056 −0.055/0.380 −0.053/0.398 −0.077/0.219
P59 0.467**/0.000 0.503**/0.000 0.474**/0.000 0.473**/0.000

P80 −0.451**/0.000 −0.501**/0.000 −0.450**/0.000 −0.399**/0.000

Note: *Correlation is significant at the 0.05 level (2 tailed). **Correlation is significant at the 0.01 level (2 tailed).

Fig. 5 Local Moran’s model of CC
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risk of COVID-19 infection) and unemployment is positively
related to COVID-19 (i.e., an increase of unemployment rate
leads to a high risk of COVID-19 infection). Factor 5 is natural
supply (i.e., LA), which is negatively related to COVID-19
CC. That demonstrated that keeping spatial distancing helps in
COVID-19 CC reduction. Factor 6 refers to medical supplies
(i.e., BPC), meaning hospital beds are positively related to
COVID-19 CC. Five factors in the third quarter are identical
with the 5 factors in the first quarter except for factor 6. Five
factors in the last quarter are similar to the 5 factors in the first
quarter except for factor 3. The distinction in the last quarter is
that factor 3 is added to PCN in natural supply, meaning pre-
cipitation positively influences the increase of COVID-19.
The concrete relationships are shown in Tables 3 and 4.

Comparison of composite OLS and GWR models

Modeling OLS is used to examine whether there is a linear
relationship between CC and its factors. By the t test and f test,
all factors have passed. Modeling GWR is used to examine
whether there is a spatial–temporal relationship between CC
and its factors. Since COVID-19 CC is clustered and varies
around the study area, the adaptive kernel in GWR models is
appropriate. The AICc method I chose to find the bandwidth
which minimizes the AICc value—the AICc is the corrected
Akaike information criterion (it has a correction for small
sample sizes). In the second quarter, the AICc value has de-
creased from 883.74 in the OLSmodel to 811.99 in the GWR,
and R2 has changed from 0.54 in the OLSmodel to 0.77 in the
GWR model. Neighbors are declined from 254 neighbors in
the OLS model to 77 neighbors in the GWR model. In the
third quarter, the AICc value has decreased from 870.29 in the
OLS model to 790.31 in the GWR, and R2 has changed from
0.55 in the OLS model to 0.77 in the GWRmodel. Neighbors
are declined from 254 neighbors in the OLS model to 77
neighbors in the GWR model. In the fourth quarter, the
AICc value has decreased from 850.42 in the OLS model to
778.75 in the GWR, and R2 has changed from 0.49 in the OLS
model to 0.72 in the GWR model. Neighbors are declined
from 254 neighbors in the OLS models to 83 neighbors in
the GWR models. All residuals of the GWR maps are lower,

less than that of the OLS maps. Predicted CC in GWR quar-
terly map is more clustered than OLS quarterly map; the clus-
ter area is in eastern and northern Texas. Therefore, the GWR
model is superior to the OLS model (Table 5).

GWR result analysis

Spatial change of CC factors

Based on existing research, COVID-19 quarterly GWR
models are also implemented in the research area (Liu et al.
2020; Mollalo et al. 2020). Figure 6 incorporates Texas
spatial–temporal distribution maps based on 6 factors in terms
of 6 aspects in Table 3 in three quarters.

In the second quarter, factor 1 among the 6 factors has the
largest effects on CC in northern Texas, thanks to the maxi-
mum coefficient of 6.88. It has the lowest impact in eastern
Texas due to the coefficient range of 0.61–0.88. indicating
total population and hospitalization are the key factors of
COVID-19 and northern Texas is the main precaution and
control area of COVID-19. Factor 2 (age structure) positively
affects COVID-19 spatial heterogeneity in central Texas with
pink color. The area of the largest coefficient range 1.41–1.6 is
distributed in northern Texas. The smallest impacts of the
coefficient range 0.43–0.83 are the coastal area at the bottom
of the map. Factor 3 is the air quality index, having remarkable
spatial disparity for its coefficient from a range of −1.78–1.09
to a range of 0.15–0.66. In central Texas, the improvement of
air quality is driven by COVID-19 CC, but it reversely works
in northern Texas. That indicates that AQI has a spatial non-
stationary and environmental harness is available, reducing
CC in northern Texas. Factor 4 is an economic composite
index with a coefficient range from −0.86–0.50 to range
0.56–0.81. The spatial heterogeneity is located among north-
ern Texas, coastal counties, and eastern Texas. Factor 5 is the
natural supply index with a coefficient range from 0.02–0.28
to range 1.24–1.90. The spatial heterogeneity is subtle. Factor
6 is the medical supply index with a coefficient range from
−0.56–0.31 to range 0.32–0.51. It is evident to see that the
change of spatial heterogeneity and the medical condition in

