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Abstract

Background.—Childhood obsessive-compulsive symptoms (OCS) are common and can be an 

early risk marker for Obsessive-Compulsive Disorder (OCD). The Adolescent Brain and Cognitive 

Development (ABCD) Study provides a unique opportunity to characterize OCS in a large, 

normative sample of school-age children and to explore cortico-striatal and task-control circuits 

implicated in pediatric OCD.

Method.—The ABCD Study acquired data from 9–10-year-olds (N=11,876). Linear mixed-

effects models probed associations between OCS (Child Behavior Checklist) and cognition (NIH 

Toolbox), brain structure (subcortical volume, cortical thickness), white matter (diffusion tensor 

imaging), and resting-state functional connectivity.

Results.—OCS scores showed good psychometric properties, high prevalence, and related to 

familial/parental factors, including family conflict. Higher OCS related to better cognitive 

performance (b=0.06, t(9966.60)=6.28, p<.001, η2
p=0.01), particularly verbal, when controlling 

for ADHD, which related to worse performance. OCS did not significantly relate to brain structure 

but did relate to lower superior cortico-striate tract fractional anisotropy (b=−0.03, t=−3.07, 

p=.002, η2
p=0.02). Higher OCS related to altered functional connectivity, including weaker within 

dorsal attention network connectivity (b=−0.04, t(7262.87)=−3.71, p<.001, η2
p=0.002) and weaker 

dorsal attention-default mode anti-correlation (b=0.04, t(7251.95)=3.94, p<.001, η2
p=0.002). 

Dorsal attention-default mode connectivity predicted OCS at 1-year (b=−0.04, t(2407.61)=−2.23, 

p=.03, η2
p=0.03).
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Conclusions.—OCS are common and may persist throughout childhood. Cortico-striatal and 

attention network connectivity are likely mechanisms in the subclinical-to-clinical spectrum of 

OCS. Understanding correlates and mechanisms of OCS may elucidate their role in childhood 

psychiatric risk and suggest potential utility of neuroimaging, e.g. dorsal attention-default mode 

connectivity, for identifying children at increased risk for OCD.
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Introduction

Subclinical obsessive-compulsive symptoms (OCS) in childhood predict increased risk for 

Obsessive-Compulsive Disorder (OCD) diagnosis in adulthood (odds ratio [OR]~5–10) (1). 

Critically, OCS are common in children and adolescents and, even below clinical threshold, 

associate with impairment and comorbidity (1–7). Childhood OCS exhibit moderate 

stability, with some ebb and flow within-individuals over development (4, 8). Cross-

sectional research generally suggests greater OCS prevalence in mid vs. early childhood, (3) 

whereas longitudinal work indicates weak persistence of OCS during this developmental 

period (4, 8). Uncovering neural and cognitive mechanisms underlying OCS and their 

variable course over childhood OCS could help improve early identification of children most 

at risk for OCD.

Few pediatric studies have examined neural or cognitive mechanisms underlying OCS or 

subsequent OCD risk. Several relatively small studies in healthy adults associate OCS with 

executive function deficits, e.g. cognitive flexibility (9, 10), spatial problem (11, 12), and 

response inhibition (13); c.f. (14). Likewise, few pediatric studies have related OCS to brain 

structure and function. Among 255 healthy 8–12-year-olds, overall OCS scores did not 

associate with voxel-based morphometry, whereas subscales showed differential 

associations, e.g. ordering symptoms vs. doubt-checking symptoms (15). Among 1,938 

healthy adolescents from the IMAGEN study, compulsive behaviors (including OCD and 

eating disorder symptoms) associated with greater ventral striatal, orbitofrontal, and 

dorsolateral prefrontal cortex gray matter volume (16).

While much work suggests that disruptions in cortico-striatal-thalamo-cortical (CSTC) 

circuits are central to OCD pathophysiology, e.g. (17), leading to deficits in controlling 

obsessions and urges to perform rituals, emerging evidence highlights broader circuit 

alterations, e.g. (18). Particularly, meta-analytic work suggests OCD-related alterations in 

connectivity within and between executive, salience, and default mode networks (DMN) 

(19) in line with a proposed triple network model of psychopathology. (20) Furthermore, 

reviews examining research on pediatric OCD highlight structural, functional, and 

connectivity alterations in both fronto-striatal and task-control neural circuits (21–23). For 

example, findings from our group suggest alterations in cingulo-opercular structural 

connectivity (24) and functional connectivity between default mode network (DMN) and 

task-positive network regions in pediatric OCD (25). The ENIGMA OCD consortium noted 
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larger thalamic volumes (26) (N=201 healthy controls vs. N=103 unmedicated OCD) and 

thinner parietal cortices (27) in youth with OCD compared to healthy controls.

Large, normative studies are a critical and powerful approach to study childhood OCS in the 

population. The Adolescent Brain and Cognitive Development (ABCD) Study is one such 

study, which provides a unique opportunity to characterize OCS in 9–10-year-old children 

(N=11,876). ABCD is the largest, publicly accessible, prospective study of school-age child 

sampled with minimally restrictive exclusion criteria across the USA to collect harmonized 

neuroimaging data. This study yields several advantages in addressing our questions of 

interest, including sufficient power to identify even small effect sizes and to address 

heterogeneity in a normative population, compared to studies like the Pediatric Imaging, 

Neurocognition, and Genomics Study (PING) or Healthy Brain Network (HBN), both of 

which sample restricted geographic areas and less focal age ranges, or the ENIGMA 

Consortium which conducts meta-/mega-analyses on unharmonized data collected across 

multiple sites.

