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Abstract

Protein lysine methylation is a crucial post-translational modification that regulates the functions 

of both histone and non-histone proteins. Deregulation of the enzymes or’writers’ of protein lysine 

methylation, lysine methyltransferases (KMTs), is implicated in the cause of many diseases, 

including cancer, mental health disorders and developmental disorders. Over the past decade, 

significant advances have been made in developing drugs to target KMTs that are involved in 

histone methylation and epigenetic regulation. The first of these inhibitors, tazemetostat, was 

recently approved for the treatment of epithelioid sarcoma and follicular lymphoma, and several 

more are in clinical and preclinical evaluation. Beyond chromatin, the many KMTs that regulate 

protein synthesis and other fundamental biological processes are emerging as promising new 

targets for drug development to treat diverse diseases.

Covalent post-translational modifications (PTMs) of proteins are a major source of 

molecular functional diversity in mammalian cells, and their aberrant regulation is a 
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common feature of human diseases. Lysine methylation is a prevalent PTM that influences 

many cellular pathways but for which drug development is in a relatively early stage 

compared with, for example, a classic PTM such as phosphorylation. Indeed, kinase 

inhibitors are widely used in the clinic, with approximately 70 FDA-approved drugs to date 

and dozens more being evaluated in clinical trials. Described in the late 1950s, 

phosphorylase kinase was the first biochemically characterized kinase (reviewed in REF.1). 

In 2001, more than 40 years later, imatinib (Gleevec), which selectively blocks the BCR–

ABL fusion created by the Philadelphia chromosome in chronic myelogenous leukaemia, 

was the first kinase inhibitor to receive FDA approval2. By comparison, the first 

biochemically characterized lysine methyltransferase (KMT) was described in 1995 (REF.3), 

and the first (and to date only) FDA approval of a KMT inhibitor (tazemetostat for 

epithelioid sarcoma4 and subsequently follicular lymphoma) occurred in 2020. Thus, there is 

tremendous potential in targeting lysine methylation pathways as a therapeutic strategy to 

treat diverse diseases.

The lysine methylation chemical reaction is the reversible addition of one, two or three 

methyl groups to the ε-nitrogen of a lysine side chain, forming monomethylated, 

dimethylated and trimethylated derivatives (referred to here as ‘Kme1’, ‘Kme2’ and ‘Kme3’, 

respectively; FIG. 1a). The addition of methyl groups to lysine residues is catalysed by 

KMTs, and removal is catalysed by protein lysine demethylases (FIG. 1a). In the human 

genome, there are predicted to be in excess of 100 KMTs, and mass spectrometry-based 

studies suggest that thousands of human proteins harbour lysine methylation5. The addition 

of methyl moieties to lysine has only a subtle impact on the primary structure of the 

modified polypeptide. Nonetheless, the signalling potential associated with methylation is 

extensive as each methyl state at a specific lysine — from Kme0 to Kme3 — can be linked 

to unique activities6.

The identification of methyllysine was first described on a bacterial flagellar protein in 1959 

(REF.7) and soon thereafter was identified on histone proteins8. In 1995, Rubisco large 

subunit methyltransferase (RLSMT) was described as the first KMT3, although the 

molecular functions of the methylation of Rubisco (a photosynthetic enzyme) remain poorly 

understood. In the early years of the first decade of the twenty-first century, several 

discoveries helped establish lysine methylation as a dynamic PTM with fundamental roles in 

chromatin biology, epigenetics and human disease. Examples of the landmark findings 

include the identification of SUV39H1 as the first human KMT, which catalyses histone H3 

K9 (H3K9) methylation9, the demonstration that the chromodomain of HP1 selectively 

binds methylated H3K9 (REFS10,11] and the identification of LSD1 as the first lysine 

demethylase12. Accordingly, over the past two decades, the role of methylation in chromatin 

biology has been the main focus of researchers, although as discussed herein, recent 

investigations of lysine methylation functions outside histones have uncovered important 

biology and identified new therapeutic targets (see REF.13 for a recent review).

At the molecular level, the addition of a methyl moiety to a protein is best characterized as a 

signal that directly regulates modular protein–protein interactions (see, for example, 

REFS10,11,14,15). Lysine methylation can also regulate protein function in cis (that is, it can 

have autoregulatory activities)16. Furthermore, although there are no examples to date, a 
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methylation event on lysine could in theory influence interactions between the modified 

protein and molecules such as nucleic acids. In the chromatin biology lexicon, the proteins 

and protein motifs that recognize histone lysine methylation (see FIG. 1b for the main 

modified residues) are referred to as ‘reader domains’ (reviewed in REF.17). Indeed, histone 

methylation has been clearly linked through the action of specific readers to diverse 

functions, including transcriptional regulation, DNA repair, DNA replication and DNA 

recombination (see, for example, REFS14,15,18–21). However, there are clinically important 

methylations, such as dimethylation of H3K79 (to give H3K79me2), for which a reader is 

yet to be found. From a therapeutic perspective, small-molecule inhibitors of reader domains 

are a promising strategy for targeting lysine methylation signalling pathways. Indeed, as 

described herein, clinical trials are under way with drugs that attenuate H3K27 methylation 

signalling through pharmacological blockade of a reader domain.

The role of reader domain functions in non-histone methylation signalling is a relatively 

unexplored area that we anticipate may uncover compelling therapeutic opportunities. 

Overall, given the number of proteins that are regulated by lysine methylation and the 

complexity associated with sensing and transducing these molecular events, there is 

tremendous untapped potential in selectively targeting components of this network to treat 

human disease.

In this Review, we focus on the disease relevance of KMTs, the writers of protein lysine 

methylation on both histone and non-histone proteins. We begin with a discussion of the 

biology of writers and general considerations for therapeutic targeting of this class of 

proteins. We then focus on the two KMTs that have been most extensively characterized as 

drug targets and for which inhibitors have been tested in the clinic — namely enhancer of 

zeste homologue 2 (EZH2) and disruptor of telomeric silencing 1-like protein (DOT1L). We 

review biological and pathological features of EZH2 and DOT1L in the context of 

therapeutic applications and discuss the chemistry, current clinical trials and results for the 

inhibitors that target these enzymes. We also discuss inhibitors that target writers that have 

shown promise in preclinical studies as well as the development of drugs to target KMTs for 

which inhibition has clear therapeutic potential.

Writers of lysine methylation

Two protein domain families are known to have KMT activity: the SET domain (named for 

three Drosophila proteins originally recognized to contain the domain: Su(var)3-9, Enhancer 

of zeste and Trithorax) and the 7β-strand (7βS) domain (FIG. 1c; Supplementary Fig. 1). 

Approximately 60% of the 55 SET domain-containing proteins in humans have well-

documented methylation activity on histone and/or non-histone proteins6. One protein, 

SETD3, is a SET domain enzyme that catalyses histidine, rather than lysine, 

methylation22,23. The enzymatic activity for the other ~20 SET domain proteins is unclear.

In humans, approximately 150 proteins catalysing diverse chemistries comprise the 7βS 

family. Two members of this family, DOT1L and KMT9, catalyse lysine methylation of 

histones24–28, and about a dozen additional enzymes lysine methylate cytoplasmic proteins 

involved in processes ranging from protein synthesis and proteostasis to signal transduction 
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and metabolism29. There are also a number of 7βS enzymes that methylate various RNA 

species, such as the METTL3–METTL14 complex, which catalyses methylation of N6-

adenosine (see Supplementary Fig. 1), and which have fundamental roles in development 

and diseases such as leukaemia30,31.

Clinically relevant histone methylation sites in humans include H3K4, H3K9, H3K27, 

H3K36, H3K79, histone H4 K20 (H4K20) and H4K12 (REF.6) (FIG. 1b). The non-histone 

methylated proteins and the specific sites of methylation are too extensive to list here but 

include several clinically relevant targets in the oncology space32 (see Supplementary Fig. 1 

for examples).

Rationale for therapeutic targeting of writers.

There are several general structural and biological characteristics of KMTs that make them 

promising candidate targets for drug development efforts. First, all KMTs have at least two 

distinct pockets on their surfaces that are amenable to chemical targeting: the cofactor-

binding site for the methyl donor S-adenosyl methionine (SAM) and the lysine substrate-

binding pocket (FIG. 1c). Notably, unlike several other types of PTMs (for example, serine/

threonine phosphorylation), most KMTs exhibit a high degree of substrate specificity. For 

example, NSD2, a histone KMT, methylates H3K36 only in the context of a nucleosome 

substrate33,34. Moreover, while kinases typically phosphorylate a nearby serine if the main 

substrate site is mutated, mutation of K36 on H3 abrogates NSD2 activity on chromatin33,34; 

that is, the enzyme cannot methylate H3 on a different lysine residue. Thus, KMT inhibitors 

can be designed with selectivity for the target enzyme, mitigating off-target toxicity. The 

high degree of substrate specificity is a common feature of KMTs but does carry the 

biochemical cost of the methylation reaction generally having slow kinetics relative to other 

PTM reactions. Finally, several writers are associated with recurrent chromosomal 

translocations, gain-of-function (GOF) mutations and gene amplifications in distinct cancer 

populations, which can help focus drug development efforts and optimize patient selection 

for trials35.

General chemical considerations and strategies for developing KMT inhibitors.

Of the two targetable surfaces for small-molecule engagement on KMTs, the substrate-

binding site is naturally more structurally diverse (given the diversity of substrates) 

compared with the SAM-binding site (FIG. 1c) and therefore offers greater opportunity to 

selectively target KMT subtypes. Consequently, many of the existing KMT inhibitors are 

substrate competitors. Nonetheless, the side chains in the SAM-binding pockets are poorly 

conserved among KMTs — despite SAM being universally used as the methyl donor. 

Therefore, even close analogues of SAM have been designed and shown to achieve excellent 

selectivity as inhibitors. The major issue relating to SAM-competitive inhibitors is not their 

selectivity but rather the hydrophilic nature required to efficiently exploit the SAM-binding 

pocket. The potential poor cell permeability can be overcome; SAM-competitive, clinical-

grade inhibitors of the KMTs EZH2 and DOT1L have been developed. For both enzymes, 

drug design efforts used unique hydrophobic pockets that arise as a result of subunit 

interactions (for EZH2) or by inducing a conformational change (for DOT1L)36.
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Most KMT inhibitors discovered to date were identified through high-throughput screening 

(HTS) campaigns followed by medicinal chemistry optimization to improve key drug-like 

features, ranging from selectivity to pharmacokinetic properties. Structure-based drug design 

strategies have also been successfully used, particularly when the co-crystal structures of 

KMT inhibitor complexes are available. Moreover, an iterative process that combines HTS 

and structure-based optimization has been highly effective, with versions of these strategies 

underlying the design of many of the SAM-mimetic inhibitors. Structural information in the 

form of high-resolution complexes of enzymes bound to substrates and/or tool compounds is 

also providing indispensable molecular insights to understand the basis for enzyme 

selectivity for rational drug design. We anticipate that resolving high-resolution structures of 

known and less studied KMTs in complex with a ligand will propel the discovery of new 

clinical candidate inhibitors.

EZH2 inhibitors

Tazemetostat, which recently became the first FDA-approved KMT-inhibitory drug4 

(discussed below), is an EZH2 inhibitor. To date, the indications for this drug include a 

blood malignancy and a solid tumour, highlighting the broad potential of KMT inhibitors to 

be efficacious in treating diverse types of cancer.

EZH2 is the main catalytic subunit of Polycomb repressive complex 2 (PRC2), an epigenetic 

regulatory complex that methylates H3K27 to repress gene transcription (FIG. 2). Targeting 

PRC2 activity, either directly through inhibiting its catalytic activity or by disrupting its 

interaction with histones or with other PRC2 proteins, is the most developed clinical 

translation strategy in the KMT inhibitor space. The excitement around EZH2 and 

H3K27me3 is driven by the important, if complex, roles this pathway plays in cancer.