Table 3 Factor roles in modeling OLS and GWR regressions

No. Items Quarter 2 Quarter 3 Quarter 4

1 Population and hospitalization Factor 1 (THB, POD, TP) Factor 1 (THB, POD, TP) Factor 1 (THB, POD, TP)

2 Age structure Factor 2 (P59, P80) Factor 2 (P59, P80) Factor 4 (P59, P80)

3 Air quality Factor 3 (TPE, AQI) Factor 5 (AQI)

4 Economic Factor 4 (PCI, UEM) Factor 4 (PCI, UEM) Factor 2 (PCI, UEM)

5 Natural supply Factor 5 (LA) Factor 3 (LA) Factor 3 (PCN, LA)

6 Medical supply Factor 6 (BPC) Factor 5 (BPC)
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northern Texas are worse than in other Texas counties (https://
www.dallasnews.com/news/2021/01/22).

In the third quarter, factor 1 among the 6 factors is the
dominant effect on CC due to the maximum range of co-
efficient from 4.86–7.22. It has the lowest impact in central
Texas due to the coefficient range of 0.63–1.00, implying
it is the most important factor and the spatial heterogeneity
is subtle. Factor 2 (age structure) positively affects
COVID-19 spatial heterogeneity in the eastern area with
pink color. The area of the largest coefficient range 1.05–
1.22 is distributed in northern Texas. The smallest impacts
of the coefficient range 0.18–0.45 are on 15 counties in
western Texas. Factor 3 is a natural supply index, having
remarkable spatial disparity for its coefficient range from
−1.10–0.26 to range 0.83–1.36. In central Texas, land area
has driven COVID-19 CC, but it reversely works on north-
ern Texas. That indicates that spatial distancing is not
available in northern Texas compared to central Texas.
Factor 4 is an economic composite index with a coefficient
range from −0.49–0.28 to range 0.54–0.82. The spatial
heterogeneity is located among Central Texas, coastal
counties, and eastern Texas. Factor 5 is the air quality
index with a coefficient from −1.09–0.41 to a range of
0.84–1.34. Spatial heterogeneity is obviously seen in the
change of spatial heterogeneity where positive impacts are
from western to eastern Texas while negative impacts are
from northern to western and southern Texas.

In the fourth quarter, factor 1 among 6 factors is still the
dominant effect on CC without the range of maximum coef-
ficient 3.99–6.6. Spatial heterogeneity is small, implying that
it is a fixed factor. Factor 2 is an economic composite index
with a coefficient range from −0.58 slight 0.23 to range 1.12
slight 1.74. The spatial heterogeneity is that areas of positive
impacts have decreased while areas of negative impacts have
increased. Factor 3 is a natural supply index with a coefficient
range from −0.28–0.03 to range 1.65–2.49. The spatial het-
erogeneity is that areas of positive impacts have decreased
while areas of negative impacts are moved from northern
Texas to eastern Texas. Factor 4 is the age structure index
with a coefficient moved from range 0.28–0.49 to range
1.02–1.16. The spatial heterogeneity is that both areas of pos-
itive impacts and negative impacts have increased. Factor 5 is
the air quality index with a coefficient range from −1.09–0.41
to range 0.84–1.34. Spatial heterogeneity is obviously seen in
the change of spatial heterogeneity where positive impacts are
from western Texas to eastern Texas while negative impacts
are from northern Texas to western and southern Texas.
Factor 6 is the medical supply index with a coefficient range
from −0.87–0.52 to range 0.29–0.58. It is evident to see the
change of spatial heterogeneity where areas of positive im-
pacts are moved from eastern Texas to western and southern
Texas while areas of negative effects have decreased and
moved.Ta