Given prior data, we expected that OCS in the ABCD sample would exhibit a ~5–10% 

prevalence above established cutoff scores (28, 29), minimal sex differences or a slight male 

preponderance (3, 4, 6, 8, 28), significant familiality (8), and greater longitudinal risk for 

poor psychiatric outcomes (1). We further expected that higher OCS scores would relate to 

lower executive functioning (9–13), smaller thalamic volumes (26) and thinner parietal 

cortices (27), as well as altered structural and functional connectivity within task-control 

circuits and between task-control networks and the DMN (21–25). In longitudinal analyses, 

we examined whether neural and cognitive factors associated with OCS at baseline also 

predicted change in OCS over development. Finally, we explored effects of comorbid 

ADHD on brain and behavioral correlates of OCS given the high prevalence of ADHD in the 

ABCD sample and data suggesting both shared and unique neural mechanisms across 

pediatric ADHD and OCD (30–33).

Materials and Method

Overview.

The ABCD Study is a multi-site study (21 sites across the USA) with the overall goals of: 

(a) assessing variability in adolescent brain and cognitive development and (b) 

understanding factors that influence development (34). Using a school-based recruitment 

strategy (public and private elementary schools), the ABCD Study has collected baseline 

clinical, questionnaire, behavioral, and neuroimaging data from 9–10-years-olds with 

ongoing longitudinal assessments (35). Exclusion criteria included lack of English fluency, 

major medical or neurological conditions, premature birth, MRI contraindication, history of 

traumatic brain injury, current diagnosis of schizophrenia, moderate/severe autism spectrum 

disorder, intellectual disability, or alcohol/substance use disorder. The present study 

examined the second public ABCD data release (version 2.0.1, released July 2019; http://

dx.doi.org/10.15154/1503209), which included baseline clinical, questionnaire, cognitive, 

and neuroimaging data and questionnaire data from the 1-year follow-up assessment.
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Assessment.

Children and their parent/guardian completed an extensive battery of clinical interviews, 

self- and parent-report measures, and neurocognitive tests (36). Measures examined in the 

current analyses are briefly summarized below (see Table 1 and Supplement). 

Questionnaires included parent-reported demographics, brief assessments of parent- and 

child-reported pubertal status (37), and parental/familial measures are summarized in the 

Supplement (38, 39)(40, 41)(42).

Children and their parent/guardian completed modules of a self-administered, computerized 

Kiddie-Schedule for Affective Disorders (K-SADS COMP; Table 2) (43–45) to assess 

children’s lifetime (past, present, or partial remission) DSM-5 diagnoses (36). OCD was 

assessed solely by parent-report on the K-SADS COMP. Composite variables were created 

to examine lifetime diagnoses of ADHD (parent-report only), depressive disorders (parent- 

or child-report of major depressive disorder, dysthymia, or an unspecified depressive 

disorder), anxiety disorders (parent- or child-report of separation anxiety disorder, social 

anxiety disorder, or generalized anxiety disorder), and externalizing disorders (parent-report 

of conduct or oppositional defiant disorder).

OCS Measure.

Parents/guardians completed the Child Behavior Checklist (CBCL) (46) to assess their 

child’s emotional and behavioral functioning. Age- and sex-normed T-scores were used for 

analyses (for high correspondence with raw scores, see Figure S1). Our primary predictor of 

interest was the 8-item OCS subscale (Table 3) (28, 29, 47–50), c.f. (51, 52). N=4937 

participants completed the CBCL at 1-year follow-up as of the 2.0.1 release. We confirmed 

good psychometrics of the 8-item CBCL OCS subscale (see Supplement), including good fit 

of a one-factor/unidimensional model (lavaan package) (53, 54) and moderate/good internal 

consistency (psych package, standardized Cronbach’s alpha=.71, omega=.87) (55). For item-

level inter-correlation, see Figure S2. See Supplement and Figure S3 for receiver operator 

curve analyses (pROC package) (56, 57).

Cognition.

Neurocognitive performance was assessed using the NIH Toolbox (58, 59). Total Cognition 

age-corrected T-scores (M=100, SD=15) were examined as proxy for commonly used full-

scale IQ measures (59, 60). This is derived from two verbal measures (Picture Vocabulary, 

Oral Reading Recognition) and six executive functioning measures (Dimensional Change 

Card Sort, Flanker, Picture Sequence Memory, List Sorting Working Memory, Pattern 

Comparison Processing Speed).

Structural Magnetic Resonance Imaging (MRI).

Children completed neuroimaging on GE, Siemens, or Phillips scanners (61). High-

resolution T1- and T2-weighted structural MR images (1mm isotropic, prospective motion 

correction) were processed through ABCD pipelines (61) (including registration, intensity 

normalization, bias field correction). Structural data that did not pass quality control (QC) 

procedures performed by ABCD (visual inspection of T1 images and FreeSurfer outputs) 

(62) were excluded (see Supplement). Herein, we focused on ABCD summary of standard 
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FreeSurfer v5.3.0 (http://surfer.nmr.mgh.harvard.edu/) (63–66) subcortical volumes and 

cortical thickness from Destrieux atlas (67) regions of interest (ROI).

Diffusion Tensor Imaging (DTI).

