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Abstract

Cognitive function is a substantially heritable trait related to numerous important life outcomes. 

Several genome-wide association studies of cognitive function have in recent years led to the 

identification of thousands of significantly associated loci and genes. Individuals included in these 

studies have rarely been nonagenarians and centenarians, and since cognitive function is an 

important component of quality of life for this rapidly expanding demographic group, there is a 

need to explore genetic factors associated with individual differences in cognitive function at 

advanced ages.

In this study, we pursued this by performing a genome-wide association study of cognitive 

function in 490 long-lived Danes (age range 90.1–100.8 years). While no genome-wide significant 

SNPs were identified, suggestively significant SNPs (P < 1×10−5) were mapped to several 

interesting genes, including ZWINT, CELF2, and DNAH5, and the glutamate receptor genes 

GRID2 and GRM7. Additionally, results from a gene set over-representation analysis indicated 

potential roles of gene sets related to G protein-coupled receptor (GPCR) signaling, interaction 
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between L1 and ankyrins, mitogen-activated protein kinase (MAPK) signaling, RNA degradation, 

and cell cycle.

Larger studies are needed to shed further light on the possible importance of these suggestive 

genes and pathways in cognitive function in nonagenarians and centenarians.
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1. Introduction

General cognitive function is a major contributor to economic and health-related life 

outcomes, and is known to be positively correlated with education, occupational status, 

income, health, and longevity, among others (Deary, 2012). Thus, understanding the factors 

that contribute to cognitive function and its underlying biology is of great importance.

Cognitive function is a complex trait affected by both genetic and environmental factors. 

Twin studies have estimated that the heritability of cognitive function is around 50–80%, 

increasing from childhood to approximately 65 year of age (Polderman et al., 2015). The 

heritability after age 65 has been debated, as some studies have shown that the heritability 

decreases in very old age (Finkel and Reynolds, 2009; Lee et al., 2010), while others have 

shown that it remains stable (McGue and Christensen, 2013). Regardless, the heritability 

remains above 50%, indicating a substantial genetic contribution to individual differences in 

cognitive functioning. In recent years, a number of genome-wide association studies 

(GWASs) of cognitive function or similar phenotypes, e.g. intelligence, have been published, 

resulting in identification of thousands of significantly associated genetic loci and genes 

(e.g. (Davies et al., 2015; Davies et al., 2018; Davies et al., 2016; Davies et al., 2011; Hill et 

al., 2019; Lam et al., 2017; Savage et al., 2018; Sniekers et al., 2017; Trampush et al., 2017; 

Xu et al., 2017)). The most recent studies included genome-wide association meta-analyses 

of general cognitive function and intelligence (Davies et al., 2018; Savage et al., 2018), and 

a study combining two large GWASs of intelligence and education (Hill et al., 2019). The 

meta-analysis of general cognitive function by Davies et al. included 300,486 individuals of 

European ancestry from 57 population-based cohorts and identified 148 significantly 

associated independent loci, 709 significantly associated genes, and 7 significant gene sets 

related to neurogenesis, regulation of nervous system development, neuron projection, 

neuron differentiation, regulation of cell development, and dendrite (Davies et al., 2018). In 

the meta-analysis of intelligence by Savage et al., including 269,867 individuals from 14 

independent epidemiological cohorts of European ancestry, the authors found 205 

significantly associated genomic loci, 1,016 significantly associated genes, and 6 significant 

gene sets: neurogenesis, neuron differentiation, central nervous system neuron 

differentiation, regulation of nervous system development, positive regulation of nervous 

system development, and regulation of synapse structure or activity (Savage et al., 2018). In 

the study of 248,482 individuals by Hill et al., the authors combined a meta-GWAS of 

intelligence with a GWAS of education (Okbay et al., 2016), resulting in significant 
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associations with 187 loci, 538 genes, and gene sets related to neurogenesis, regulation of 

nervous system development, regulation of cell development, neuron projection, central 

nervous system neuron differentiation, synapse, neuron differentiation, and oligodendrocyte 

differentiation (Hill et al., 2019). While the GWASs of cognitive function and related 

phenotypes published so far have included impressive numbers of individuals, most 

participants have been young, middle-aged, and elderly individuals, and thus there is a 

general lack of studies focusing on more extreme age groups like nonagenarians and 

centenarians. With an increasingly aging population (Vaupel, 2010), cognitive impairment is 

a major concern, both for the individual and for society. Retaining cognitive abilities in old 

age is important for the ability to live independently, and is a key element of successful 

aging and of quality of life (McGue and Christensen, 2001, 2002). It has also been shown 

that greater variation is observed for cognitive function in older compared to younger 

individuals (Harris and Deary, 2011), and that this variation becomes increasingly important 

with age as the level of cognitive function approaches the threshold required for everyday 

functioning (Tucker-Drob, 2011). Another aspect is that the selection pressure has been and 

is markedly different for nonagenarians and centenarians compared to younger individuals. 