bl
e
4

R
ot
at
ed

co
m
po
ne
nt

m
at
ri
x

V
ar
ia
bl
es

T
he

se
co
nd

qu
ar
te
r
co
m
po
ne
nt

T
he

th
ir
d
qu
ar
te
r
co
m
po
ne
nt

T
he

fo
ur
th

qu
ar
te
r
co
m
po
ne
nt

E
xt
ra
ct

1
2

3
4

5
6

E
xt
ra
ct

1
2

3
4

5
E
xt
ra
ct

1
2

3
4

5

T
PE

0.
77
1

0.
14
0

−0
.0
01

0.
82
6

0.
23
0

0.
13
1

−0
.0
12

0.
79
5

0.
14
2

−0
.0
63

0.
48

0.
32

0.
66
2

0.
61
6

0.
14
5

0.
54
8

0.
21
3

0.
02
7

−0
.4
98

PC
N

0.
69
8

0.
11
5

0.
09
7

−0
.4
54

0.
30
7

0.
58
2

−0
.1
90

0.
81

0.
12
2

−0
.1
18

0.
64
7

0.
36
8

0.
47
6

0.
76
9

0.
10
4

0.
37
2

0.
76
9

0.
05
6

−0
.1
63

A
Q
I

0.
74
2

−0
.0
23

−0
.0
23

0.
82
8

−0
.0
06

−0
.1
81

−0
.1
49

0.
63
3

0.
29
4

0.
02
1

−0
.1
91

0.
03
1

0.
71
3

0.
50
4

0.
17
5

0.
55
1

0.
24

−0
.0
22

−0
.3
34

T
H
B

0.
95
6

0.
97
3

0.
08
3

0.
02
1

−0
.0
22

0.
00
3

0.
04
3

0.
95
2

0.
97
4

0.
05
6

0.
01
3

−0
.0
15

−0
.0
06

0.
95
8

0.
97
4

0.
01
2

0.
02
4

0.
08
2

0.
04
4

B
PC

0.
77
9

0.
10
8

−0
.0
99

−0
.0
90

−0
.0
10

0.
07
0

0.
86
3

0.
34
3

0.
14
8

0.
04

0.
04
8

0.
08
1

−0
.5
58

0.
64
2

0.
12
1

−0
.0
03

0.
08
5

−0
.0
53

0.
78
6

PO
D

0.
92
7

0.
94
2

0.
15
8

0.
03
3

−0
.0
53

0.
09
7

−0
.0
20

0.
92
6

0.
94
5

0.
12
4

0.
1

−0
.0
56

0.
07
2

0.
92
6

0.
94
2

−0
.0
13

0.
11
5

0.
15
1

−0
.0
39

L
A

0.
75
5

0.
08
3

0.
07
2

−0
.1
11

0.
19
8

−0
.8
31

−0
.0
18

0.
71

0.
06
9

0.
06
2

−0
.8
04

0.
18

0.
14
8

0.
61
3

0.
07
7

0.
19
5

−0
.7
47

0.
1

0.
03
4

PC
I

0.
65
8

0.
14
5

0.
07
6

−0
.0
15

−0
.7
82

0.
10
9

−0
.0
83

0.
69

0.
13
8

0.
04
6

0.
09
7

−0
.8
07

0.
09
4

0.
62
6

0.
17
7

−0
.7
28

0.
09
3

0.
07
1

−0
.2
27

T
P

0.
97
2

0.
97
8

0.
11
7

0.
03
8

−0
.0
29

0.
00
8

−0
.0
12

0.
96
7

0.
97
8

0.
08

0.
01
9

−0
.0
28

0.
06
1

0.
97
2

0.
97
9

0.
01
3

0.
03
1

0.
11
2

−0
.0
2

PB
P

0.
68
3

0.
28
0

0.
22
9

−0
.2
23

0.
34
9

0.
60
3

0.
13
3

0.
59
3

0.
29
3

0.
27
4

0.
51
4

0.
31
4

−0
.2
62

0.
71

0.
22
7

0.
25
8

0.
69
8

0.
23
4

0.
22
3

U
E
M

0.
72
1

0.
03
2

0.
01
9

0.
15
9

0.
81
5

0.
12
9

−0
.1
15

0.
67
6

0.
02
5

0.
00
4

0.
12
6

0.
80
1

0.
13
6

0.
65
8

0
0.
80
6

0.
07
1

0.
01
4

−0
.0
62

PM
P

0.
52
9

−0
.1
69

0.
43
0

−0
.0
46

−0
.0
16

−0
.1
11

0.
54
9

0.
35
8

−0
.1
41

0.
53
3

−0
.1
61

0.
01
3

−0
.1
68

0.
45
4

−0
.1
59

−0
.0
19

−0
.0
77

0.
46

0.
45
9

P5
9

0.
79
6

0.
16
2

0.
85
1

0.
06
4

−0
.0
94

0.
17
2

0.
05
3

0.
78
6

0.
18
5

0.
83
5

0.
19
6

−0
.1
01

0.
07
5

0.
77
7

0.
17

−0
.0
77

0.
17

0.
84
4

−0
.0
34

P8
0

0.
70
0

−0
.1
89

−0
.8
05

0.
08
7

−0
.0
47

0.
06
5

0.
04
1

0.
64
6

−0
.2