High angular resolution diffusion imaging (1.7mm isotropic) was collected using multiband 

acquisition (factor=3), 96 diffusion directions, and four b-values (61). Standardized 

preprocessing included eddy current, head motion, and distortion correction (62). Major 

white matter tracts were automatically segmented using AtlasTrack (68). Participants whose 

DTI and structural MRI data did not pass ABCD QC (62) were excluded. Herein, we 

focused on tract-average factional anisotropy (FA). Supplementary analyses examined mean, 

longitudinal (or axial), and transverse (or radial) diffusivity (MD, LD, and TD) as well as 

Restriction Spectrum Imaging (RSI) model parameters (69).

Resting-State Functional Connectivity (RSFC).

Children completed resting-state acquisition during high-resolution (2.4 mm isotropic, 

TR=800ms) multi-band (factor=6) scanning. Standardized fMRI preprocessing included 

registration, distortion correction, and normalization. RSFC post-processing included 

regression of 24 temporally filtered motion parameters, frame-wise displacement 

(FD)>0.3mm outliers, as well as white matter, cerebral spinal fluid, and whole brain signal 

(62). Within- and between-network connectivity was extracted from the cortical ribbon 

parcellated using the Gordon atlas (70), i.e. averaging all connections between ROIs 

assigned to given networks. Participants whose resting-state and structural MRI data did not 

pass ABCD QC (62) were excluded. Further, per ABCD suggestions, we excluded 

participants with <375 frames of good data after motion/outlier regression and excluded data 

from Philips scanners given a preprocessing issue affecting only functional MRI (identified 

12/05/2019). Given our hypotheses, we focused on 28 network-level RSFC averages within 

and between task-control circuits (cingulo-opercular [CO], cingulo-parietal [CP], dorsal 

attention network [DAN], fronto parietal [FP], salience network [SN], ventral attention 

network [VAN]) and the DMN.

Analysis.

Analyses were performed in R v4.0.0 (71). Sample characteristics and group differences as a 

function of K-SADS lifetime OCD diagnosis were summarized using the scipub package 

(72). Specifically, two-sample t-tests were used for continuous variables and χ2 tests for 

categorical variables with Cohen’s d or OR effect sizes, respectively. SOLAR (73) polygenic 

analyses estimated familiality of OCS scores (see Supplement).

Linear mixed-effects (LME) models (lme4 package) (74) were used to examine OCS scores 

(or OCD diagnosis) as predictors of our outcomes of interest, similar to prior work (75). All 

models included random effects for family nested within acquisition site (or MRI serial 

number for brain analyses) and fixed-effects covariates for age, sex, race, ethnicity, family 

income, parental education, parental marital status, pubertal status, and Total Cognition T-

scores (except when cognition was the outcome). Structural analyses additionally covaried 

child height (accounting for overall body size/development), T1 image signal-to-noise, and 

intracranial volume (ICV) in subcortical analyses. DTI analyses additionally covaried mean 
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FD. RSFC analyses additionally covaried number of frames retained after processing. Inter-

correlations among all covariates noted in Table S1. Standardized beta coefficients and 

partial eta-squared (η2
p) (76) effect sizes are presented for all models.

False discovery rate (FDR) was used to correct for multiple comparisons across measures/

ROIs within each analysis. For each analysis, participants were excluded for missing data 

using list-wise deletion. Within the useable sample for each cognition, structural, and DTI 

analysis, outcome variable outliers >3SD from the mean were Winsorized to the next non-

outlier value (trimmed 0.25% most extreme RSFC values instead, per ABCD; see 

Supplement).

Follow-up Analyses.

Follow-up tests were run to confirm significant effects and address comorbidity. LME 

models were conducted again with psychotropic medication status and K-SADS depressive, 

anxious, and ADHD diagnoses as covariates. Given the high rate of ADHD in the ABCD 

sample (see Results, Table 2) and potential shared/distinct neurocognitive mechanisms 

between OCD and ADHD (30–33), we also ran separate LME models covarying CBCL 

DSM-oriented ADHD T-scores. Further analyses comparing children with and without OCD 

and ADHD as well as propensity-matched (77, 78) groups (from full sample and an 

unmedicated subset) comparing children with OCD to healthy and clinical controls are 

detailed in the Supplement.

Longitudinal Analysis.

Longitudinal analyses examined whether cognitive or neural factors associated with baseline 

OCS also predicted change in OCS at 1-year follow-up. Specifically, we used similar LME 

models to test whether these factors significantly associated with follow-up OCS over and 

above baseline OCS and our standard fixed and random effects.

Results

Participants.

Table 1–2 summarize demographic and clinical characteristics of the full sample and 

comparing by K-SADS OCD diagnosis (see Tables S2–3 comparing by OCS≥5). N=1099 

(9.41%) children had a lifetime parent-reported diagnosis of OCD, including n=898 (7.68%) 

current and n=501 (4.29%) past. Lifetime OCD prevalence varied by site (χ2(21)=59.29, 

p<.001) from 5.79–13.77%. Yet, site differences (n=10,137, F(21)=1.49, p=.07) were largely 

accounted for by our demographic covariates in a logistic regression. OCD was more 

common among children with other psychiatric diagnoses (Table 2, Table S4, OR>1.50, 

Supplement).