EZH2 belongs to the SET family of KMTs (Supplementary Fig. 1); however, unlike most 

SET proteins, it adopts an autoinhibited conformation so that it is not active in 

isolation37–39. The stability and activity of EZH2 are dependent on its interaction with two 

other core members of PRC2, EED (which binds to H3K27me3 to stimulate EZH2 activity) 

and SUZ12 (REFS40–43). In the context of PRC2, EZH2 catalyses monomethylation, 

dimethylation and trimethylation of H3K27, a key epigenetic silencing modification (FIG. 

2a). EZH2 also undergoes automethylation to regulate its activity and can methylate non-

histone substrates44–46. Finally, EZH2 is often replaced by its closely related homologue 

EZH1 in terminally differentiated and quiescent cells47. As discussed later, EZH2 inhibitors 

target EZH1 to various degrees, which can make them more toxic but, depending on the 

clinical context, also increase their therapeutic efficacy48.

As early as 2002, gene expression studies linked high EZH2 expression to cellular 

proliferation and poor prognosis in prostate cancer49. EZH2 overexpression was 

subsequently shown to contribute to oncogenic transformation in cellular and mouse 

xenograft models of human cancer50. EZH2 overexpression has now been linked to a wide 

range of cancer types51. Further evidence linking H3K27 methylation to cancer came from 

the observation that the H3K27 demethylase UTX (also called KDM6A) is often lost or 

inactivated in cancer52. Thus, initial studies implicated EZH2 and H3K27 methylation 
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function in oncogenesis but a specific genetic lesion linking EZH2 activity to a disease state 

was lacking.

Clinical contexts.

In 2010, recurrent, heterozygous mutations at Y641 of EZH2 were found in ~20% of 

patients with germinal centre B cell-like diffuse large B cell lymphoma (DLBCL) and 10% 

of patients with follicular lymphoma53. On the basis of enzymatic assays, substitutions at 

Y641 were initially thought to be inactivating, which was surprising for a mutation that is 

both recurrent and heterozygous53,54. This paradox was resolved when it was discovered that 

Y641 mutations uniquely alter EZH2’s substrate methyl state preference relative to the wild-

type enzyme (FIG. 2a). Wild-type EZH2 is most active in converting non-methylated H3K27 

to the monomethylated state, with progressively lower activity in transitioning it to the 

dimethyl and trimethyl states. By contrast, Y641 mutants are almost entirely unable to 

methylate unmodified H3K27 but have enhanced activity on H3K27me1 and H3K27me2 to 

generate H3K27me2 and, in particular, H3K27me3 (REFS55,56). Thus, the concerted 

activities of wild-type and mutant EZH2 yield excessive H3K27me3 and dysregulated 

silencing of PRC2-target genes (FIG. 2b). This synergy explains why heterozygous Y641 

mutations are pathological as the activity of the wild-type allele is required55,56. Additional 

EZH2 variants found in DLBCL and follicular lymphoma, most notably mutations at A677, 

also drive H3K27me3 hypermethylation57–59. Beyond GOF mutations, several other 

mechanisms increase EZH2 activity in tumour cells, including gene amplification, 

deregulation of EZH2-regulatory micro-RNAs and transcriptional upregulation of EZH2 

(REF51). Regardless of the mechanism, enhanced EZH2 activity with elevated H3K27me3 

levels promotes tumorigenesis via gene silencing51 (FIG. 2b).

In addition to mechanisms that directly alter EZH2 activity, other genetic lesions render 

certain cancer types reliant on elevated H3K27me3 levels and hence vulnerable to EZH2 

inhibitors. The ~20% of human cancers harbouring mutations in subunits of the SWI/SNF 

(BAF) ATP-dependent chromatin-remodelling complexes have, to various extents, 

developed H3K27me3 addiction35 (that is, dependence on H3K27me3 generation). The 

human SWI/SNF complex antagonizes PRC2 activity, and loss-of-function mutations in 

SWI/SNF components are frequently associated with increased H3K27me3 levels and 

sensitivity to EZH2 inhibition60–62. For example, EZH2 inactivation in mouse models 

abrogates lymphomagenesis due to deletion of the SWI/SNF component INI1 (also named 

SMARCB1 and SNF5)62. INI1 loss of function, or less frequently, mutations in the related 

protein SMARCA4, is a defining aetiologic characteristic of rhabdoid tumours, a rare 

malignant paediatric cancer63,64. Loss of INI1 expression is also a driver of epithelioid 

sarcoma, another rare and highly aggressive tumour in young adults65. Mutations of INI1 

and SMARCA4, which also occur with lower frequency in other solid tumours61, define a 

clinically actionable genetic signature for EZH2 inhibitor application61,62. Synthetic lethal 

relationships between mutations in other components of the SWI/SNF family and EZH2 

inhibition have also been described60,66. Exploiting these relationships to treat a variety of 

cancer types with EZH2 inhibitors is presently being explored in clinical trials (for example, 

NCT03213665), and the EZH2 inhibitor tazemetostat has received FDA approval for 

treating epithelioid sarcoma4 and follicular lymphoma.
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Despite the role of EZH2 in cancer pathogenesis, EZH2 deletion and loss-of-function 

mutations have also been found to contribute to myeloid malignancies67, possibly through 

deregulation of the Notch/Janus kinase (JAK)–signal transducer and activator of 

transcription (STAT) pathway genes51. Furthermore, dominant negative K27M 

‘oncomutations’ in two H3 variants (H3.1K27M and H3.3K27M, respectively) drive 

tumorigenesis via depletion of H3K27me3 levels68,69; counterintuitively, EZH2 inhibition in 

this context is therapeutically beneficial, as H3K27me3, while largely depleted at a global 

level, accumulates aberrantly at specific genes to facilitate cellular transformation70,71. 

Overall, much remains to be learnt about the molecular contexts in which alterations in 

EZH2 activity contribute to tumorigenesis, highlighting the importance of careful patient 

stratification for application of EZH2 inhibitors in the clinic.

Chemical and structural considerations.

Numerous potent and selective inhibitors of PRC2 have been reported since the description 

of the first selective EZH2 inhibitor in 2012 (REFS72–74). Most PRC2-EZH2 inhibitors 

share a pyridone core and are SAM-competitive inhibitors. In addition to tazemetostat, three 

of these inhibitors, GSK2816126 (hereafter GSK126), CPI-1205 and PF-06821497 (FIG. 

2c), have advanced into clinical evaluation.

Drug development efforts have benefited greatly from structural information. The first 

PRC2–substrate complex structure was the yeast Chaetomium thermophilum PRC2 

(containing EZH2, EED and the VEFS (Vrn2–Emf2–Fis2–Su(z)12) domain of SUZ12) 

bound to H3K27M peptide and S-adenosyl homocysteine (SAH; the cofactor product that is 

formed by demethylation of SAM during the methylation reaction)75. Subsequently, the 

crystal structure of the human PRC2 (REF76) and the structure of a PF-06821497 analogue 

bound to wild-type PRC2 and Y641N-mutated PRC2 (REF.77) were determined. Together, 

these structures revealed that EZH2 wraps around EED, with SUZ12 sandwiched between 

the SET domain of EZH2 and EED. The selective recognition of H3K27me3 by EED results 

in stabilization of the stimulation-responsive motif (SRM) helix of EZH2 to increase 

methyltransferase activity, an interaction that is both fundamental for the cellular function of 

PRC2 and targetable. There is also an EZH2 loop region that moves away from the EED 

surface and extends to the SET domain. This loop is referred to as the ‘SET activation loop’ 

(SAL), which together with the SET domain constitutes the catalytically active domain of 

EZH2. The co-crystal structures of PRC2 in complex with small-molecule analogues of 

PF-06821497 (Protein Data Bank (PDB) ID 5IJ7) and CPI-1205 (PDB ID 5LS6) further 

revealed the central role of the pyridone motif, which forms two hydrogen bonds with the 

protein backbone and fits in an aromatic cage, where it overlaps with the cofactor SAM. 

Further insight into the molecular basis of PRC2 activity comes from recent cryo-electron 

microscopy structures of PRC2 incorporating EZH2, EED, SUZ12, RBBP4, AEBP2 and 

JARID2 subunits78,79.

The main PRC2-EZH2 inhibitors potently affect both the wild-type and the GOF-mutant 

forms of EZH2, have lower activity against EZH1 and show no significant affinity against a 

panel of other methyltransferases and other standard targets. Three of the four clinical 

candidate EZH2 inhibitors (GSK126, tazemetostat and CPI-1205 (FIG. 2c)) are chemically 
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similar in structure. GSK126 was discovered through an HTS campaign and potently 

inhibits wild-type and mutant forms of EZH2 (REF74). GSK126 is 150-fold more selective 

for EZH2 than EZH1, despite the high sequence similarity (about 96%) between the SET 

domains of the two enzymes. A concurrent effort yielded EPZ005687, a highly potent EZH2 

inhibitor73, which was further optimized to increase its potency and improve its 

pharmacokinetic profile to yield tazemetostat61. While tazemetostat contains the same 

pyridone core as other EZH2 inhibitors in the class, it lacks the indole or indazole moiety 

(FIG. 2c). Tazemetostat potently inhibits wild-type and mutant EZH2 variants, with ~35-fold 

selectivity over EZH1. The third EZH2 inhibitor in this class, CPI-1205, was discovered 

through HTS and optimized to be a highly potent EZH2 inhibitor with excellent selectivity 

(inhibits EZH1 with more than 250-fold lower potency than EZH2)80. The fourth EZH2 

inhibitor being evaluated in clinical trials is PF-06821497, which features a bicyclic ring in 

the middle of the molecule joined to a pyridone moiety, making it distinct from the other 

three inhibitors81 (FIG. 2c). PF-06821497 was discovered by the identification of a novel 

series of lactam-containing EZH2 inhibitors with use of computational torsional angle 

analysis coupled with a ligand cyclization strategy81.

MS1943 was recently developed as a first-in-class EZH2-selective degrader that reduces 

EZH2 levels in cells82. This compound was identified from a series of bivalent compounds 

by connecting the piperazine group of the EZH2 inhibitor C24, via a linker, to various 

hydrophobic groups, such as an adamantyl group83. C24, a close analogue of the dual EZH2 

and EZH1 inhibitor UNC1999 (REF84), was selected for this study as it combined high 

potency and selectivity for EZH2 (REF83). Notably, in contrast to EZH2 inhibitors that 

target the EZH2 catalytic activity and effectively reduce the H3 K27 trimethylation mark but 

fail to block proliferation of triple-negative breast cancer cells, MS1943 kills multiple triple-

negative breast cancer cell lines, with little effect on normal cells82. Furthermore, this 

compound is orally bioavailable in mice and has shown in vivo efficacy in xenograft 

models82. Additional methylation-independent functions of EZH2 are reported in prostate 

cancer and for facilitating immune evasion in brain metastases85–87. Thus, pharmacological 

degradation of EZH2 may have advantages over chemical inhibition in particular disease 

scenarios. We further speculate that pharmacological degradation may result in a more 

sustained suppression of EZH2 function and be useful in the settings of combination 

therapies as it eliminates both catalytic and non-catalytic activities important for 

oncogenesis and immunosuppression, as discussed in detail later.

Results in the clinic.