09

−0
.7
74

0.
04
5

−0
.0
25

−0
.0
22

0.
68
8

−0
.1
88

−0
.0
34

0.
05
2

−0
.8
05

0.
02
8

43741Environ Sci Pollut Res  (2021) 28:43732–43746

https://www.dallasnews.com/news/2021/01/22
https://www.dallasnews.com/news/2021/01/22


Temporal change of CC factors

Population and hospitalization impacts on COVID-19 within
3 quarters are relatively positive without a change in terms of
two aspects. For coefficients, the value of the coefficient is
fixed between 0.52 and 7.22. For the movement of spatial
impacts, the spatial distribution of COVID-19 impacts is stag-
nant across three quarters. More importantly, northern Texas,
including El Paso, Odessa, Midland, Lubbock, and Amarillo
areas, is the most important area in curbing the COVID-19 CC
spread. Hence, community containment measures are the cru-
cial result of cluster spreading as one of the characteristics of
COVID deterioration.

Age structure impacts during 3 quarters are positive regard-
ing two aspects. First, the coefficients from the second quarter
to the fourth quarter are still accounting for 0.28–1.60.
Second, the spatial distribution of COVID-19 impacts is in-
creased across three quarters. The areas of positive impacts
with red color are sprawling while the areas of small impacts
with blue color are extending. That means policy restrictions
are gradually working, and the virus is extremely spreading
along with geographical trajectory.

Air quality impacts during three quarters are flexible in
terms of two aspects. First, the coefficient range in two quar-
ters has increased from −1.78–0.66 to −1.09–1.34. It demon-
strated that the role of the environment is rising. Second, both
the areas of positive impacts with red colors and the areas of
negative impacts with blue colors are moved from south to
north and from north to west, respectively. Interestingly, air
quality impacts are ignored in the fourth quarter compared to
other quarters. It implies that the rules of environmental im-
pacts are a complicated and stochastic process.

Economic impacts during three quarters are flexible as
well. On one hand, the coefficient range in three quarters has
increased from −0.86–0.81 to −0.58–1.74. It demonstrated
that the role of economic impacts is rising. Second, the areas
of positive impacts with red colors are decreasing surround
north Texas, whereas the areas of negative impacts with blue
colors are extending around Houston. Interestingly, coastal
county of positive impacts at the bottom of the map is shrink-
ing until it has disappeared in the last quarter. It reveals that
policy control and human self-consciousness are beneficial for
mitigating COVID-19 spread.