Clinical Correlates of OCS:

A full range of CBCL OCS scores was observed (Figure 1; Table 3); N=5866 (55.7%) 

children exhibited non-zero scores and n=807 (6.8%) surpassed the suggested ≥5 threshold 

for clinically significant symptoms (28, 29). Obsessions, perfectionism, and worries were 

most commonly endorsed (Table 3). Baseline and 1-year follow-up OCS T-scores were 
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strongly correlated (r=.61, t(4935)=53.53, 95%CI=[.59,.62], p<.001). OCS T-scores also 

correlated moderately with counts of current K-SADS OCD symptoms (r=0.42, 

95%CI=[.40,.43], t(11851)=50.22, p<.001). See Table S5 for K-SADS OCD symptom 

endorsement.

As expected, OCS scores were higher among children with vs. without a lifetime OCD 

diagnosis (Table 1, Figure 1). Supra-threshold OCS≥5 were much more common among 

youth with vs. without an OCD diagnosis (Table 3; N=328/1098 [29.87%] vs. N=770/10,579 

[4.39%]; z=23.56, p<.001, OR=8.54), over and above our standard covariates. Similar to 

predictors of OCD diagnosis (Table S4), higher OCS scores were also observed among 

participants who were male, White, lower income, or with college-educated parents (Table 

S2, S6). OCS scores correlated strongly with other CBCL subscales, particularly 

internalizing and thought problems (all r>.70, t(11862)>106.00, p<.001) likely due to item 

overlap, relative to ADHD (r=.50, t(11862)=62.38, p<.001) and externalizing subscales 

(r=.48, t(11862)=60.25, p<.001). Analysis of OCS heritability (~70%) and associations 

between child OCS and elevated parent self-report OCS, parenting monitoring, and family 

conflict are detailed in the Supplement.

OCS and NIH Toolbox Cognition:

Higher OCS scores weakly associated with worse performance on the NIH Toolbox Flanker, 

Card Sort, Working Memory, and Episodic Memory tasks and better Picture Vocabulary 

performance (all p<.05, FDR-p<.08; Table S7–8). Analyses covarying CBCL ADHD T-

scores revealed FDR-corrected associations between higher OCS and better Cognition Total 

scores (b=0.06, t(9966.60)=6.28, p<.001, η2
p=0.01; Table S7–8), driven by Working 

Memory, Picture Vocabulary, and Oral Reading scores, whereas ADHD associated with 

worse performance (b=−0.14, t(9967.11)=−13.90, p<.001, η2
p=0.03; Table S8). Similar 

results were observed when controlling for K-SADS lifetime ADHD or medication use 

(Tables S7–8). See Supplement for results of additional follow-up tests, including better 

performance among children with lifetime OCD vs. those with ADHD or ADHD and OCD.

OCS and Brain Structure:

No FDR-corrected associations emerged between OCS or lifetime OCD and subcortical 

volumes or cortical thickness (Tables S9–10; Figure S4; Supplementary Results). Note that 

effects were similarly non-significant controlling for CBCL ADHD (which was itself a non-

significant predictor), though thalamic and hippocampal volumes differed between children 

with OCD vs. comorbid OCD + ADHD (see Supplement). Among unmedicated children, 

higher OCS scores related to smaller right accumbens volume (b=−0.02, t(8233.19)=−2.75, 

p<.001, p-FDR=.08, η2
p=0.001) but no FDR-corrected effects of OCS or OCD diagnosis 

were observed on subcortical volumes or cortical thickness.

OCS and White Matter Integrity (DTI):

Examining the 35 AtlasTrack tracts, FDR-corrected results indicated higher OCS scores 

related to lower FA in in the left superior cortico-striatal tract (SCS; Table S11), particularly 

in the parietal portion of the left SCS (n=8585, b=−0.03, t(8546.23)=−3.31, p=.001, FDR-

p=.03, η2
p=0.02 Table S12), including when controlling for ADHD scores or medication 
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status. No significant effects of lifetime OCD were observed on FA in the full sample. 

However, children with lifetime OCD exhibited lower parietal SCS FA than propensity-

matched healthy controls and children with current OCD exhibited higher FA than those 

with current ADHD (See Supplement, Figure S5).

OCS and Functional Connectivity:

Examining 28 within- and between-network RSFC averages of interest, FDR-corrected 

associations were detected between OCS and four connections (Figure 2; Table S13). 

Specifically, higher OCS scores associated with weaker/less positive within-DAN RSFC and 

weaker/less negative DAN-VAN and DAN-DMN connectivity (Table S11). Higher OCS also 

related to stronger positive CO-VAN connectivity (which averaged near zero in the full 

sample, Figure S6). These four FDR-corrected effects were generally robust to follow-up 

covariates, including ADHD T-scores or medication status (see Supplement). Weaker 

within-DAN RSFC was also detected in children with OCD relative to healthy and clinical 

control groups in follow-up analyses (see Supplement). No OCD vs. ADHD or OCD

+ADHD subgroup effects were noted for these four connections.

OCS at 1-Year Longitudinal Follow-up:

NIH Toolbox cognition measures and SCS FA, which related to baseline OCS, did not 

significantly predict change in OCS by 1-year follow-up (p>.05; See Supplement). Of the 

four RSFC connections significantly associating with baseline OCS, more negative DAN-

DMN connectivity predicted worsening OCS at 1-year follow-up (n=3040, b=−0.04, 

t(2407.61)=−2.23, p=.03, η2
p=0.03), above and beyond baseline OCS (b=0.61, 

t(2946,42)=38.89, p<.001, η2
p=0.36). Note that DAN-DMN connectivity did not 

significantly predict change in CBCL Internalizing, Thought, or ADHD T-scores at 1-year 

follow-up (|t<1.64, p>.10, η2
p<.001), above and beyond corresponding baseline scores.