Epizyme’s tazemetostat was approved in January 2020 for the treatment of epithelioid 

sarcoma, becoming the first FDA-approved KMT inhibitor4. Besides this rare cancer, 

tazemetostat received approval in June 2020 for treatment of EZH2 mutant-positive 

follicular lymphoma after at least two prior systemic therapies. Further, EZH2 inhibitors are 

being or have been evaluated for safety and efficacy in several clinical trials covering a wide 

range of other cancer types (TABLE 1). Together, these trials have focused on testing EZH2 

inhibition as a monotherapy or in combination with other drugs in molecularly defined 

patient populations.
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Trials with single-agent use of EZH2 inhibitors have largely focused on patient populations 

with cancers that are predicted to be most sensitive to inhibition of EZH2, including mutant-

EZH2 follicular lymphoma/DLBCL and INI1-negative solid tumours, including rhabdoid 

tumours and synovial sarcomas (TABLE 1). Promising interim data have come from various 

trials, including one of tazemetostat in patients with relapsed or refractory (R/R) follicular 

lymphoma (NCT01897571). In this study, encouraging antitumour activity was observed in 

patients regardless of EZH2 mutation status, although the objective response rate was more 

pronounced in GOF-positive EZH2 relative to wild-type EZH2 (69% and 35%, respectively) 

as was progression-free survival (11.1 and 5.7 months, respectively)88. Tazemetostat 

recently received FDA approval for treating patients with R/R follicular lymphoma who 

have received at least two prior lines of systemic therapy. Data from the same trial on the 

activity of tazemetostat for treating R/R DLBCL are less clear, and it is too early to draw a 

conclusion about potential clinical use.

EZH2 inhibitors have also been evaluated in solid tumours (TABLE 1). While the complete 

results are not yet available, interim data from a phase II trial (NCT02860286) in patients 

with R/R malignant mesothelioma with BAP1 inactivation showed promising antitumour 

activity for tazemetostat, including sustained long-term disease control in 25% of the 

patients89. Interim data from a separate phase II trial with tazemetostat in adults with 

epithelioid sarcoma (NCT02601950) showed a 15% partial response rate and a 26% disease 

control rate90. The duration of response ranged from 7.3 to 103 weeks, with the median not 

reached, with 67% of patients having a response of at least 6 months, a significant 

improvement compared with the standard-of-care treatment. On the basis of these data, the 

FDA granted accelerated approval of tazemetostat for the treatment of patients 16 years or 

older with metastatic or locally advanced epithelioid sarcoma not eligible for surgical 

intervention. Notably, one patient from this cohort had an exceptional response (durable 

response exceeding 2 years), possibly through upregulation of an antitumour immune 

response91. These and other data provide a rationale for testing EZH2 inhibitors in 

combination with immune checkpoint inhibitors. Indeed, trials of tazemetostat in 

combination with the standard-of-care chemotherapeutic regime in DLBCL (NCT02889523) 

and with immunomodulators (NCT03854474, NCT02220842 and NCT04224493) are 

ongoing (TABLE 1).

Constellation Pharmaceuticals’s EZH2 inhibitor CPI-1205 is being tested in a two-arm, 

open-label phase Ib/II study in combination with enzalutamide or abiraterone/prednisone for 

metastatic castration-resistant prostate cancer (CRPC) (NCT03480646). This trial has 

progressed to phase II on the basis of encouraging phase Ib safety and efficacy data, 

including several patients showing declining prostate-specific antigen levels92. CPI-1205 

dosage is also being evaluated in a phase I/II, multicentre, open-label study for use in 

combination with the checkpoint drug ipilimumab in patients with advanced solid tumours 

(NCT03525795). CPI-0209, a second-generation, higher-potency inhibitor, is being 

evaluated for safety and dosage as a monotherapy and in combination with the cytotoxic 

drug irinotecan in solid tumours (NCT04104776).

Dose escalation studies are ongoing for Pfizer’s EZH2 inhibitor PF-06821497 in follicular 

lymphoma, DLBCL, CRPC and R/R small cell lung cancer (NCT03460977). This trial will 
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expand to investigate PF-06821497 as a monotherapy and/or in combination with standard-

of-care treatments depending on the disease type. An additional drug, SHR2554 (Jiangsu 

HengRui Medicine Co.), for which the structure is not publicly available, is currently being 

evaluated in phase I studies either as a monotherapy for R/R lymphomas (NCT03603951) or 

in combination with an androgen receptor antagonist in a phase I/II trial for metastatic 

CRPC (NCT03741712). The EZH2 inhibitor HH2853 (Haihe Biopharma; no publicly 

available structural information) will be evaluated for dosage, safety and tolerability in a 

phase I trial (NCT04390737), while the GlaxoSmithKline EZH2 inhibitor GSK126 showed 

modest antitumour activity due to a short half-life, and the trial has been terminated93 

(TABLE 1).

Given that EZH1 and EZH2 can both catalyse H3K27 methylation, dual EZH1 and EZH2 

inhibitors such as UNC1999 have been developed84. Indeed, dual EZH1 and EZH2 

inhibitors suppress H3K27 methylation more strongly than EZH2 inhibitors alone and have 

higher antitumour activity against several haematologic malignancies in preclinical 

models94,95. The most clinically advanced dual inhibitor is DS-3201b, also named 

‘valemetostat’, from Daiichi Sankyo. Valemetostat is effective in cells that overexpress 

EZH2 or are vulnerable to H3K27me3 depletion due to secondary mutations in chromatin 

factors such as SWI/SNF components and UTX96. It is being evaluated in five ongoing 

clinical trials in different malignancies, including a phase II for patients with R/R adult T 

cell leukaemia/lymphoma (TABLE 1).

Disrupting reader functions as an alternative therapeutic strategy.

All the drugs discussed so far are SAM-competitive inhibitors that target EZH2 catalytic 

activity. An alternative strategy to interfere with EZH2 activity is to target other functionally 

important and druggable components of PRC2 (REFS43,97–99). In 2017, two compounds, 

EED226 and A-395, were described that selectively block the interaction between the PRC2 

subunit EED and H3K27me3 (REFS100,101) (FIG. 2b,c). The recognition of H3K27me3 by 

EED, which is mediated by the β-propeller WD40 domain of EED, triggers allosteric 

modulation of PRC2 to facilitate methylation catalysis43,97,99. Accordingly, A-395 and 

EED226, despite their divergent chemotypes, are selective inhibitors of PRC2-catalysed 

methylation of H3K27 in vitro on nucleosome substrates and in cells100,101. The high-

resolution crystal structures of EED bound to A-395 and EED226 (PDB IDs 5K0M and 

5WUK, respectively) revealed that both molecules bind to the H3K27me3-recognition 

pocket of EED and cause significant conformational changes in the side chains of key 

residues. The reorganization caused by ligand binding disrupts the methyllysine-binding 

aromatic cage in EED and creates a deeper and larger aromatic pocket that accommodates 

the pyrrolidine core of A-395 and the triazolopyrimidine of EED226.

A-395 and EED226 treatments inhibit proliferation of cancer cells similarly to SAM-

competitive inhibitors of EZH2, but importantly are also effective against cells that have 

acquired resistance to EZH2 inhibitors100,101. Specifically, EZH2 mutations arise that confer 

resistance to SAM-competitive EZH2 inhibitors. However, in vitro methylation by PRC2 

containing EZH2 with these resistance mutations is still inhibited by EED226 

(REFS100,101). Indeed, in addition to EED226 and A-395 phenocopying SAM-competitive 
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EZH2 inhibitors in xenograft models of DLBCL, both compounds were also effective in 

cellular models of mutant EZH2 (Y111 and I109 point mutations) that are insensitive to 

tazemetostat100,101. Thus, pharmacological targeting of EED can be used to overcome 

cancer cell resistance to EZH2 inhibitors. Furthermore, as discussed earlier, it may be 

advantageous in certain clinical contexts to inhibit EZH1 and EZH2, although potentially at 

the cost of increased toxicity35. Given that EED is present in both EZH2-containing PRC2 

and EZH1-containing PRC2, EED226 also inhibits EZH1-mediated H3K27 methylation. 

Accordingly, Novartis’s MAK683, a molecule evolved from EED226 (REF.100), is currently 

being evaluated in a phase I/II trial for multiple EZH2 inhibitor-indicated cancers, including 

DLBCL, prostate cancer and sarcomas (NCT02900651) (TABLE 1).

Potential future applications and challenges.

One of the ongoing challenges with drugging EZH2 has been the context-dependent 

biology; EZH2 is oncogenic in several cancers but tumour suppressive in other cancer types. 

Furthermore, in a mouse model study of acute myeloid leukaemia (AML), EZH2 was 

tumour suppressive in the early disease stage but promoted oncogenesis as the disease 

progressed102. The dichotomous nature of EZH2 is also evident in preclinical studies 

investigating the effects of EZH2 inhibition on tumour immune evasion and acquired 

resistance to immunotherapy. EZH2 is required for differentiation and plasticity of various T 

cell populations, which is naturally important for an effective antitumour immune response 

(reviewed in REFS103,104). EZH2-mediated gene silencing is also important for direct 

regression of tumours by macrophages in a mesothelioma model due to suppression of PD1 

expression105. At the same time, EZH2 plays important roles in tumour immunosuppression; 

EZH2, via H3K37me3-mediated silencing, suppresses expression of PDL1 in hepatocellular 

carcinoma and head and neck cancer106,107. EZH2 activity also renders melanoma cells less 

immunogenic, and inhibition of EZH2 increases the efficacy of anti-CTLA4 therapy in 

different cancer models108,109. Finally, EZH2, via a non-catalytic mechanism, promotes 

infiltration of immunosuppressive neutrophils that facilitate brain metastatic disease; thus, 

degraders of EZH2 could be effective in this clinical context87. The intricate functions of 

EZH2 in distinct cell types, particularly in the immune system and its interaction within the 

tumour microenvironment, pose a challenge and an opportunity in using EZH2 inhibitors in 

combination with immunotherapy to treat cancer104.

The clinical indications for using EZH2 inhibition have expanded to include both 

haematologic and solid tumours104. In addition, selective targeting of EZH2 in tumours 

without impacting the immune system may be a powerful adjuvant of immune checkpoint 

blockade treatments104. As cancer treatments evolve to include combination therapies that 

target synergistic pathways, we speculate that a newer generation of EZH2 inhibitors with 

better pharmacokinetic and pharmacodynamic properties may facilitate studies testing 

epigenetic drugs with various immune-based and targeted therapies. Looking forward, EZH2 

inhibition has shown promise in models of paediatric diffuse intrinsic pontine glioma, a 

devastating disease with no cure70,71. We hope that brain-penetrable EZH2 inhibitory 

analogues will be developed to directly test the clinical efficacy of EZH2 inhibitors in this 

and other brain cancers.
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DOT1L inhibitors

H3K79 methylation is a modification conserved from yeast to humans and linked to 

transcriptional activation110. DOT1L, a 7βS enzyme, is the only known KMT in the human 

(or any) genome that catalyses H3K79 methylation24–27, which in humans is primarily 

H3K79 dimethylation (FIG. 3a). H3K79 methylation, unlike the other main histone 

methylation events, occurs within the histone globular region rather than the unstructured 

amino-terminal (N-terminal) tails. Therefore, DOT1L has in vitro activity only on 

nucleosome substrates and does not methylate H3 alone24,26,111. Additionally, for H3K79 

methylation, there are no validated ‘erasers’ or clear ‘readers’ of this modification. Thus, the 

underlying molecular mechanism by which methylation at H3K79 promotes transcription is 

not understood110.

Human DOT1L is implicated in several processes, most notably transcription activation 

(reviewed in REF.110). Physiologically, DOT1L is essential for proper embryonic 

development in mice, regulating haematopoiesis and the cardiovascular system112,113. 

Dysregulation of DOT1L also drives a subset of childhood leukaemia114–116. 

Mechanistically, DOT1L forms a large and variable multimeric complex referred to as 

‘DotCom’, which contains several transcriptional elongation factors117. Many of these 

proteins harbour reader domains that stabilize DOT1L complexes at specific genomic 

regions through recognition of distinct chromatin signatures. Examples of DotCom proteins 

that harbour these reader domains include the acetyllysine-binding YEATS domain proteins 

AF9 and ENL, and the H3K27me0-sensing PZP domain protein AF10 (REFS118–121). 