At advanced ages individuals are increasingly subjected to selective mortality, i.e. the most 

frail and disabled individuals tend to die first, leaving the best functioning individuals in the 

population (Christensen et al., 2008), and it is therefore possible that different genes 

influence cognition at different ages as it has been seen for the APOE gene (Davies et al., 

2015; Dokkedal et al., 2020) and that the findings of this study may be different from the 

findings of studies of younger individuals.

Therefore, to explore genetic variants associated with cognitive function among the very old, 

we performed a GWAS of cognitive function assessed by a cognitive composite score 

derived from 5 cognitive tests in a homogenous study population of 490 long-lived Danes 

(mean age 96.8 years, age range 90.1–100.8 years).

2. Materials and Methods

2.1. Study population

The study population consisted of 490 long-lived individuals drawn from four population-

based, nation-wide surveys conducted at the University of Southern Denmark: the 1905 birth 

cohort study (N = 182), the 1910 birth cohort study (N = 128), the 1915 birth cohort study 

(N = 140), and the Longitudinal Study of Ageing Danish Twins (LSADT, N = 40)). All 

surveys were without exclusion criteria but required that the participant could provide 

informed consent. Briefly, the 1905 birth cohort study is an in-depth survey of all Danes 

born in 1905. The study was initiated in 1998 and follow-up surveys of participating 

survivors were conducted in 2000, 2003, and 2005. The 1910 and 1915 birth cohort studies 

include all Danes born in 1910 and 1915, respectively, and alive and living in Denmark on 

September 1st 2010. The 1915 birth cohort study was followed up in 2015, when participants 

reached 100 years of age. The 1905, 1910, and 1915 birth cohort studies have been 

described in more details elsewhere (Rasmussen et al., 2017). From the 1905 and 1915 birth 

cohort studies, participants for the present study were selected among individuals reaching 

an age of at least 96 years. However, the blood samples and the applied cognitive scores 
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were collected as part of the intake surveys (for the 1905 birth cohort study either in 1998 at 

92–93 years of age or in 2005 at 100 years of age, for the 1910 birth cohort study in 2010 at 

100 years of age, and for the 1915 birth cohort study in 2010 at 95 years of age). LSADT 

includes Danish twins aged 70 years and older and was initiated in 1995 with follow-up 

surveys carried out in 1997, 1999, 2001, 2003, and 2005 (Pedersen et al., 2019). From 

LSADT, one individual from each twin pair was randomly selected among participants that 

had reached an age of at least 90 years, blood samples were collected in 1997, and the 

applied cognitive score was from the highest age possible/the latest survey (1997 (N = 3), 

1999 (N = 2), 2001 (N = 5), 2003 (N = 6), and 2005 (N = 24).

Written informed consents were obtained from all participants. Collection and use of 

biological material and survey information were approved by the Regional Committees on 

Health Research Ethics for Southern Denmark, and the study was approved by the Danish 

Data Protection Agency.

2.2. Cognitive function

Cognitive function was assessed using a five-component cognitive score including tests of 

verbal fluency, forward and backward digit span, and immediate and delayed recall (McGue 

and Christensen, 2001). To create the cognitive composite scores, the individual scores of 

the five tests were standardized using the means and standard deviations obtained in 46–50 

year old individuals born from 1949 to 1952, summed and converted into a T-score with a 

mean of 50 and a standard deviation of 10 in the 46–50 year age group.

To evaluate cognitive impairment among study participants, Mini Mental State Examination 

(MMSE) scores were included. MMSE ranges from 0 to 30, and individuals with scores 

between 0 and 17 are graded as severely cognitively impaired, individuals with scores 

between 18 and 23 as mildly cognitively impaired, and individuals with scores between 24 

and 30 as normal/having no cognitive impairment. The MMSE is further described in the 

previous literature (McGue and Christensen, 2001; Mengel-From et al., 2016).