Discussion

Herein, we leveraged the large, normative ABCD Study dataset to probe obsessive-

compulsive symptoms among 9–10-year-old children across the United States. Complex 

associations with cognitive performance were detected, specifically higher OCS scores 

related to better cognitive performance, particularly verbal, only when covarying for ADHD. 

Though we did not detect associations with brain structure, OCS did relate to differences in 

structural and functional connectivity of cortico-striatal and attentional circuits implicated in 

the pathophysiology of OCD. Particularly, altered DAN-DMN connectivity may serve as a 

marker for longitudinal worsening OCS over childhood. Thus, ABCD allowed for 

unprecedented analysis of continuous associations between OCS and brain structure/

function in youth and our findings highlight the potential for ABCD to allow the 

identification of circuit-based neuroimaging markers of OCS/OCD risk.

Supporting prior work, the CBCL OCS subscale showed promising psychometrics, 

including internal consistency, high heritability (that can be further refined when greater 

genetic relatedness information is available from ABCD), convergence with K-SADS OCD 

symptom count, and potential longitudinal stability (8, 28, 29, 47–50). With this measure, 
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OCS were prevalent among 9–10-year-olds (6.80% with OCS≥5; 25.6% with parent-

reported obsessions), consistent with prior estimates of 2–10% of youth exhibiting CBCL 

OCS≥5 (28, 29). We noted slightly higher OCS scores among boys than girls (~0.2 raw 

points, ~0.8 T-score). This has been noted in some prior pediatric work (3, 4, 6, 28) though 

OCS are more prevalent among females in adulthood (79, 80). As expected, OCS were 

elevated among children with a diagnosis of OCD, as well as other mood and anxiety 

disorders, similar to prior adult work (79, 80). Importantly, greater information about 

longitudinal stability, risk, and comorbidity can be determined when later waves of follow-

up are available from ABCD. Furthermore, supplemental analyses linked OCS to familial 

conflict, a potential indicator of impairment and reduced quality of life that is often 

associated with OCS (1, 2, 81). Future longitudinal ABCD analyses could better parse 

parental/familial factors as potential causes or consequences of OCS.

Next, we identified associations between OCS and cognitive performance, though 

complicated by comorbid ADHD symptoms. ADHD severity related to worse performance 

on NIH Toolbox measures; given strong correlations with OCS, ADHD likely masked/

confounded associations between OCS and cognition. Note that this is difficult to parse fully 

as ADHD-OCS correlations likely reflect both method variance (i.e. both parent-report 

CBCL) and actual underlying symptom comorbidity. Nonetheless, when covarying (or 

excluding) ADHD, OCS related to better Total Cognition scores, driven by verbal 

performance, though effect sizes were small. OCS was unassociated with executive function 

deficits, inconsistent with prior work typically examining small samples of young adults 

(n<40 with OCS) (9, 11–13), potentially due to differences in sample characteristics (e.g., 

undergraduate sampling) or the types of executive functions measured, e.g. more in-depth 

behavioral assessments of goal-directed behavior (two-step reinforcement learning task) 

related to compulsivity dimensionally in adults (82). Though the NIH Toolbox measures 

provide robust and reliable estimates of executive function, scores generally represent a 

scaled composite of accuracy and reaction time (58–60, 83). This approach may not probe 

differential cognitive functions with optimal specificity, e.g. examining rule-switch vs. rule-

repeat trials on the Card Sort to examine cognitive inflexibility (84). Additionally, as prior 

young adult OCS studies generally did not control for attentional problems (9, 11–13), our 

findings may underscore the need for thorough evaluation of potential transdiagnostic 

symptoms (e.g., inattention due to ADHD vs. due to intrusive obsessions).

Significant associations between OCS and brain structure were not detected. Expected 

associations with thalamic volumes, given ENIGMA findings in pediatric OCD (26), did not 

emerge from examination of OCS continuously or OCD diagnosis categorically, perhaps due 

to differences in MRI acquisition or sampling as ENIGMA meta-/mega-analyzed data 

collected from varying protocols across 1.5T and 3T studies with different demographic and 

clinical inclusion/exclusion criteria. In addition, the pediatric participants included in the 

ENIGMA analyses were older than the 9–10-year-olds in ABCD (age means across 

studies=11.2–15.7 years). Thus, structural correlates of OCS should indeed be examined in 

the ABCD sample in future longitudinal waves as the children get older. Expected effects in 

parietal cortices (27) were also not replicated. Instead, we detected other significant but 

uncorrected cortical effects of OCS in the ABCD data, e.g. thinner ACC, thicker inferior 
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frontal gyrus. Effects were small in magnitude but could be examined further with vertex-

wise analyses and over development when longitudinal MRI data is available.

We detected significant associations between OCS and white matter microstructure, 

specifically, lower FA in the left superior cortico-striatal (SCS) tract. This finding is 

consistent with models highlighting CSTC circuits as central to OCS pathophysiology (85, 

86) and with our prior work using a streamline-based approach in youth with OCD, 

suggesting reduced CSTC connectivity between ACC and both the thalamus and putamen 

(24). DTI studies in pediatric OCD have been sparse and small (generally n<40 patients), but 

often suggest greater FA in several tracts, including the cingulum (87–89) and corpus 

callosum (87–91) cf. (92) and greater axial and radial diffusivity in the anterior thalamic 

radiations (91). Herein, the right SCS, parahippocampal cingulum, anterior thalamic 

radiation, and fornix showed only uncorrected, small effects towards greater FA with higher 

OCS. Future work could parse specificity within cortico-striatal tracts given previously 

suggested dissociable roles of cortico-striatal tracts in balancing habitual and goal-direction 

action, potentially underlying vulnerability for OCS (93).