Notably, all three of these proteins are fusion partners with the mixed-ineage leukaemia 

(MLL) genes and link chromatin-reading functions to DOT1L activity in 

leukaemogenesis115. Under both normal and pathological conditions, DOT1L, via 

H3K79me2 generation, is thought to promote gene expression by regulating transcriptional 

elongation117 and a subset of enhancers122.

H3K79 methylation catalysis by DOT1L is dependent on histone H2B K120 

ubiquitylation25,123,124 and a basic region on the H4 tail125–127. However, it was not well 

understood how the relatively inaccessible K79 residue enters the DOT1L active site. A 

series of recent cryo-electron microscopy studies of DOT1L bound to the H2B ubiquitylated 

nucleosome posited that DOT1L exists in two states — ‘poised’ and ‘active’128–132. In the 

poised state, DOT1L interacts with the ubiquitin bound on H2B through a carboxy-terminal 

(C-terminal) motif. In addition, it interacts with the conserved acidic patch on H2A/H2B 

through residue R282. These two interactions anchor DOT1L, allowing the N-terminal 

domain to sample a large area of the nucleosome. In the active state, the N terminus rotates 

and moves closer to the nucleosome, facilitating insertion of the H4 tail into a groove 

formed by the N-terminal domain of DOT1L. The interaction of the H4 tail with DOT1L 

induces a conformational change in H3 that allows the ‘pinching’ of K79 from the 

backbone. This in turn reorients the K79 side chain by 90°, allowing insertion into the 

enzyme active site. These new structures, in addition to elucidating how K79 is accessed, 

will aid future development of inhibitors.
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Clinical context.

DOT1L is an unusual drug target because it is not directly affected by oncogenic mutations 

or aberrant expression in cancer. Instead, DOT1L activity and H3K79 dimethylation are 

important drivers of leukaemogenesis in the subset of haematologic malignancies caused by 

rearrangements in the MLL genes (referred to as MLL-r leukaemia)114,116,133–135 (FIG. 3b). 

MLL1 (also known as KMT2A) was originally cloned as the gene associated with recurrent 

translocations of chromosome band 11.q23 in a wide range of leukaemias and is similar to 

the key developmental Trithorax gene in Drosophila136,137. Such translocations occur in 5–

10% of acute lymphoblastic leukaemias and AML, and almost all cases of MLL (reviewed 

in REF.115). There are four MLL genes (MLL1, MLL2 (also known as KMT2D), MLL3 
(also known as KMT2C) and MLL4 (also known as KMT2B)) that encode H3K4 

methyltransferases and promote transcription. The MLL proteins have a similar basic 

structure, with an N-terminal domain important for genomic localization and a C-terminal 

catalytic SET domain (FIG. 3a). The most common rearrangements result in an MLL1 N-

terminal fusion protein coupled to one of more than 70 different C-terminal partners138. 

These translocations often involve members of the AF and ENL protein families, notably 

AF4, AF6, AF9, AF10, ELL and ENL. The causal role of MLL gene fusions in leukaemia 

was demonstrated when knockins of Kmt2a–AF9 (also known as MLLT3) fusion alleles 

were found to cause leukaemia in mice139. These fusion alleles contain the DNA-binding 

regions of MLL genes but have lost the catalytic SET domain.

In 2005, DOT1L was shown to interact with AF10, one of the most common MLL protein 

fusion partners, and a mechanism was proposed in which DOT1L is recruited via MLL–

AF10 to activate target genes116 (FIG. 3b). The study authors demonstrated that an artificial 

MLL–DOT1L fusion protein immortalizes mouse bone marrow progenitor cells and that the 

catalytic activity of DOT1L is required for leukaemic transformation by the MLL–AF10 

fusion protein116. It is now known that MLL protein fusions retain the chromatin-targeting 

domains of MLL protiens, causing inappropriate localization of DOT1L, which in turn leads 

to aberrant H3K79 methylation and increased expression of key development genes, 

including HOXA7, HOXA9 and MEIS1 (REFS135,140,141) (FIG. 3b). Preclinical studies 

demonstrated that DOT1L activity is required for the oncogenic effect in most MLL-r 

leukaemias, and that these cancers are exquisitely sensitive to DOT1L inhibition133,142,143. 

For example, the first potent and specific DOT1L inhibitor, EPZ004777, selectively killed 

MLL-r leukaemia cells in culture and was able to prolong the survival of mice in a 

leukaemia xenograft model144,145 (FIG. 3b). Preclinical studies with an improved inhibitor, 

pinometostat (EPZ-5676), that has superior pharmacokinetic properties observed sustained 

regression in an MLL–AF4-driven rat xenograft model134.

Chemical and structural considerations.

EPZ004777 and the clinical candidate pinometostat were designed and synthesized on the 

basis of the DOT1L cofactor product SAH and the crystal structure of the enzyme active 

site134,144,146 (FIG. 3c). EPZ004777 was highly potent in vitro (half-maximal inhibitory 

concentration in the picomolar range) and displayed greater than 1,000-fold selectivity for 

DOT1L over nine other methyltransferases, despite the similar mode of SAM binding. Not 

surprisingly, EPZ004777 was competitive with SAM and non-competitive with the peptide 
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substrate. EPZ004777 exhibited picomolar binding affinity and an unusually long residence 

time (~1 h) on DOT1L. For all the compounds reported in the EPZ004777 series, as well as 

for SAH, the association rate was quite slow and invariant. It was around 100-fold slower 

than the expected rate for a diffusion-controlled binding event, suggesting that a slow 

conformational change of DOT1L was required for inhibitor binding. The clinical candidate 

pinometostat displayed an even higher binding affinity for DOT1L and a longer residence 

time (more than 24 h) than EPZ004777. The crystal structures of the DOT1L–EPZ004777 

and DOT1L–pinometostat (PDB IDs 4ER3 and 4HRA, respectively) complexes reveal that 

these inhibitors bind to DOT1L through the 5-aminoisopropyl group, engaging a region that 

is occupied by the methyl group of the thiomethyl on SAM. Furthermore, the proximal 

nitrogen atom of the urea of EPZ004777 and the benzimidazole of pinometostat form 

hydrogen bonds with DOT1L. Importantly, the steric bulk of the tert-butyl phenyl groups of 

the two inhibitors open up a novel hydrophobic pocket on DOT1L by changing the side 

chain conformation, including moving the L10–L11 loop between the β-strands away from 

the SAM-binding pocket. Interactions within this newly formed hydrophobic pocket result in 

the high potency and longer residence times of EPZ004777 and pinometostat. This also 

accounts for the remarkable selectivity of these inhibitors for DOT1L over other 

methyltransferases. Several other preclinical inhibitors of DOT1L have been reported that 

are structurally similar to SAH48. In addition, a new series of DOT1L inhibitors that differ 

structurally from all previously published SAM-based inhibitors have recently been 

reported. These non-SAM/SAH inhibitors have been shown to interact with an induced 

pocket adjacent to the SAM-binding site — without interacting with the SAM-binding 

site147,148. While EPZ004777 and pinometostat are not orally bio-available, these non-

SAM/SAH inhibitors could potentially be optimized into orally bioavailable DOT1L 

inhibitors for clinical studies.

Results in the clinic.

On the basis of the promising preclinical data with pinometostat, phase I clinical trials were 

initiated in R/R adult and paediatric MLL-r leukaemias (NCT01684150 and NCT02141828, 

respectively) (TABLE 1). These trials observed acceptable safety and pharmacodynamics, as 

well as a moderate reduction in H3K79me2 at genes targeted by MLL fusion proteins. 

However, the responses to pinometostat monotherapy were somewhat limited, with objective 

responses observed in a small number of adult patients followed by development of 

resistance and progressive disease149,150. At the time of writing, there are no active clinical 

trials of pinometostat monotherapy. There have been preclinical studies supporting the use of 

pinometostat as a combination therapy with existing standard-of-care drugs for AML, 

including DNA methyltransferase inhibitors151. Additionally, there is preclinical evidence 

that pinometostat might be effective in AML with mutations in DNA methyltransferase 

DNMT3A152. Indeed, there are two active trials evaluating pinometostat in combination 

with either the DNA methyltransferase inhibitor azacytidine153 (NCT03701295) or with 

standard-of-care chemotherapy (NCT03724084) to treat R/R AML with MLL-r (TABLE 1). 

Furthermore, recent preclinical studies have observed synergistic effects of pinometostat in 

combination with PRMT5 inhibitors in cell lines with MLL–AF4 or MLL–AF9 fusions154 

or with SETD2 loss155. Thus, a detailed understanding of how the genetic landscape 
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influences leukaemia sensitivity to DOT1L inhibition may reveal more precise therapeutic 

opportunities.

Alternative therapeutic strategies.

As with targeting PRC2, inhibitors that disrupt interactions of DOT1L with its binding 

partners may be a viable and clinically actionable approach, particularly in MLL-r 

leukaemia involving fusion partners that interact with DOT1L (for example, AF9, ENL, 

AF10 and AF17). In addition, compelling data suggest that targeting the acetyllysine-

binding YEATS domain of ENL might be therapeutic in leukaemia beyond the MLL-r 

subset120,121 (FIG. 3b). An additional strategy is to block the protein-protein interaction 

between menin and MLL proteins (FIG. 3b). Menin plays a role in MLL chromatin docking, 

including localization of MLL fusions to chromatin. Notably, inhibitors that block the MLL–

menin interactions downregulate differentiation of leukaemic blasts and prolong the survival 

of mouse models of MLL-r leukaemia without impairing murine haematopoiesis156,157. Two 

clinical-grade inhibitors of the menin–MLL protein interaction have been developed: 

Syndax’s SNDX-5613 and Kuro Oncology’s KO-539. SNDX-5613 is being evaluated in a 

phase I/II trial in acute leukaemias, and the phase II trial will focus on efficacy in patients 

with MLL-r leukaemia and patients with AML with mutant NPM1 (which encodes a 

nucleus–cytoplasm shuttling protein), a common genetic alteration in this disease 

(NCT04065399). KO-539 is being tested in a phase I trial (NCT04067336) (TABLE 1).

Inhibitors of KMTs in preclinical investigation

Beyond EZH2 and DOT1L, there are selective inhibitors of several other KMTs, all at the 

preclinical evaluation stage. In contrast to EZH2 and DOT1L inhibitors, which are SAM 

competitive, most inhibitors of other enzymes are substrate competitive.

G9a and GLP.

G9a and the closely related G9a-like protein (GLP) (also known as EHMT2 and EHMT2, 

respecively) were initially discovered as H3K9 mono-methyltransferases and 

dimethyltransferases that are required for early development and are responsible for 

generating the bulk of H3K9me1 and H3K9me2 in most mammalian cell lines158–160. 

H3K9me1/H3K9me2 is bound by a number of reader domain-containing proteins, including 

the ankyrin repeat domain of G9a and GLP and different chromodomain-containing 

proteins, that together link H3K9 methylation to transcriptional repression and gene 

silencing17,161,162. Elevated G9a expression is observed in several cancer types (for 

example, breast and lung cancer) and is associated with metastatic disease and an overall 

poor prognosis. For example, G9a interacts with MYC to repress transcription and promote 

oncogenesis in breast cancer cells163. Notably, oncogenic GOF mutations and gene 

amplification in G9A were recently identified in melanoma, and G9a-mediated H3K9 

methylation is linked to the pathogenesis of this disease in preclinical studies164. G9a and 

GLP have also been implicated in the development of adaptive resistance to targeted therapy 

in pancreatic and ovarian cancers165,166. Finally, G9a activity is associated with other 

diseases, including addiction and psychiatric disorders167,168. On the other hand, in certain 
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cancer contexts, such as lung cancer, the long-term inhibition of G9a/GLP can promote 

tumour progression169,170.