2.3. Genotyping and quality control

DNA was extracted from whole blood using a manual (Miller et al., 1988) or a semi-

automatic (Autopure, Qiagen, Hilden, Germany) salting out method, or from filter cards 

using the Extract-N-Amp Blood PCR Kit (Sigma Aldrich, St. Louis, MO, USA) followed by 

amplification using the GenomePlex Complete Whole Genome Amplification (WGA) Kit 

(Sigma Aldrich, St. Louis, MO, USA).

Samples were genotyped using the Illumina Human OmniExpress Array (Illumina San 

Diego, CA, USA) following the manufacturer’s protocols. Quality control was carried out in 

GenomeStudio (Illumina San Diego, CA, USA), Plink (https://www.cog-genomics.org/

plink/1.9/) (Chang et al., 2015; Purcell et al., 2007) and R version 3.3.1. Post-genotyping/

pre-imputation quality control included filtering SNPs on cluster separation < 0.40, the mean 

of the normalized theta value of the heterozygote cluster < 0.20 or > 0.80, the mean 

normalized intensity of the heterozygote cluster < 0.25, call rate < 95%, HWE P < 1×10−4, 

and MAF < 1%. In addition, SNPs with a significantly different (P < 1×10−4) minor allele 

frequency between individuals with DNA extracted from whole blood and individuals with 
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DNA extracted from filter cards followed by whole genome amplification were excluded. 

Individuals were excluded based on call rate < 95%, relatedness (1 individual from sample 

pairs with proportion of IBD > 0.1875) and gender mismatch between genetic and reported 

gender. Pre-phasing and imputation to the 1000 Genomes phase I v.3 reference panel was 

performed using IMPUTE2 (Howie et al., 2009). After imputation, genotype probabilities 

were converted to hard-called genotypes in Plink using a cut-off of 90%, meaning that only 

genotypes with a probability of more than 90% were called. SNPs with no genotype 

probabilities above 90% were set to missing. Post-imputation quality control included the 

removal of insertions and deletions, non-autosomal variants, tri-allelic SNPs, and SNPs with 

a call rate < 95%, HWE P < 1×10−5, MAF < 1%, and an imputation quality (INFO) score < 

0.80, resulting in 4.827.900 bi-allelic, autosomal SNPs available for analysis.

2.4. Statistical analyses

2.4.1. SNP-based analysis—A SNP-based genome-wide association analysis was 

performed in Plink (https://www.cog-genomics.org/plink/1.9/) (Chang et al., 2015; Purcell et 

al., 2007) applying a linear regression model with the cognitive composite score as the 

dependent variable and the hard-called genotype (assuming an additive model with genotype 

coded 0, 1, or 2 depending on the number of minor alleles) as the independent variable. Age 

and sex were included as covariates. As all study participants are ethnic Danes, no 

adjustment for population stratification was performed. A Bonferroni-corrected significance 

level of 5×10−8 was used as the genome-wide significance level, whereas a significance level 

of 1×10−5 was used as a suggestive significance level. A post hoc power calculation 

performed in Quanto (version 1.2.4, http://biostats.usc.edu/Quanto.html) revealed that 

assuming an additive model and given a N of 490, a minor allele frequency of at least 0.01, a 

significance level of of 5×10−8, a mean cognitive composite score and corresponding 

standard deviation of 27.1 and 9.3, respectively, beta-coefficients of 18.5 and 3.7 could be 

detected with a power of at least 80% at minor allele frequencies of 0.01 and 0.50.

Manhattan and quantile-quantile (Q-Q) plots (see Figure 1) were created in R using the 

package qqman.

2.4.2. Gene-based analysis—A gene-based analysis was conducted using MAGMA 

(de Leeuw et al., 2015) as implemented in FUMA v1.3.4 (http://fuma.ctglab.nl/) (Watanabe 

et al., 2017), which is a web-based platform facilitating functional annotation of GWAS 

results. Default parameters, including the SNP-wide mean model, were applied along with 

the 1000G Phase3 EUR reference panel (Genomes Project et al., 2015). To allow for 

regulatory SNPs to be included in the gene-based analysis, all SNPs located within ±10 kb 

of a gene were used to derive a P-value for the association between that gene and cognitive 

function. In total, 18339 protein-coding, autosomal genes defined by the NCBI Build 37.3 

were investigated, resulting in a Bonferroni-corrected genome-wide significance threshold of 

P < 2.73×10−6.