Finally, we detected significant associations between OCS and resting-state functional 

connectivity. Particularly, higher OCS related to less positive within-DAN and less negative 

DAN-VAN and DAN-DMN connectivity, as well as more positive CO-VAN connectivity. 

The DAN is a network of frontal and partial regions, including the frontal eye fields and 

intraparietal parietal sulcus, related to top-down, goal directed processing (94) and to 

selective attention in children (95). Altered connectivity between DAN and DMN regions 

has been implicated previously in adult (96) and pediatric OCD (25) and suggests that an 

imbalance between task positive and negative networks may underlie OCD pathophysiology. 

Critically, more negative DAN-DMN connectivity predicted worsening OCS at 1-year 

follow-up, possibly representing a marker of OCS risk; stability and specificity of this can be 

further probed with later waves of ABCD.

ABCD characterizes a normative, heterogenous sample of children with acquisition 

harmonized across sites/scanners, all strengthening the generalizability of results. Yet, 

several limitations and caveats to the current analyses should be noted. First, only one 

measure of OCS (and OCD) was available from one parent/guardian. Parent-report of 

symptoms is inherently limited to observable signs (e.g., behaviors or observable 

expressions of emotion), whereas internal/subjective experience may be better captured by 

self-report, e.g. experience of intrusive thoughts. Focusing on parent-report from the 

computerized, self-administered K-SADS may also relate to the relatively high rates of 

lifetime OCD diagnosis (5.79–13.77% across sites) relative to clinician interviews in 

epidemiological studies; alternatively, this may reflect some aspect of study sampling. In the 

future, having more in-depth assessments of OCS from multiple informants would be highly 

informative, particularly self- and clinician-report. Having multiple measures and informants 

could also relieve method variance issues and help disentangle OCS and ADHD effects. 

Second, large sample sizes increase power to detect small effects as statistically significant 

(e.g. >80% power to detect r>.025 with N=11,876). Note that a partial eta-squared 

(η2
p)~0.01–0.02 is considered small (97)–characterizing the variance explained by a given 

variable (of variance unexplained by other predictors, converging on R2 in a one-predictor 
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model). For example, OCS related to higher (b=0.06, η2
p=0.006), whereas ADHD scores 

related lower NIH cognition scores (b=−0.14, η2
p=0.028), yet both were p<5×10−10. 

Though both effects were small, we can determine that cognition associated with ADHD at 

several times the magnitude but in the opposite direction of OCS. Whereas current effect 

sizes may be hard to detectable in smaller, normative samples, they may emerge more 

readily in clinically severe samples. Relatedly, though we focused on OCS, certain 

covariates had larger effects of note, e.g. age strongly related to SCS FA (η2
p=0.130 vs. 

η2
p=0.002 for OCS). A large number of covariates/other measures of interest that can 

potentially influence brain volume, including psychotropic medication status, which we 

examined herein. Finally, there is a great deal of flexibility in analyzing MRI data (98), with 

diverse pre-/post-processing options having a potential large effect on the outcome, e.g. (99–

101). Global signal regression (GSR) is a particularly contentious issue for RSFC, e.g. (102–

104), with potential benefits to confound removal and potential issues in anticorrelation 

induction. For reproducibility and transparency, we have focused on the released ABCD data 

which includes GSR. Thus, the current RSFC results must be interpreted in this context 

while future work could aim to replicate them without GSR.

Overall, we characterized OCS and associated clinical, cognitive, and neural correlates in a 

large, normative sample of 9–10-year-olds. Results highlight structural and functional 

connectivity of cortico-striatal and attentional circuits as potential mechanisms of interest 

and DAN-DMN connectivity as a potential predictor of longitudinal risk for worsening 

OCS. Future work can expand upon this to provide greater characterization of these circuits 

over development with forthcoming longitudinal ABCD data and to probe the utility of 

targeting these circuits in future clinical trials aimed at preventing the development of OCD 

in youth.
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Figure 1: CBCL OCS T-scores split by the presence/absence of lifetime OCD
Scatter plot, boxplot, and histograms indicate the distribution of Child Behavior Checklist 

(CBCL) obsessive-compulsive symptom (OCS) T-scores for the full ABCD study sample. 

Scores are split based on the absence (gray square) or presence (red circle) of a lifetime 

Obsessive-Compulsive Disorder (OCD) diagnosis.
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Figure 2: OCS Associations with Resting-State Functional Connectivity
Child Behavior Checklist (CBCL) obsessive-compulsive symptom (OCS) were related to 

resting-state functional connectivity within and between task-control and default mode 

networks. T-statistics from linear mixed-effects models are presented here for this 

association between OCS and connectivity. Red squared with positive t-statistics indicate 

positive associations such that greater OCS related to higher connectivity. Effects passing 

false discovery rate correction for multiple comparisons are outlined in black.