The G9a/GLP inhibitor BIX-01294 is one of the first examples of a selective, peptide-

competitive KMT inhibitor171 (FIG. 4a). Despite promising results in cell culture and in vivo 

models172, the cellular toxicity of BIX-01294 limited its utility. Leveraging of the co-crystal 

structure of the GLP SET domain bound by BIX-01294 fuelled the discovery of more potent 

quinazoline-based G9a/GLP inhibitors, including the cellular chemical probe UNC0638 

(REFS173,174) and the in vivo chemical probe UNC0642 (REF.175) (FIG. 4a). UNC0642 has 

greater selectivity and potency and lower toxicity than BIX-01294 and is bioavailable and 

efficacious in vivo, making it a promising potential candidate for clinical development. 

Indeed, in therapy-resistant pancreatic tumours in mouse or human models, combined 

treatment with UNC0642 and the HDAC3 inhibitor RGFP966 resensitized these tumours to 

the MEK1/MEK2 inhibitor trametinib165. Another G9a- and GLP-selective inhibitor is 

A-366, which has a scaffold that differs from the quinazoloine inhibitors176 (FIG. 4a). A 

potent GLP-selective inhibitor, MS012, which is 140-fold selective for GLP over G9a, was 

also developed177 (FIG. 4a). Notably, co-crystal structures of this substrate-competitive 

inhibitor in complex with GLP or G9a revealed virtually identical binding modes, 

highlighting the challenges in structure-based design of inhibitors selective for one of these 

two highly homologous enzymes. Although such selectivity may be unnecessary from a 

therapeutic perspective, selective small-molecule inhibitors may be valuable tools to 

distinguish physiologic functions between G9a and GLP.

One challenge in translating the promising preclinical data with G9a/GLP inhibitors into the 

clinic is that the two enzymes methylate substrates besides H3K9. For example, there is 

convincing evidence that G9a and GLP physiologically methylate LIG1, p53, WIZ, Reptin, 

ACINUS, CDYL1 and other substrates (see32), with LIG1 being a particularly high-affinity 

substrate178. Thus, in progressing G9a/GLP inhibitors into the clinic, it will be important to 

evaluate which substrates of G9a and GLP contribute to the enzymes’ physiologic effects as 

well as the contribution of such activities to G9a/GLP-linked diseases.

SETD8.

SETD8 (also known as SET8 and PR-Set7) is the only known physiologic H4K20 

monomethyltransferase in metazoan systems6,179,180. SETD8 and H4K20me1 regulate 

several cancer-associated cellular processes, including DNA repair, cell cycle regulation, 

chromatin condensation and transcriptional regulation (reviewed in REF.181). In addition to 

H4K20me1, SETD8 monomethylates p53 at K382 and other substrates32,182,183. In 

Drosophila, deletion of SETD8 is lethal, whereas an alanine substitution at H4K20 causes 

developmental delay but is otherwise tolerated, indicating a broader role for SETD8 in this 

organism beyond H4 modification184. As SETD8 regulates several important pathways (see 

REF.185) and there was available structural insight186,187, inhibitors of this enzyme have 

been developed.

Several of the early SETD8 inhibitory compounds decreased H4K20me1 levels in cells but 

also inhibited other KMTs188. Recently, the selective SETD8 inhibitor UNC0379 was 

discovered via a cross-screen of a quinazoline-based library of more than 150 compounds 
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that were originally prepared for the development of G9a/GLP inhibitors189,190 (FIG. 4b). 

UNC0379 was selective for SETD8 over 15 other methyltransferases, including G9a and 

GLP, and phenocopied SETD8 knockdown in cells191,192. The strategy of using a chemical 

scaffold that inhibits one KMT to develop a selective inhibitor for another, as was 

successfully done for SETD8, should be broadly applicable for targeting KMTs. Subsequent 

optimization of UNC0379 led to a new compound, MS2177, with increased potency for 

SETD8, enabling the generation of the first crystal structure of SETD8 in complex with a 

small-molecule inhibitor193. The co-crystal structure of the SETD8–MS2177 complex 

revealed a cysteine residue (C311) that was near the inhibitor-binding site, which led to the 

design of the C311 covalent modifying inhibitor MS453 (FIG. 4b). MS453 did not 

covalently modify other KMTs such as EZH2, SMYD2 and SMYD3, indicating specificity 

for SETD8. Despite the availability of effective SETD8 inhibitors, the appropriate clinical 

application of these inhibitors is at present obscure; SETD8 deletion causes early embryonic 

lethality in mice194, and thus a defined disease state is needed to justify advancing any 

compound that targets SETD8 as a therapeutic.

SUV420H1 and SUV420H2.

SUV420H1 and SUV420H2 are related enzymes that use SETD8-generated H4K20me1 as 

the substrate to synthesize H4K20me2 and H4K20me3 in cells and multiple 

organisms21,195–197. While they have similar kinetics and substrate preferences in 

vitro196,198,199, in mouse embryonic fibroblasts, SUV420H1 is responsible for most of the 

H4K20me2 and SUV420H2 is more responsible for H4K20me3 (REF.197). SUV420H1 and 

SUV420H2 are linked to transcriptional silencing196–200, chromatin compaction201, DNA 

replication21,202 and DNA repair. Indeed, one of the most well-characterized functions of 

H4K20me2 is in the maintenance of genome integrity and recruitment of the double-strand 

break repair factor 53BP1 (REFS18,197,203,204)

A-196 (FIG. 4c) was the first potent, selective and cell-active inhibitor of these two highly 

homologous KMTs. It was discovered via HTS followed by medicinal chemistry 

optimization205 and is a substrate-competitive inhibitor with more than 100-fold selectivity 

for SUV420H1 and SUV420H22 over other methyltransferases and a broad range of non-

epigenetic targets. Despite being a substrate-competitive inhibitor, it exhibits high 

cooperativity with SAM binding. In cells, A-196 reduces H4K20me3 and H4K20me2 levels 

and attenuates the formation of 53BP1 foci, and thus is a valuable tool for advancing the 

understanding of the cellular roles of SUV420H1 and SUV420H2.

SETD7.

SETD7 (also known as SET7 and SET9), one of the first characterized KMTs, was initially 

identified as an H3K4 monomethyltransferase206–207. However, H3K4me1 levels are 

unchanged in SETD7-deleted mouse embryonic fibroblasts208. SETD7 is also reported to 

monomethylate numerous other proteins, including p53 and the maintenance DNA 

methyltransferase DNMT1 (REFS13,32). A potent, selective and cell-active small-molecule 

inhibitor of SETD7, (R)-PFI-2 (FiG. 4d) was developed via HTS followed by several rounds 

of structure-guided medicinal chemistry optimization209. Importantly, (R)-PFI-2 is not 

purely a substrate-competitive inhibitor; SAM binding to SETD7 plays a significant role in 
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the binding of (R)-PFI-2, rendering it a cofactor-dependent and substrate-competitive 

inhibitor. In a small molecule-based proteomic strategy, this inhibitor was used to identify 

the ribosomal regulatory protein RPL29 as a major, physiologic target of SETD7 (REF.210). 

Overall, SETD7 is potentially involved in several biological processes, but a clear activity 

that would be therapeutically beneficial to inhibit is yet to be established.

SMYD2.

SMYD2, another monomethyl KMT, is overexpressed in several types of cancer, and its 

expression is associated with poor clinical prognoses211,212. Consistent with a potential role 

in tumorigenesis, knockdown of SMYD2 affects proliferation of different cancer cell 

types211,212. SMYD2, like G9a/GLP and SETD7, is one of the more promiscuous KMTs6. 

Various studies have claimed that SMYD2 methylates histones, but this activity is not 

specific for a distinct histone lysine and does not occur on nucleosomes, and SMYD2 

depletion does not have a clear impact on histone methylation levels213. Notable non-histone 

substrates of SMYD2 include p53 at K370, retinoblastoma protein (RB), HSP90, oestrogen 

receptor-α, PARP1, and phosphatase and tensin homologue (PTEN) (see REFS13,32). 

Moreover, recent proteomics studies identified additional candidate SMYD2 targets, 

including the proteins AHNAK and AHNAK2, which are implicated in cell migration and 

invasion214 and the stress kinase MAPKAPK3 (REF.213). It is unclear how these various 

activities are integrated to contribute to SMYD2 behaviour under physiologic and disease 

conditions. In vivo, SMYD2 deletion modestly attenuates KRAS-driven pancreatic cancer in 

mouse models213. In addition, studies in mouse models of AML suggested that SMYD2 is a 

MYC target that plays a role in MLL-r-driven leukaemogenesis215.

SMYD2 inhibitors have been developed largely via HTS followed by structure-based 

medicinal chemistry optimizations. AZ-505 and A-893 (FiG. 4e) share a scaffold, with the 

latter displaying some cellular activities, such as inhibition of SMYD2 methylation 

activity216–218. LLY-507 was the first cell-active, selective inhibitor of SMYD2. In cells, it 

reduces p53 K370me1 levels and inhibits cell proliferation in a concentration-dependent 

manner219. However, this compound inhibits other enzymes, complicating interpretation of 

its cellular phenotype. Another screening campaign followed by structure-activity 

relationship studies led to the development of BAY-598, a cell-active inhibitor of SMYD2 

suitable for in vivo studies220. Treatment with this compound decreased p53 K370me1 

levels but had no effect on cellular proliferation, possibly because K370me1 is thought to 

repress p53 function in a context-dependent manner221.

In contrast to the SMYD2-inhibitory compounds described above, which are substrate 

competitive, EPZ033294 and EPZ032597, two non-substrate-competitive inhibitors with 

high biochemical potency and selectivity, representing a novel scaffold, were recently 

discovered222 (FiG. 4e). Similarly to BAY-598, these inhibitors had little effect on cellular 

proliferation despite blocking SMYD2 activity222, suggesting that the antiproliferative 

effects associated with SMYD2 depletion may be due to off-target effects, cell-specific 

differences in SMYD2 requirement or non-catalytic functions of the protein.
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SMYD3.

SMYD3 is a trimethyl KMT overexpressed in several cancers, including pancreas, lung, 

liver, colon and breast cancer223–225. Several studies have linked SMYD3 to oncogenic 

functions, including stimulation of proliferation, adhesion and migration, and tumorigenesis 

in in vivo mouse models223,224. While SMYD3 was initially claimed to be an H3K4me3 

KMT225, this study was conducted when characterization of lysine methylation activities 

was a relatively nascent field. Several subsequent studies demonstrated that SMYD3 does 

not methylate H3K4 on peptides, histones or nucleosomes in vitro or on chromatin in 

vivo223,226,227, although SMYD3 may bind to H3K4me3 (REF.224). A weak SMYD3 

trimethylation activity on H4 and nucleosomes was detected at H4K5 in vitro and in 

cells223,227. Another weak substrate of SMYD3 is vascular endothelial growth factor 

receptor 1 (VEGFR1), although the functional consequences of this methylation event are 

unclear228.

The RAS–mitogen-activated protein kinase (MAPK) pathway is frequently activated in 

SMYD3-overexpressed cancers, in particular pancreatic and lung cancers (FIG. 5a). In a 

proteome-level protein array activity-based screen, the cytoplasmic protein mitogen-

activated protein kinase kinase kinase 2 (MAP3K2), a kinase within the MAPK signalling 

module, was established as a robust, physiologic substrate of SMYD3 (90-fold higher 

catalytic activity on MAP3K2 vs H4)223. SMYD3 trimethylation of MAP3K2 at K260 does 

not affect MAP3K2’s intrinsic kinase activity but rather blocks protein phosphatase 2A 

(PP2A) from engaging with and thereby inactivating MAP3K2 via dephosphorylation. 

SMYD3-mediated trimethylation of MAP3K2 therefore results in sustained MAP3K2 

activation, ultimately leading to increased extracellular signal-regulated kinase 1 (ERK1)/

ERK2 activation, which in turn promotes RAS-driven tumorigenesis in mouse and human 

pancreatic and lung cancer models223 (FIG. 5a). While the SMYD3–K260-trimethylated 

MAP3K2 axis regulates pancreatic and lung cancer, MAP3K2 is not expressed in all types 

of cancers, in all cancers that carry KRAS mutations or in all cancers that overexpress 

SMYD3. Thus, it may be important to elucidate SMYD3 mechanisms of action for targeting 

specific cancer contexts. Finally, SMYD3 may have roles outside oncology, such as in 

inflammation, but more work is required to judge potential therapeutic benefits of SMYD3 

inhibitors outside cancer applications.