2.4.3. Gene-set analyses—A gene-set analysis was also performed in MAGMA (de 

Leeuw et al., 2015) as implemented in FUMA v1.3.4 (http://fuma.ctglab.nl/) (Watanabe et 

al., 2017) using 10678 curated gene sets and GO terms from MSigDB v6.2 (Liberzon et al., 
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2011). The MAGMA gene-set analysis is competitive in the sense that it tests if genes within 

a gene set are more strongly associated with cognitive function than the genes within other 

gene sets. Bonferroni correction was applied to control for multiple testing.

As the MAGMA gene-set analysis uses the full distribution of gene P-values from the 

MAGMA gene-based analysis, we additionally performed an over-representation analysis to 

identify gene sets over-represented only among the nominally significant genes (P < 0.05). 

Thus, these were submitted to MSigDB (http://software.broadinstitute.org/gsea/msigdb/

index.jsp) (Liberzon et al., 2011) using the REACTOME and KEGG databases as reference. 

A false discovery rate (FDR) < 0.05 was used to identify significant gene sets.

2.4.4. Gene-property analysis—A gene-property analysis was carried out using 

MAGMA (de Leeuw et al., 2015) as implemented in FUMA v1.3.4 (http://fuma.ctglab.nl/) 

(Watanabe et al., 2017) to examine the tissue-specificity of cognitive function by testing the 

correlations between tissue-specific expression profiles and the associations between genes 

and cognitive function. Gene expression values for 53 specific tissues types were obtained 

from GTEx v6 (Consortium, 2015), and the full distribution of gene P-values from the 

MAGMA gene-based analysis was used. The control for multiple testing was done using a 

Bonferroni correction.

2.4.5. Gene mapping—Prior to gene mapping, independent SNPs, lead SNPs, candidate 

SNPs, and genomic loci were defined from the results of the SNP-based analysis using 

FUMA v1.3.4 (http://fuma.ctglab.nl/) (Watanabe et al., 2017). Firstly, independent SNPs 

were defined as SNPs with P < 1×10−5 and independent of other suggestively significant 

SNPs at r2 < 0.6. Secondly, lead SNPs were defined as a subset of the independent SNPs as 

those that were independent from each other at r2 < 0.1. Thirdly, candidate SNPs were 

defined as SNPs with a MAF ≥ 0.01 and in LD (r2 ≥ 0.6) with any of the independent SNPs. 

The candidate SNPs were identified from the 1000G Phase3 EUR reference panel (Genomes 

Project et al., 2015), and thus they were not necessarily a part of our initially performed 

GWAS. Only SNPs with a MAF ≥ 0.01 in the 1000G Phase 3 EUR reference panel were 

included in the annotation, for which reason six of the suggestively significant SNPs 

(rs17265690, rs114933297, rs141363063, rs148488001, rs192345176, and rs138203943; see 

Table 2) were not taken into account by FUMA. Finally, genomic loci were defined by 

merging lead SNP-containing loci less than 250 kb apart, and with the borders of the loci 

defined by the candidate SNPs. LD patterns and MAFs were deduced from the 1000G 

Phase3 EUR reference panel (Genomes Project et al., 2015).

The identified candidate SNPs were mapped to genes in FUMA using three strategies: 1) 

positional mapping, where SNPs were mapped to genes based on physical distance (+/− 10 

kb); 2) expression quantitative trait loci (eQTL) mapping, where SNPs were mapped to 

genes with which the SNPs showed a significant (FDR < 0.05) eQTL association (i.e. allelic 

variation at the SNP is associated with the expression level of that gene); 3) chromatin 

interaction mapping, where SNPs were mapped to genes when there is a significant (FDR < 

1×10−6) 3D DNA-DNA interaction between the SNP region and the gene region.
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2.5. Verification

Verification of the results of the SNP-based analysis (independent SNPs and candidate SNPs 

as defined in the section ‘Gene mapping’) was sought by in silico look-up in the results of 

the already published meta-GWASs on general cognitive function (Davies et al., 2018) and 

intelligence (Savage et al., 2018), and in the results of the study combining GWASs of 

intelligence and education (Hill et al., 2019). For the studies by Hill et al. and Davies et al., 

information was only available for genome-wide significant (P < 5×10−8) and suggestively 

significant (P < 1×10−5) SNPs, respectively, and therefore the replication was primarily 

based on the results of the study by Savage et al. where summary statistics were available for 

all SNPs included in the study.