Networks: CO=cingulo-opercular, CP=cingulo-parietal, DAN=dorsal attention network, 

FP=fronto parietal, SN=salience network, VAN=ventral attention network, DMN=default 

mode network

* p<.05, ** p<.01, *** p<.001
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Table 1:

Demographic Characteristics of the ABCD Sample

Full Sample 
(N=11876)

OCD Absent 
(n=10584)

OCD Present 
(n=1099)

Group 
Difference

p Effect Size

Age 118.94 (7.46) 118.97 (7.47) 118.61 (7.36) t=−1.55 .12 d=−0.05

Sex (F) *** 5681 (47.86%) 5138 (48.56%) 440 (40.11%) χ2=28.13 <.001 OR=0.71

Pubertal Status 1.68 (0.72) 1.68 (0.72) 1.69 (0.75) t=0.38 .70 d=0.01

Race-White 8803 (74.13%) 7879 (74.44%) 789 (71.79%) χ2=3.51 .06 OR=0.87

Race-Black *** 2515 (21.18%) 2186 (20.65%) 293 (26.66%) χ2=21.13 <.001 OR=1.40

Hispanic 9308 (79.44%) 8312 (79.59%) 863 (79.69%) χ2=0.00 .97 OR=1.01

Parents Marital Status 

(together/married) ***
8679 (73.69%) 7822 (74.5%) 732 (67.47%) χ2=24.79 <.001 OR=0.71

Parental Education 
(completed some college) 
***

9812 (82.77%) 8818 (83.45%) 850 (77.55%) χ2=23.91 <.001 OR=0.69

Parental Income *** 7.22 (2.42) 7.31 (2.37) 6.45 (2.76) t=−9.33 <.001 d=−0.33

NIH Toolbox - Cognition 

Total ***
100.37 (17.96) 100.7 (17.89) 97.3 (18.48) t=−5.68 <.001 d=−0.19

Height (inches) 55.26 (3.22) 55.27 (3.21) 55.13 (3.36) t=−1.31 .19 d=−0.04

Parental Monitoring *** 4.38 (0.52) 4.39 (0.51) 4.3 (0.57) t=−5.28 <.001 d=−0.18

Parent 1 Acceptance ** 2.78 (0.3) 2.78 (0.3) 2.75 (0.33) t=−2.88 .004 d=−0.10

Parent 2 Acceptance ** 2.69 (0.39) 2.69 (0.38) 2.65 (0.42) t=−2.79 .01 d=−0.10

Family Conflict - Child 

Report ***
2.05 (1.95) 2.02 (1.94) 2.27 (2.03) t=3.92 <.001 d=0.13

Family Conflict – Parent 

Report ***
2.54 (1.96) 2.47 (1.93) 3.12 (2.09) t=9.93 <.001 d=0.33

Usable Structural Data 10534 (88.7%) 9405 (88.86%) 962 (87.53%) χ2=1.62 .20 OR=0.88

CBCL OCS sum *** 1.34 (1.82) 1.13 (1.56) 3.41 (2.66) t=27.84 <.001 d=1.04

CBCL OCS T-score *** 53.70 (6.12) 52.97 (5.2) 60.69 (9.22) t=27.27 <.001 d=1.03

Note. Demographic characteristics of the sample are summarized here for the full ABCD baseline sample and split by the presence/absence of a 
lifetime K-SADS OCD diagnosis. Continuous and categorical variables are characterized respectively by mean and (standard deviation) or N and 
(percent) with group differences based on OCD diagnosis presence are compared by t-test (Cohen’s d effect size) or chi-squared test (odds ratio 
[OR] effect size). Pubertal status range=1–4. Income range=1–10. Conflict score range=0–9. Monitoring score range=1–5. Acceptance score 
range=1–3.

N=193 missing K-SADS OCD diagnosis. Additionally, n=1 missing Age, n=7 missing Sex, n=1 missing Pubertal Status and Race, n=159 missing 
ethnicity, n=99 missing Parents Marital Status, n=21 missing Parental Education, n=1019 missing Parental Income, n=413 missing NIH Toolbox - 
Cognition Total, n=13 missing height, n=24 missing parental monitoring behavior, n=37 missing parent 1 acceptance behavior, n=919 missing 
parent 2 acceptance behavior, n=27 missing family conflict - child report, n=6 missing family conflict - parent report, n=8 missing CBCL OCS 
sum, n=9 missing CBCL OCS T-score.

Group difference:

*
p<.05,

**
p<.01,

***
p<.001
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Table 2:

Clinical Characteristics of the ABCD Sample

Full Sample 
(N=11876)

OCD Absent 
(n=10584)

OCD Present 
(n=1099)