A SAM mimetic, GSK2807 (FIG. 5b), was discovered as an SMYD3 inhibitor via structure-

based design229, but displayed poor cell permeability. Two potent, selective, cell-active and 

reversible small-molecule inhibitors of SYMD3, EPZ0330456 and EPZ031686 (FIG. 5b), 

based on oxindole sulfonamide or sulfamide scaffolds, respectively, were identified via HTS 

and medicinal chemistry optimization230. Further structure–activity relationship studies of 

these inhibitors yielded the isoxazole sulfonamide scaffold-based EPZ028862, which 

displayed high potency and selectivity for SMYD3 in biochemical assays with peptides and 

activity in cellular assays222, and should be suitable for in vivo studies. A new class of 

inhibitors that covalently modify SMYD3 (at the C186 residue) via a nucleophilic aromatic 

substitution reaction also potently inhibit SMYD3 (REF.231). These inhibitors are 

antiproliferative in HepG2 colonies grown in 3D culture and cause a decrease in K260-

trimethylated MAP3K2 levels. However, their selectivity needs to be more thoroughly 
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investigated. Overall, SMYD3 inhibitors may have potential in combination regimens to 

treat RAS-driven cancers, but more preclinical evaluation is required.

KMT targets for future drug development

Beyond the KMTs discussed so far, there are many others with links to human disease, 

ranging from cancer to intellectual disabilities to metabolic syndromes, and the dozens of 

other known and candidate KMTs in the human genome6. Thus, there is tremendous 

potential for developing new precision-based medicines as the field develops new biological 

and chemical understanding of these enzymes.

Histone KMTs.

There are several histone KMTs with clear links to disease but for which selective inhibitors 

have not been developed. For example, there are four enzymes — NSD1, NSD2, NSD3 and 

ASH1L — that are H3K36 dimethyltransferases, and all are excellent candidate oncology 

targets for drug development (reviewed in REFS6,232) (see Supplementary Fig. 1). 

Alterations in these genes (GOF mutations, gene amplifications and translocations) are 

aetiologically linked to cancers ranging from multiple myeloma and paediatric acute 

lymphoblastic leukaemia to diverse solid tumours6,232. Thus, substantial efforts have been 

made to develop compounds that selectively inhibit these enzymes. One major challenge 

towards this goal is that all of the H3K36me2-generating enzymes adopt an autoinhibitory 

state in the apo (unbound) form that is relieved only on nucleosome engagement6. Thus, the 

development of inhibitors may necessitate screening in the presence of nucleosomes. 

Nonetheless, while there has been little success to date, a recent provisional patent 

(20190183865) and progress in structures (see, for example, REF.233) suggest that drugs 

blocking the activity of these enzymes may soon be available for clinical investigation. 

Moreover, a drug that binds to a reader domain present within NSD3 and blocks NSD3–

chromatin interactions offers another strategy to target this class of KMTs234.

Another promising histone KMT target is SETDB1, an enzyme that methylates H3K9 and is 

overexpressed in several cancers235,236. SETDB1 was also recently shown to have a role in 

the pathology of various neuropsychiatric disorders237 and in Prader–Willi syndrome238, 

suggesting potential broader applications for SETDB1 inhibitors. Another candidate is 

KMT9, a heterodimer of C21orf127 (also known as N6AMT1) and TRMT112 that catalyses 

monomethylation of H4K12 and regulates genes involved in cell cycle control. KMT9 

depletion selectively leads to decreased growth of prostate cancer cells and xenografts, and 

thus inhibitors may offer hope for treatment of CRPC28. KMT9 also catalyses other 

reactions, such as glutamine methylation of eukaryotic release factor 1 (REFS239–241), and 

the consequences of inhibiting these activities should be considered in any drug development 

efforts28.

On the basis of expression patterns in cancer, PRDM9 is another histone KMT worth further 

preclinical investigation, and for which a first-in-class tool compound was recently 

developed242. PRDM9 trimethylates H3K4 and H3K36 and is a key meiosis recombination 

factor that is not expressed in somatic cells but becomes overexpressed due to gene 

amplification in squamous cell lung cancer and testicular cancer243,244. PRDM9 belongs to 
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the 17-member PR domain subfamily of SET domain proteins (reviewed in REF245; see 

Supplementary Fig. 1). To date, the only proteins that have a SET-like PR domain with a 

clearly demonstrated methylation activity are PRDM9 and the closely related PRDM7, but 

several of the other PR domain factors play major roles in development and in cancer. For 

example PRDM1 (also known as BLIMP1) and PRDM2 (also known as RIZ1) are potent 

tumour suppressors, whereas PRDM3, PRDM14, PRDM15 and PRDM16 have all been 

linked to oncogenesis245. Understanding the enzymatic nature of the PR domain in these 

proteins — whether they are active KMTs, catalyse a different type of chemistry or are 

catalytically inert — will be key to leveraging their roles in disease for therapeutic purposes.

In this regard, SETDB2, MLL5 and SETD5 are candidate KMTs that are incorrectly 

annotated as methylating histones (see Supplementary Fig. 1). SETDB2, a regulator of 

fibrotic diseases, is presumed to have H3K9 methylation activity due to homology to 

SETDB1, but no such activity has been rigorously demonstrated246. SETD5 was recently 

claimed to be an H3K36 KMT247, but data from others have failed to reproduce these 

results165. Instead, SETD5 scaffolds a co-repressor complex containing G9a and HDAC3, 

which can epigenetically regulate adaptive targeted therapy resistance to MAPK/ERK kinase 

(MEK) inhibitors in pancreatic cancer165. A related enzyme, MLL5, was initially 

misidentified as an H3K4 methyltransferase, but like SETD5 is almost certainly catalytically 

inactive248. Nevertheless, MLL5 expression is associated with several cancers, although the 

mechanisms and whether it is clinically actionable remain unclear.

Non-histone KMTs.

Mechanisms to increase protein synthesis are crucial in tumours driven by oncogenic growth 

signalling pathways (for example, RAS–MAPK, MYC, PI3K–AKT andmechanistic target of 

rapamycin (mTOR)). While most oncogenic pathways target the translation initiation 

machinery, the elongation step of translation is also an important regulatory node (reviewed 

in REF249). The GTPase and eukaryotic elongation factor EEF1A is a fundamental, non-

ribosomal component of the translational machinery. The canonical function of EEF1A is to 

deliver with fidelity aminoacylated tRNAs to the A-site of translating ribosomes during the 

elongation step of protein synthesis (FIG. 6). In humans, there are five EEF1A KMTs, all 

from the 7βS family, that methylate five distinct lysine residues250 (FIG. 1e). One of these 

KMTs, METTL13, dimethylates EEF1A at K55 (REFS16,250). This methylation accelerates 

translation elongation kinetics and enhances protein synthesis to promote oncogenesis16 

(FIG. 6). Deletion of METTL13 strongly inhibits RAS-driven pancreatic and lung cancers in 

mouse and human models16. METTL13 does not appear to affect non-transformed cells, 

suggesting that enhancement of translation elongation by METTL13-mediated K55-

dimethylation of EEF1A becomes rate limiting only in growth signal-driven tumours such as 

pancreatic ductal adenocarcinoma and lung adenocarcinoma, which could potentially render 

these lethal cancers vulnerable to METTL13 inhibition16 (FIG. 6b). Besides METTL13, the 

EEF1A KMT named ‘EEF1AKMT4’ (previously incorrectly annotated as ECE2 (REF.251)) 

is upregulated in different cancers. Another 7βS KMT, FAM86A, which methylates EEF2 

(REFS252,253), is amplified in cancers. However, apart from METTL13, direct clinically 

relevant functions for KMTs of translational factors have yet to be investigated in detail. By 

analogy to the kinase field, it is reasonable to expect that future work on these enzymes and 
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many other poorly characterized or uncharacterized KMTs may uncover important new 

targets for drug development.

Summary and outlook.

The development of advanced proteomic and structural techniques has fuelled several 

important advances in the lysine methylation field, accelerating understanding of the basic 

biology of these enzymes and aiding drug discovery efforts. Furthermore, the past decade of 

work has provided an impressive expansion of our understanding of how KMTs are engaged 

from the chemical and molecular perspectives. We anticipate the application of this 

knowledge will overcome many existing challenges in drug-hunting efforts and lead to the 

discovery of new inhibitors of some of the most promising targets in the field. We anticipate 

that revisiting programmes that previously failed to yield drug candidates for high-value 

KMT clinical targets such as NSD2 should now find success. Furthermore, we predict that 

the knowledge gained during this past decade will pay off in the coming years through the 

progression of current inhibitors of targets such as PRDM9 to clinical candidates and in the 

development of inhibitors of non-histone KMTs with promising preclinical data, such as 

METTL13. Finally, we anticipate discoveries of synergies between KMT inhibitors and 

targeted and immune-based therapies that will mitigate resistance development and toxic 

effects associated with individual treatment regimens. With an EZH2 inhibitor approved for 

treating both solid tumours and blood cancer and inhibitors that block the PRC2 and MLL 

protein complexes advancing in clinical trials, we expect the excitement and drug discovery 

efforts targeting KMTs to rapidly increase over the next decade, and to ultimately benefit 

patients with diverse diseases through the creation of many new medicines.
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Glossary

Reader domains
Modules on proteins that bind to post-translationally modified lysine residues on other 

proteins in a manner that is dependent on the immediate surrounding sequence and the state 

of methylation on the lysine.

Writers of protein lysine methylation
Enzymes that catalyse the addition of one, two or three methyl moieties to the ε-nitrogen of 

lysine residues.

Nucleosome
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The fundamental building block of chromatin, which consists of ~ 146 base pairs of DNA 

wrapped around a protein core unit made of two copies each of histones H2A, H2B, H3 and 

H4.

Chromatin-remodeling complexes
Large ATP-dependent multisubunit protein complexes that evict, load, alter or otherwise 

move nucleosomes on DNA to control DNA accessibility.

Transcriptional elongation factors
Proteins that regulate the elongation step in gene transcription, which occurs after 

transcription is stably initiated and before transcription termination.

Mixed-lineage leukaemia (MLL) genes
MLL1, MLL2, MLL3 and MLL4 encode four distinct lysine methyltransferases that catalyse 

methylation at histone H3 K4; MLL1 was originally identified as a gene involved in a 

recurrent chromosomal translocation in the neoplasm mixed-lineage leukaemia.

Fusion protein
Chimeric proteins that result from the fusion of genes from different chromosomes during 

chromosomal translocations. They often have a new, non-physiologic activity that can 

unbalance cells and drive cancer pathogenesis.