2.6. Replication of results of previous studies

Replication of previously reported genome-wide significant findings was sought in the 

present study by comparing the results of the SNP- and gene-based analyses to the findings 

of the meta-GWASs published by Davies et al. (Davies et al., 2018), Savage et al. (Savage et 

al., 2018), and Hill et al. (Hill et al., 2019).

3. Results

Study population characteristics are shown in Table 1. Notably, the study population of long-

lived individuals had a mean cognitive score of 27.1, corresponding to more than 2 SDs 

lower than the average score for 46–50 year old individuals born from 1949–1952, 

indicating, as expected, a clear cross-sectional age-related decline in cognitive function. The 

cognitive score range of 4.1 to 63.9 (IQR 20.6–32.6) reveals that there is substantial 

variation among the study population participants.

No genome-wide significant (P < 5×10−8) SNPs were identified in the SNP-based 

association analysis. However, 65 SNPs (see Table 2) were found to associate with cognitive 

function at a suggestive significance level (P < 1×10−5). Manhattan- and QQ-plots for the 

SNP-based association analysis are shown in Figure 1. According to the genomic loci 

characterization implemented in FUMA, the 65 SNPs represent 14 independent signals 

distributed across 12 genomic loci on chromosomes 1, 3, 4, 5, 6, 10, and 18.

The MAGMA gene-based (see Supplementary Table 1), gene-set (see Supplementary Table 

2) and gene-property analyses did not reveal any significant results. Interestingly, however, a 

striking tendency was seen in the gene-property analysis results where the 10 tissue-specific 

expression profiles most correlated with the results of the gene-based analysis were of 

various parts of the brain (see Figure 2). Also, the MSigDB over-representation analysis of 

the nominally significant genes identified in the MAGMA gene-based analysis, revealed 

significant enrichment (FDR < 0.05) for gene sets related to G protein-coupled receptor 

(GPCR) signaling (the Reactome gene sets ‘Signaling by GPCR’, ‘GPCR ligand binding’, 

‘Class A/1 (Rhodopsin-like receptors)’, ‘GPCR downstream signaling’, ‘Peptide ligand-

binding receptors’, and ‘G alpha (12/13) signaling events’), interaction between L1 and 

ankyrins, mitogen-activated protein kinase (MAPK) signaling, RNA degradation, and cell 

cycle (see Table 3).

Nygaard et al. Page 7

Mech Ageing Dev. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Using the gene mapping strategies implemented in FUMA, the suggestively significant 

SNPs were found to map to 60 unique genes; 6 were identified through positional mapping, 

4 were identified through eQTL mapping, and 54 were identified through chromatin 

interaction mapping (see Supplementary Table 3). Two genes, CELF2 and DNAH5, were 

identified by two mapping strategies, and one gene, ZWINT, was identified by all three 

strategies.

Independent SNPs and candidate SNPs identified based on the independent SNPs were 

sought verified by in silico look-up in three recent meta-GWASs of general cognitive 

function and intelligence. Overall, 9.7% (P = 7 ×10−4) of the independent and candidate 

SNPs were verified (same direction of effect and P < 0.05). The verified SNPs were 

candidate SNPs identified based on four of the independent SNPs (rs187473706, rs2016129, 

rs1556397, and rs56139919 on chromosomes 6 and 10; see Table 2).

Replication of genome-wide significant SNP- and gene-based findings previously published 

in GWASs of general cognitive function and intelligence, revealed that of the genome-wide 

significant SNPs identified in the studies by Davies et al. 2018, Savage et al. 2018, and Hill 

et al. 2019, 55.0%, 72.4%, and 72.8%, respectively, were available in the present study, and 

5.1%, 4.9%, and 4.4% of these replicated (P < 0.05). When restricting to SNPs showing the 

same direction of effect, 2.6% and 2.4% of the genome-wide significant SNPs from the 

studies by Savage et al. 2018 and Hill et al. 2019 replicated in our study. Unfortunately, the 

publicly available data from the Davies et al. 2018 study did not allow a straightforward 

evaluation of direction of effect. Between 5.1% and 6.5% of the genome-wide significant 

results of gene-based analyses were found to replicate in the present study.

4. Discussion

To further our understanding of the underlying biology of the genetic component of 

cognitive function among nonagenarians and centenarians, we carried out a genome-wide 

association study of cognitive function in 490 long-lived Danes.