Group 
Difference

Effect Size

CBCL T-score

 DSM Anxiety 53.49 (6.13) 52.89 (5.35) 59.21 (9.29) t=22.16 d=0.83

 DSM Depression 53.6 (5.73) 53.13 (5.21) 58.19 (8.02) t=20.45 d=0.75

 Thought Problems 53.8 (5.9) 53.13 (5.14) 60.19 (8.45) t=27.17 d= 1.01

 DSM ADHD 53.23 (5.64) 52.79 (5.13) 57.55 (8.04) t= 19.18 d=0.71

 Internalizing 48.45 (10.64) 47.46 (10.12) 57.88 (10.8) t=30.58 d=1.00

 Externalizing 45.73 (10.33) 44.98 (9.92) 52.94 (11.41) t=22.25 d=0.75

 Total 45.85 (11.34) 44.78 (10.78) 56.17 (11.4) t=31.63 d=1.03

K-SADS lifetime diagnosis

 Any Depressive Disorder 1272 (10.9%) 1014 (9.61%) 247 (22.6%) χ2=171.62 OR=2.75

  MDD 614 (5.27%) 475 (4.5%) 137 (12.53%) χ2=126.64 OR=3.04

  Dysthymia 24 (0.21%) 18 (0.17%) 6 (0.55%) χ2=5.17 OR=3.23

  Depression NOS 697 (5.97%) 570 (5.4%) 117 (10.7%) χ2=49.19 OR=2.10

 Any Anxiety Disorder 1730 (14.83%) 1307 (12.39%) 419 (38.23%) χ2=523.32 OR=4.38

  Separation Anxiety 1047 (8.95%) 783 (7.4%) 263 (23.93%) χ2=331.82 OR=3.94

  Social Anxiety 619 (5.31%) 477 (4.52%) 140 (12.8%) χ2=133.59 OR=3.10

  GAD 579 (4.96%) 382 (3.62%) 195 (17.81%) χ2=420.87 OR=5.76

 ADHD 2428 (20.76%) 1921 (18.15%) 506 (46.04%) χ2=468.92 OR=3.85

 ODD/CD 1782 (15.24%) 1397 (13.2%) 385 (35.03%) χ2=365.45 OR=3.55

 PTSD 231 (1.98%) 141 (1.33%) 90 (8.19%) χ2=238.01 OR=6.60

 No diagnoses 7348 (61.99%) 6898 (65.17%) 296 (26.93%) χ2=613.74 OR=0.20

Unmedicated 10739 (90.43%) 9704 (91.69%) 859 (78.16%) χ2=208.52 OR=0.32

Note. Clinical characteristics of the sample are summarized here for the full ABCD baseline sample and split by the presence/absence of a lifetime 
K-SADS OCD diagnosis. Continuous and categorical variables are characterized respectively by mean and (standard deviation) or N and (percent) 
with group differences based on OCD diagnosis presence are compared by t-test (Cohen’s d effect size) or chi-squared test (odds ratio [OR] effect 
size). All group differences were p<.001 significant, except for dysthymia (p=.02). No diagnoses indicated that none of the listed disorders were 
diagnosed past or present on the K-SADS.

N=193 missing K-SADS OCD diagnosis. Additionally, n=10 missing CBCL T-scores, n=42 missing MDD and Dysthymia, n=40 missing 
Depression NOS, n=41 missing Social Anxiety, n=40 missing GAD.
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Table 3:

Item-wise CBCL OCS Characterization

CBCL OCS Item Score Total (N=11876) OCD Absent (n=10584) OCD Present (n=1099)

9 - Can’t get his/her mind off certain thoughts; obsessions 0 8830 (74.4) 8259 (78.1) 434 (39.5)

1 2534 (21.3) 2017 (19.1) 472 (43.0)

2 505 (4.3) 304 (2.9) 192 (17.5)

66 - Repeats certain acts over and over; compulsions 0 11050 (93.1) 10142 (95.9) 733 (66.8)

1 687 (5.8) 393 (3.7) 282 (25.7)

2 131 (1.1) 44 (0.4) 83 (7.6)

84 - Strange behavior 0 11374 (95.8) 10289 (97.3) 904 (82.3)

1 456 (3.8) 270 (2.6) 177 (16.1)

2 38 (0.3) 20 (0.2) 17 (1.5)

85 - Strange ideas 0 11054 (93.1) 10003 (94.6) 871 (79.3)

1 770 (6.5) 549 (5.2) 210 (19.1)

2 44 (0.4) 27 (0.3) 17 (1.5)

31 - Feels he/she might think or do something bad 0 10862 (91.5) 9834 (93.0) 857 (78.1)

1 932 (7.9) 701 (6.6) 212 (19.3)

2 74 (0.6) 44 (0.4) 29 (2.6)

32 - Feels he/she has to be perfect 0 8620 (72.6) 7896 (74.6) 587 (53.5)

1 2775 (23.4) 2342 (22.1) 387 (35.2)

2 473 (4.0) 341 (3.2) 124 (11.3)

52 - Feels too guilty 0 11093 (93.5) 10008 (94.6) 902 (82.1)

1 708 (6.0) 527 (5.0) 173 (15.8)

2 67 (0.6) 44 (0.4) 23 (2.1)

112 - Worries 0 7945 (66.9) 7396 (69.9) 420 (38.3)

1 3418 (28.8) 2864 (27.1) 499 (45.4)

2 505 (4.3) 319 (3.0) 179 (16.3)

OCS > 0 6611 (55.7%) 5539 (52.4%) 962 (87.6%)

OCS > 1 3880 (32.7%) 3010 (28.5%) 802 (73.04%)

OCS ≥ 5 807 (6.8%) 464 (4.4%) 328 (29.9%)

Note. Item-level data are presented for the CBCL OCS subscale. The number (percent) of participants endorsing each CBCL item response option 
(0, 1, or 2) presented for the full sample and split by the presence/absence of a K-SADS lifetime OCD diagnosis. The first four items are drawn 
from the Thought Problems subscale (#9, 66, 84, 85) and the latter four items are drawn from the Anxious/Depressed subscale (#31, 32, 52, 112). 
The number (percent) of participants with a raw sum score>0, >1, or ≥ 5 are also presented. All differences between those with and without lifetime 
OCD are p<.001 significant in this table.
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