Natural supply impacts in three quarters have fluctuated.
First, the coefficient range within three quarters has changed:
0.02–1.9 and −1.10–1.36 into −0.28–1.49. It demonstrated
that the role of natural supply is out of control. Second, the
cluster of positive impacts with red colors is decreasing from
24 counties in north Texas to 9 counties. Simultaneously, the
areas of negative impacts with blue colors are changing from
the east to the north, finally landing on the east. It means that
natural impacts are weakening compared to other impact
factors.

Medical supply impacts in three quarters have fluctuated as
well. First, the coefficient range within two quarters has
changed: −0.5–0.51 and 0 into −0.87–0.58. It demonstrated
that the role of medical supply impacts is small and out of
control. Second, the cluster of positive impacts with red colors
is increasing from the east–south tracking to the west–south
tracking. Simultaneously, the areas of negative impacts with
blue colors are decreasing from the center to the north.
Interestingly, the impacts of the third quarter are ignored,
representing medical capacity is limited and scarce.

Discussion

In this study, 14 potential risk variables are selected from race,
climate, land cover, demographic categories, hospitalization,
gender, age structure, and socioeconomic as independent var-
iables to estimate their spatial–temporal impacts on the distri-
bution of the COVID-19 cumulative cases at the county level
in Texas. Since current research lacks the consideration of
time-series models, spatial–temporal GWR is explored to ac-
curately identify the unbalanced distribution of COVID-19

Table 5 GWR and OLS models comparison list

Items Quarterly 5fOLS 5fGWR

AICc 2 883.74 811.99

R2 2 0.54 0.77

Std. deviation 2 1.55 1.73

Neighbors 2 254 77

Max_Value 2 14.58 10.78

Min_Value 2 0.37 0.74

Sum 2 1008.23 1020.12

Average 2 4.13 4.18

AICc 3 870.29 790.31

R2 3 0.55 0.77

Std. deviation 3 1.464 1.626

Neighbors 3 254 77

Max_Value 3 15.589 12.31

Min_Value 3 3.078 1.595

Sum 3 1500.37 1505.32

Average 3 5.954 5.973

AICc 4 850.42 778.75

R2 4 0.49 0.72

Std. deviation 4 1.24 1.42

Neighbors 4 254 83

Max_Value 4 16.49 12.94

Min_Value 4 4.57 3.64

Sum 4 1804.85 1809.34

Average 4 7.11 7.12
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distribution factors of CC in the
GWR model
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cumulative cases and the complex relationship between the
COVID-19 CC and its risk factors (Luo et al. 2020). Four
quarters in 2020 are categorized to model quarterly GWR to
observe COVID-19 CC temporal–spatial change in Texas
county. A spatial–temporal COVID-19 trajectory is simulated
in the aforementioned analysis. Population, hospitalization,
and age structure have exhibited stable, positive influences
on COVID-19 cumulative cases. Climate, natural, economic,
and medical conditions have displayed non-stationary, sto-
chastic change processes. The longitudinal monitor mecha-
nism bridges the gap of geographical analysis of COVID-19.
Spatial–temporal geographical analysis is the main part of the
spatial–temporal information system (STIs, which is defined
by the positions of objects within the environment, the use of
dynamic time intervals, ontology, or the study of the relation-
ships of the objects, real-time or real-world modeling, and the
use of analytical tools. It is a mix of conventional geographic
information systems (GIS) with the use of modeling and sim-
ulation skills (McNeil and Kelso 2013).

Previous studies have shown that many social–
environmental and economic variables are captured to analyze
the distribution of COVID-19 cases and death rate with GIS
tools via multiple (Desjardins et al. 2020; Shim et al. 2020;
Lau et al. 2020, Mollalo et al. 2020) patterns of spatial change
such as health status, disaster, transportation, atmosphere, cli-
mate, and socioeconomic indices, though they did not men-
tion dimension reduction methods to avoid multicollinearity.
In this study, for purposes of demonstrating the effectiveness
of environmental and social–economic contributions on
COVID-19 CC, PCA is used to simple multiple dimensions
in CC spatial–temporal heterogeneity research. It is a useful
statistical technique that has found application in fields such as
face recognition and image compression and is a common
technique for finding patterns in data of high dimension. The
principal components of the faces in the training set are cal-
culated. Recognition is achieved using the projection of the
face into the space formed by the eigenfaces (Zou and Xue
2018). Especially, composite factors are optimized GWR
model fitness so that the models are catered for the demand
of reality.