A-site
The aminoacyl site, or A-site, on the ribosome is the entry site for amino acid–tRNA 

molecules to bind and for proper base pairing between the mRNA codon and the tRNA 

anticodon during the elongation step of protein synthesis.
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Fig. 1 |. overview of lysine methylation.
a | The lysine methylation reaction is catalysed by lysine methyltransferase (KMT) and 

reversed by lysine demethylase (KDM), and results in monomethylation, dimethylation and 

trimethylation of lysine residues. b | The main lysine residues on histones H3 and H4 that 

are methylated and/or clinically relevant and discussed in this Review are shown. c | Protein 

Data Bank (PDB) structures of G9a (SET domain family) and disruptor of telomeric 

silencing 1-like protein (DOT1L) (7β-strand (7βS) domain family) methyltransferases as 

representative examples of the two known KMT catalytic families. The conserved tyrosine 

residue in the catalytic pocket in both structures is shown in blue. The cofactor S-adenosyl 

methionine (SAM) and its by-product S-adenosyl homocysteine (SAH) are shown bound to 

DOT1L and G9a, respectively.
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Fig. 2 |. eZH2, H3K27 methylation and tumorigenesis.
a | Histone H3 K27 (H3K27) methylation activity relative to processivity for wild-type (WT) 

enhancer of zeste homologue 2 (EZH2) and mutant (MUT) EZH2. b | EZH2 forms a 

complex with SUZ12, EED and other subunits of Polycomb repressive complex 2 (PRC2) to 

catalyse H3K27 trimethylation. Normal PRC2 activity is critical for gene regulation during 

development, and deregulation of PRC2 activity can promote tumorigenesis by pathological 

silencing of key genes. Inhibitors of EZH2 (EZH2i) or EED (EEDi) block PRC2-mediated 

methylation in cancer to attenuate tumour development and progression. c | Structures of 
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EZH2 inhibitors, including S-adenosyl methionine (SAM)-competitive PRC2-EZH2 

inhibitors in clinical trials, and allosteric inhibitors that disrupt the EED–H3K27me3 

interaction. The EZH2 inhibitor tazemetostat is approved by the FDA for treating epithelioid 

sarcoma and follicular lymphoma after at least two prior systemic therapies.
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Fig. 3 |. DoT1L, H3K79 methylation and MLL-r leukaemia.
a | Principal catalytic functions of mixed-lineage leukaemia (MLL) proteins and disruptor of 

telomeric silencing 1-like protein (DOT1L). b | DOT1L is mislocalized by MLL fusion 

proteins to catalyse histone H3 K79 dimethylation at non-physiologic loci. Inhibitors of 

DOT1L, menin–MLL protein interaction and reader domains in the DotCom complex block 

this activity and could have therapeutic utility. See the main text for details of mechanisms. c 
| Structures of DOT1L catalytic inhibitors. AF9i, AF9 inhibitor; DOT1Li, DOT1L inhibitor; 

ENLi, ENL inhibitor; H3K4me1, K4-monomethlylated histone H3; H3K4me3, K4-

trimethlylated histone H3; H3K79me2, K79-dimethlylated histone H3; MLL-C, carboxy-
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terminal side of MLL protein; MLL-N, amino-terminal side of MLL protein; MLL-r, 

rearrangements in mixed-lineage leukaemia genes.
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Fig. 4 |. Selective inhibitors of lysine methyltransferases in preclinical development.
Chemical structures of compounds targeting G9a/G9a-like protein (GLP) (part a), SETD8 

(part b), SUV420H1/SUV420H2 (part c), SETD7 (part d) and SMYD2 (part e) are shown.
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Fig. 5 |. SMyD3 promotes RAS-driven tumorigenesis.
a | Basic schematic of the RAS–mitogen-activated protein kinase (MAPK) signalling 

cascade. Under normal conditions, growth factor activation of a receptor tyrosine kinase 

(RTK) induces RAS to switch from the GDP-bound inactive state to the GTP-bound active 

state. Constitutively active oncogenic mutant RAS bypasses normal induction, resulting in 

increased downstream signalling. Mitogen-activated protein kinase kinase kinase 2 

(MAP3K2) feeds into RAS–MAPK signalling by phosphorylating and activating MEK1/2. 

Dephosphorylation of MAP3K2 by protein phosphatase 2A (PP2A) renders it inactive. 
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SMYD3 trimethylation (me3) of MAP3K2 repels PP2A to prevent dephosphorylation, 

resulting in increased MAP3K2–MEK1/2–extracellular signal-regulated kinase 1/2 

(ERK1/2) signalling and promotion of RAS-driven tumorigenesis. b | Structures of SMYD3 

inhibitors.
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Fig. 6 |. RAS-driven cancer dependency on MeTTL13-mediated protein synthesis.
a | METTL13-mediated dimethylation of EEF1A on K55 increases EEF1A’s intrinsic 

GTPase activity, resulting in accelerated translation elongation and increased protein 

synthesis. b | Mutant KRAS-driven cancers become dependent on the METTL13–K55-

dimethylated EEF1A axis to maintain high translational rates required for malignant growth. 

The vulnerability of tumours to METTL13 depletion suggests potential efficacy of 

METTL13 inhibitors (METTL13i) to treat lethal malignancies. PI3K/mTORi, dual inhibitor 

of PI3K and mechanistic target of rapamycin.

Bhat et al. Page 44

Nat Rev Drug Discov. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bhat et al. Page 45

Ta
b

le
 1

 |

Se
le

ct
ed

 c
lin

ic
al

 tr
ia

ls
 o

f 
K

M
T

 in
hi

bi
to

rs

N
C

T
 id

en
ti

fi
er

D
ru

g
In

di
ca

ti
on

s
D

es
ig

n
P

ha
se

C
ur

re
nt

 s
ta

tu
s

E
Z

H
2 

in
hi

bi
to

rs

N
C

T
04

10
47

76
C

PI
-0

20
9

A
dv

an
ce

d 
so

lid
 tu

m
ou

rs
C

PI
-0

20
9 

w
ith

 ir
in

ot
ec

an
I/

II
R

ec
ru

iti
ng

N
C

T
02

39
56

01
C

PI
-1

20
5

B
 c

el
l l

ym
ph

om
as

Si
ng

le
 a

ge
nt

I
C

om
pl

et
ed

N
C

T
03

52
57

95
C

PI
-1

20
5

A
dv

an
ce

d 
so

lid
 tu

m
ou

rs
Se

le
ct

ed
 tu

m
ou

r 
ty

pe
s 

pr
ev

io
us

ly
 tr

ea
te

d 
w

ith
 P

D
1 

or
 P

D
L

1 
in

hi
bi

to
rs

Si
ng

le
-a

ge
nt

C
PI

-1
20

5 
an

d 
ip

ili
m

um
ab

I II
U

nk
no

w
n

N
C

T
03

48
06

46
C

PI
-1

20
5

M
et

as
ta

tic
 c

as
tr

at
io

n-
re

si
st

an
t p

ro
st

at
e 

ca
nc

er
C

PI
-1

20
5 

(o
r 

pl
ac

eb
o)

 in
 c

om
bi

na
tio

n 
w

ith
 e

nz
al

ut
am

id
e 

or
 a

bi
ra

te
ro

ne
/

pr
ed

ni
so

ne

Ib
/I

I
A

ct
iv

e,
 n

ot
 r

ec
ru

iti
ng

N
C

T
02

60
19

50
Ta

ze
m

et
os

ta
t 

(E
PZ

-6
43

8)
7 

co
ho

rt
s:

 R
/R

 S
N

F5
-n

eg
at

iv
e 

tu
m

ou
rs

; a
ny

 s
ol

id
 tu

m
ou

r 
w

ith
 E

Z
H

2 
ga

in
 o

f 
fu

nc
tio

n;
 r

ha
bd

oi
d 

tu
m

ou
rs

; s
yn

ov
ia

l s
ar

co
m

as
; e

pi
th

el
io

id
 

sa
rc

om
as

; p
oo

rl
y 

di
ff

er
en

tia
te

d 
ch

or
do

m
as

; r
en

al
 m

ed
ul

la
ry

 c
ar

ci
no

m
a

Si
ng

le
 a

ge
nt

II
R

ec
ru

iti
ng

N
C

T
02

86
02

86
Ta

ze
m

et
os

ta
t

M
al

ig
na

nt
 m

es
ot

he
lio

m
a 

w
ith

 B
A

P1
 lo

ss
 o

f 
fu

nc
tio

n
Si

ng
le

 a
ge

nt
II

C
om

pl
et

ed

N
C

T
03

45
67

26
Ta

ze
m

et
os

ta
t

R
/R

 B
 c

el
l n

on
-H

od
gk

in
 ly

m
ph

om
a 

w
ith

 E
Z

H
2 

m
ut

at
io

n
Si

ng
le

 a
ge

nt
II

A
ct

iv
e,

 n
ot

 r
ec

ru
iti

ng

N
C

T
02

87
55

48
Ta

ze
m

et
os

ta
t

D
L

B
C

L
, F

L
, r

ha
bd

oi
d 

tu
m

ou
rs

, s
yn

ov
ia

l s
ar

co
m

a,
 e

pi
th

el
io

id
 

sa
rc

om
a,

 m
es

ot
he

lio
m

a 
an

d 
ad

va
nc

ed
 s

ol
id

 tu
m

ou
rs

Si
ng

le
 a

ge
nt

 (
ro

llo
ve

r 
st

ud
y)

II
R

ec
ru

iti
ng

N
C

T
03

21
36

65
Ta

ze
m

et
os

ta
t

R
/R

 a
dv

an
ce

d 
so

lid
 tu

m
ou

rs
, n

on
-H

od
gk

in
 ly

m
ph

om
a 

or
 h

is
tio

cy
tic

 
di

so
rd

er
s 

w
ith

 E
Z

H
2,

 S
M

A
R

C
B

1,
 o

r 
SM

A
R

C
A

4 
m

ut
at

io
ns

Si
ng

le
 a

ge
nt

II
Te

m
po

ra
ri

ly
 s

us
pe

nd
ed

 
(s

ch
ed

ul
ed

 in
te

ri
m

 
m

on
ito

ri
ng

)

N
C

T
03

34
86

31
Ta

ze
m

et
os

ta
t

R
ec

ur
re

nt
 o

va
ri

an
 o

r 
en

do
m

et
ri

al
 c

an
ce

r
Si

ng
le

 a
ge

nt
II

Te
m

po
ra

ri
ly

 s
us

pe
nd

ed
 

(s
ch

ed
ul

ed
 in

te
ri

m
 

m
on

ito
ri

ng
)

N
C

T
04

20
49

41
Ta

ze
m

et
os

ta
t

A
dv

an
ce

d 
ep

ith
el

io
id

 o
r 

so
ft

 ti
ss

ue
 s

ar
co

m
a

Ta
ze

m
et

os
ta

t a
nd

 d
ox

or
ub

ic
in

Ib
/I

II
R

ec
ru

iti
ng

N
C

T
04

22
44

93
Ta

ze
m

et
os

ta
t

R
/R

FL
Ta

ze
m

et
os

ta
t (

or
 p

la
ce

bo
) 

in
 c

om
bi

na
tio

n 
w

ith
 le

na
lid

om
id

e 
an

d 
ri

tu
xi

m
ab

Ib
/I

II
R

ec
ru

iti
ng

N
C

T
01

89
75

71
Ta

ze
m

et
os

ta
t

A
dv

an
ce

d 
so

lid
 tu

m
ou

rs
 o

r 
B

 c
el

l l
ym

ph
om

as
 D

L
B

C
L

Si
ng

le
 a

ge
nt

Ta
ze

m
et

os
ta

t a
nd

 p
re

dn
is

ol
on

e
I/

II
A

ct
iv

e,
 n

ot
 r

ec
ru

iti
ng

N
C

T
03

85
44

74
Ta

ze
m

et
os

ta
t

L
oc

al
ly

 a
dv

an
ce

d 
or

 m
et

as
ta

tic
 u

ro
th

el
ia

l c
ar

ci
no

m
a

Ta
ze

m
et

os
ta

t a
nd

 p
em

br
ol

iz
um

ab
I/

II
R

ec
ru

iti
ng

N
C

T
02

88
95

23
Ta

ze
m

et
os

ta
t

N
ew

ly
 d

ia
gn

os
ed

 D
L

B
C

L
 w

ith
 p

oo
r 

pr
og

no
si

s
Ta

ze
m

et
os

ta
t a

nd
 E

pi
-R

C
H

O
P

Ib
/I

I
R

ec
ru

iti
ng

N
C

T
04

17
98

64
Ta

ze
m

et
os

ta
t

C
he

m
ot

he
ra

py
-n

ai
ve

 m
et

as
ta

tic
 c

as
tr

at
io

n-
re

si
st

an
t p

ro
st

at
e 

ca
nc

er
Ta

ze
m

et
os

ta
t (

or
 p

la
ce

bo
) 

in
 c

om
bi

na
tio

n 
w

ith
 e

nz
al

ut
am

id
e 

or
 a

bi
ra

te
ro

ne
/

pr
ed

ni
so

ne

Ib
/I

I
R

ec
ru

iti
ng

N
C

T
02

22
08

42
Ta

ze
m

et
os

ta
t

R
/R

 F
L

 o
r 

D
L

B
C

L
Ta

ze
m

et
os

ta
t (

or
 p

la
ce

bo
) 

in
 c

om
bi

na
tio

n 
w

ith
 a

te
zo

liz
um

ab
 a

nd
 o

bi
nu

tu
zu

m
ab

Ib
C

om
pl

et
ed

Nat Rev Drug Discov. Author manuscript; available in PMC 2021 October 01.