As previously described, variables are weighted to reflect
their relative significance and relationship with other vari-
ables. However, researchers ought to figure out the meaning
of synthetic factors. In this study, the findings are included: (1)
The most important quarantine areas of COVID-19 in Texas
are El Paso, Odessa, Midland, Lubbock, and Amarillo areas.
(2) The 20–59 population is the main source of cumulative
cases with a lower death rate, while over 80 population has
lower infection rates and higher COVID death rates. Thus, the
over 80 population is the most vulnerable group to COVID-
19. (3) Race and gender should be paid no attention in con-
trolling COVID-19 since they are not components of factors.
(4) Economic, environmental, race, and natural condition

factors directly facilitated COVID-19 cumulative cases
change with spatial–temporal heterogeneity.

Limitations

This research just focuses on the Texas COVID-19 scenario,
and the application of the research is limited to other states.
There is no chronic disease data to support this re-
search. As explanatory variables, they should be incor-
porated in future studies, although it is exciting to see
diabetes (Gupta et al., 2020) and cardiovascular condi-
tions (Du et al. 2020) as potential impacts on COVID-
19 health outcomes. Collecting data of multiple dimen-
sions might improve and enrich spatial variability find-
ings of COVID-19. This research merely intended to
use spatial–temporal quarterly GWR models, yet there
is a distance to be reached for real-time dynamic
GWR models. GTWR or more effective spatial–
temporal models are considered in future research.

Implications

The COVID-19 pandemic revealed systemic flaws in the food
distribution system that failed to protect against hunger, and
diet influenced non-communicable diseases. It also exposes
the conditions that made people who are living with low in-
comes, disenfranchised, discriminated against, and chronical-
ly ill the most vulnerable to harm from COVID-19.
Especially, COVID-19 accelerated the decline of health in
the USA. Under the Trump administration’s health-harming
policies, some state and local governments have stepped in to
protect their residents but have done so unevenly. Some have
attempted to maintain environmental and health insurance
regulations, fund health insurance expansions, and protect im-
migrants. However, other local authorities have done the op-
posite by imposing work requirements onMedicaid enrollees,
restricting access to abortion and contraception, and collabo-
rating with federal agencies in apprehending and detaining
immigrants. This geographical policy divergence continues a
trend of devolution of responsibility for regulation and social
service provision from federal to state and local levels
(Himmelstein et al. 2020). This research will benefit geo-
graphical health divides evenly and provide food nutrition
distribution reference transparently. Inspired by Mollalo
et al. (2020) and Luo et al. (2020), who applied and compared
the performance of multiscale GWR models across the USA
for incident rates and death rates to account for the spatial
variability of COVID-19, spatial–temporal GWR models are
considered to compare global of OLS model to disclosure
different change of COVID-19 cumulative case in response
to social–economic and environmental variables at the county
level in Texas. To add spatial–temporal variability under-
standing of empirical COVID-19 analysis, there is a lack of
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county-level research on COVID-19 GWR modeling.
Therefore, the results of this study provide new empirical ev-
idence to support future geographic modeling of the diseases.

Conclusion

Spatial–temporal geostatistical analysis on COVID-19 CC
through GWR is selected real-time raw to expose real scenar-
ios in Texas counties. Thus, it is beneficial for the government
of Texas and CDC to make appropriate and scientific judg-
ments, target vulnerable communities, allot health care re-
sources, and reshape disease surveillance and response sys-
tems, which remain the core of modern public health practices
(Bashir et al. 2020a, 2020b; Gadicherla et al. 2020).
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