https://clinicaltrials.gov/ct2/show/NCT04104776
https://clinicaltrials.gov/ct2/show/NCT02395601
https://clinicaltrials.gov/ct2/show/NCT03525795
https://clinicaltrials.gov/ct2/show/NCT03480646
https://clinicaltrials.gov/ct2/show/NCT02601950
https://clinicaltrials.gov/ct2/show/NCT02860286
https://clinicaltrials.gov/ct2/show/NCT03456726
https://clinicaltrials.gov/ct2/show/NCT02875548
https://clinicaltrials.gov/ct2/show/NCT03213665
https://clinicaltrials.gov/ct2/show/NCT03348631
https://clinicaltrials.gov/ct2/show/NCT04204941
https://clinicaltrials.gov/ct2/show/NCT04224493
https://clinicaltrials.gov/ct2/show/NCT01897571
https://clinicaltrials.gov/ct2/show/NCT03854474
https://clinicaltrials.gov/ct2/show/NCT02889523
https://clinicaltrials.gov/ct2/show/NCT04179864
https://clinicaltrials.gov/ct2/show/NCT02220842


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bhat et al. Page 46

N
C

T
 id

en
ti

fi
er

D
ru

g
In

di
ca

ti
on

s
D

es
ig

n
P

ha
se

C
ur

re
nt

 s
ta

tu
s

N
C

T
02

08
29

77
G

SK
28

16
12

6
R

/R
 D

L
B

C
L

, t
ra

ns
fo

rm
ed

 F
L

, o
th

er
 n

on
-H

od
gk

in
 ly

m
ph

om
as

, s
ol

id
 

tu
m

ou
rs

 a
nd

 m
ul

tip
le

 m
ye

lo
m

a
Si

ng
le

 a
ge

nt
I

Te
rm

in
at

ed
 (

se
e 

te
xt

 f
or

 
de

ta
ils

)

N
C

T
03

46
09

77
PF

-0
68

21
49

7
R

/R
 s

m
al

l c
el

l l
un

g 
ca

nc
er

, c
as

tr
at

io
n-

re
si

st
an

t p
ro

st
at

e 
ca

nc
er

 a
nd

 F
L

Si
ng

le
 a

ge
nt

I
R

ec
ru

iti
ng

N
C

T
03

60
39

51
SH

R
25

54
R

/R
 m

at
ur

e 
ly

m
ph

oi
d 

ne
op

la
sm

s
Si

ng
le

 a
ge

nt
I

U
nk

no
w

n

N
C

T
03

74
17

12
SH

R
25

54
M

et
as

ta
tic

 c
as

tr
at

io
n-

re
si

st
an

t p
ro

st
at

e 
ca

nc
er

SH
R

25
54

 a
nd

 S
H

R
36

80
I/

II
R

ec
ru

iti
ng

C
om

bi
ne

d 
E

Z
H

1 
an

d 
E

Z
H

2 
in

hi
bi

to
rs

N
C

T
04

10
21

50
D

S-
32

01
b

R
/R

 a
du

lt 
T

 c
el

l l
eu

ka
em

ia
/ly

m
ph

om
a

Si
ng

le
 a

ge
nt

II
A

ct
iv

e,
 n

ot
 r

ec
ru

iti
ng

N
C

T
03

11
03

54
D

S-
32

01
b

A
M

L
 o

r 
ac

ut
e 

ly
m

ph
ob

la
st

ic
 le

uk
ae

m
ia

Si
ng

le
 a

ge
nt

I
R

ec
ru

iti
ng

N
C

T
02

73
22

75
D

S-
32

01
b

Ly
m

ph
om

a
Si

ng
le

 a
ge

nt
I

R
ec

ru
iti

ng

N
C

T
04

38
88

52
D

S-
32

01
b

M
et

as
ta

tic
 p

ro
st

at
e,

 u
ro

th
el

ia
l a

nd
 r

en
al

 c
el

l c
an

ce
rs

D
S-

32
01

b 
an

d 
ip

ili
m

um
ab

Ib
R

ec
ru

iti
ng

N
C

T
03

87
97

98
D

S-
32

01
b

R
ec

ur
re

nt
 s

m
al

l c
el

l l
un

g 
ca

nc
er

D
S-

32
01

b 
an

d 
ir

in
ot

ec
an

I/
II

R
ec

ru
iti

ng

N
C

T
04

39
07

37
H

H
28

53
R

/R
 n

on
-H

od
gk

in
 ly

m
ph

om
as

 o
r 

ad
va

nc
ed

 s
ol

id
 tu

m
ou

rs
Si

ng
le

 a
ge

nt
I

R
ec

ru
iti

ng

P
R

C
2-

E
E

D
 in

hi
bi

to
rs

N
C

T
02

90
06

51
M

A
K

68
3

A
dv

an
ce

d 
m

al
ig

na
nc

ie
s,

 in
cl

ud
in

g 
D

L
B

C
L

, s
ol

id
 tu

m
ou

rs
 a

nd
 

na
so

ph
ar

yn
ge

al
 c

ar
ci

no
m

a
Si

ng
le

 a
ge

nt
I/

II
R

ec
ru

iti
ng

D
O

T
1L

 in
hi

bi
to

rs

N
C

T
02

14
18

28
E

PZ
-5

67
6

R
/R

 le
uk

ae
m

ia
s 

be
ar

in
g 

M
L

L
-r

 (
pa

ed
ia

tr
ic

)
Si

ng
le

 a
ge

nt
I

C
om

pl
et

ed

N
C

T
01

68
41

50
E

PZ
-5

67
6

L
eu

ka
em

ia
s 

in
vo

lv
in

g 
M

L
L

-r
 o

r 
ad

va
nc

ed
 h

ae
m

at
ol

og
ic

 m
al

ig
na

nc
ie

s
Si

ng
le

 a
ge

nt
I

C
om

pl
et

ed

N
C

T
03

70
12

95
E

PZ
-5

67
6

R
/R

 o
r 

ne
w

ly
 d

ia
gn

os
ed

 M
L

L
-r

 A
M

L
Pi

no
m

et
os

ta
t a

nd
 a

za
cy

tid
in

e
Ib

/I
I

A
ct

iv
e,

 n
ot

 r
ec

ru
iti

ng

N
C

T
03

72
40

84
E

PZ
-5

67
6

N
ew

ly
 d

ia
gn

os
ed

 A
M

L
 w

ith
 M

L
L

-r
Pi

no
m

et
os

ta
t a

nd
 s

ta
nd

ar
d 

ch
em

ot
he

ra
py

Ib
/I

I
R

ec
ru

iti
ng

M
en

in
–M

L
L

 p
ro

te
in

 in
hi

bi
to

rs

N
C

T
04

06
73

36
K

O
-5

39
R

/R
 A

M
L

Si
ng

le
 a

ge
nt

I
R

ec
ru

iti
ng

N
C

T
04

06
53

99
SN

D
X

-5
61

3
R

/R
 le

uk
ae

m
ia

s
3 

co
ho

rt
s:

 M
L

L
-r

 A
L

L
 o

r 
M

PA
L

; M
L

L
-r

 A
M

L
; N

PM
1c

 A
M

L
SN

D
X

-5
61

3 
an

d 
pl

ac
eb

o 
or

 C
Y

P3
A

4 
in

hi
bi

to
rs

SN
D

X
-5

61
3

I II
R

ec
ru

iti
ng

A
M

L
, a

cu
te

 m
ye

lo
id

 le
uk

ae
m

ia
; D

L
B

C
L

, d
if

fu
se

 la
rg

e 
B

 c
el

l l
ym

ph
om

a;
 D

O
T

1L
, d

is
ru

pt
or

 o
f 

te
lo

m
er

ic
 s

ile
nc

in
g 

1-
lik

e 
pr

ot
ei

n;
 E

pi
-R

C
H

O
P,

 r
itu

xi
m

ab
, c

yc
lo

ph
os

ph
am

id
e,

 d
ox

or
ub

ic
in

, v
in

cr
is

tin
e 

an
d 

pr
ed

ni
so

ne
; E

Z
H

2,
 e

nh
an

ce
r 

of
 z

es
te

 h
om

ol
og

ue
 2

; F
L

, f
ol

lic
ul

ar
 ly

m
ph

om
a;

 K
M

T,
 ly

si
ne

 m
et

hy
ltr

an
sf

er
as

e;
 M

L
L

, m
ix

ed
-l

in
ea

ge
 le

uk
ae

m
ia

; M
L

L
-r

, r
ea

rr
an

ge
m

en
ts

 in
 m

ix
ed

-l
in

ea
ge

 le
uk

ae
m

ia
 g

en
es

; 
N

PM
1c

, n
uc

le
op

ho
sm

in
 1

 m
ut

at
io

n 
th

at
 c

au
se

s 
cy

to
pl

as
m

ic
 lo

ca
liz

at
io

n;
 P

R
C

2,
 P

ol
yc

om
b 

re
pr

es
si

ve
 c

om
pl

ex
 2

; R
/R

, r
el

ap
se

d 
or

 r
ef

ra
ct

or
y.

Nat Rev Drug Discov. Author manuscript; available in PMC 2021 October 01.

https://clinicaltrials.gov/ct2/show/NCT02082977
https://clinicaltrials.gov/ct2/show/NCT03460977
https://clinicaltrials.gov/ct2/show/NCT03603951
https://clinicaltrials.gov/ct2/show/NCT03741712
https://clinicaltrials.gov/ct2/show/NCT04102150
https://clinicaltrials.gov/ct2/show/NCT03110354
https://clinicaltrials.gov/ct2/show/NCT02732275
https://clinicaltrials.gov/ct2/show/NCT04388852
https://clinicaltrials.gov/ct2/show/NCT03879798
https://clinicaltrials.gov/ct2/show/NCT04390737
https://clinicaltrials.gov/ct2/show/NCT02900651
https://clinicaltrials.gov/ct2/show/NCT02141828
https://clinicaltrials.gov/ct2/show/NCT01684150
https://clinicaltrials.gov/ct2/show/NCT03701295
https://clinicaltrials.gov/ct2/show/NCT03724084
https://clinicaltrials.gov/ct2/show/NCT04067336
https://clinicaltrials.gov/ct2/show/NCT04065399

	Abstract
	Writers of lysine methylation
	Rationale for therapeutic targeting of writers.
	General chemical considerations and strategies for developing KMT inhibitors.

	EZH2 inhibitors
	Clinical contexts.
	Chemical and structural considerations.
	Results in the clinic.
	Disrupting reader functions as an alternative therapeutic strategy.
	Potential future applications and challenges.

	DOT1L inhibitors
	Clinical context.
	Chemical and structural considerations.
	Results in the clinic.
	Alternative therapeutic strategies.

	Inhibitors of KMTs in preclinical investigation
	G9a and GLP.
	SETD8.
	SUV420H1 and SUV420H2.
	SETD7.
	SMYD2.
	SMYD3.

	KMT targets for future drug development
	Histone KMTs.
	Non-histone KMTs.
	Summary and outlook.

	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3 |
	Fig. 4 |
	Fig. 5 |
	Fig. 6 |
	Table 1 |