While the SNP-based association analysis in the present study did not reveal any genome-

wide significant findings, a number of SNPs with a suggestively significant association to 

cognitive function among the very old were identified. Based on the independent SNPs 

identified from these suggestively significant SNPs and the derived candidate SNPs, 60 

genes were found to be implicated in cognitive function using three gene mapping strategies; 

positional mapping, eQTL mapping, and chromatin interaction mapping (see Supplementary 

Table 3). The ZWINT gene was identified by all three mapping strategies, while CELF2 and 

DNAH5 were identified by positional mapping and chromatin interaction mapping. The 

ZWINT gene encodes the ZW10 interacting kinetochore protein, which regulates 

centromere division and was recently suggested as a potential target for lung cancer therapy 

(Peng et al., 2019). The role of ZWINT in cognitive function is thus less clear, although the 

protein encoded by ZWINT is reported by the Biological General Repository for Interaction 

Datasets (BioGRID; https://thebiogrid.org) (Oughtred et al., 2019) to interact with the 

products of the APP and CLU genes that are well-known in relation to Alzheimer’s disease 

and cognitive function (Kunkle et al., 2019). Similarly, the CELF2 gene product, the 
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CUGBP Elav-like family member 2 protein, has been found to interact with the APP gene 

product (BioGRID; https://thebiogrid.org) (Oughtred et al., 2019). In addition, CELF2 is 

highly expressed in the brain (Li et al., 2001) and genetic variants in CELF2 have been 

found to be involved in late-onset Alzheimer’s disease in APOE ε4 homozygotes (Wijsman 

et al., 2011), as well as significantly associated with educational attainment, cognitive 

function, and mathematical ability (Kichaev et al., 2019; Lee et al., 2018). The DNAH5 gene 

encodes an axonemal dynein heavy chain protein, which is part of a microtubule-associated 

motor protein complex in motile cilia (Zariwala et al., 2007), and plays a role in primary 

ciliary dyskinesia that is characterized by abnormal ciliary motility and affects the lungs, 

reproductive organs, and organ laterality (Olbrich et al., 2002; Zariwala et al., 2007). Of 

more relevance, DNAH5 has also been suggested to play a role in mathematical ability 

(Docherty et al., 2010).

In addition, the mapped genes include CCSER1, TFB1M, KIAA1217, PDE4B, NOX3, 

ARID1B, ZCCHC2, ECHDC3, and LYZL1 that have all been implicated in Alzheimer’s 

disease, educational attainment, cognitive function, mathematical ability, and/or intelligence 

(Davies et al., 2018; Hill et al., 2019; Jun et al., 2017; Kichaev et al., 2019; Lee et al., 2018; 

Savage et al., 2018; Witoelar et al., 2018); the DUSP22 gene, which has been found to be 

down-regulated in the hippocampus of Alzheimer’s disease patients and is suggested to be 

important for Tau phosphorylation and CREB signaling (Sanchez-Mut et al., 2014); the 

BCL2 gene, which encodes an anti-apoptotic protein suggested to link autophagy and 

Alzheimer’s disease (Uddin et al., 2018); GRID2 that encodes the glutamate ionotropic 

receptor delta type subunit 2 protein, which is expressed selectively in cerebellar Purkinje 

cells (Araki et al., 1993), and GRM7 that encodes the glutamate metabotropic receptor 7 

protein, which is expressed in many brain tissues, in particular in the hippocampus, cerebral 

cortex, and cerebellum (Makoff et al., 1996). Both ionotropic and metabotropic glutamate 

receptors are activated by glutamate. Glutamate is the major excitatory neurotransmitter in 

the central nervous system, and glutamatergic neurotransmission is involved in most aspects 

of normal brain function. Ionotropic glutamate receptors are ligand-gated ion channels that 

produce excitatory currents upon activation by glutamate, while metabotropic glutamate 

receptors are G protein-coupled receptors (GPCRs) that control cellular processes through G 

protein signaling cascades (Reiner and Levitz, 2018). A number of GWASs have found 

GRID2 to be involved in educational attainment, intelligence and cognitive function (Hill et 

al., 2019; Kichaev et al., 2019; Lee et al., 2018; Savage et al., 2018), whereas GRM7 was 

recently suggested as a novel gene significantly associated with Alzheimer’s disease 

(Squillario et al., 2020).

The role of GPCRs in cognitive function in nonagenarians and centenarians was further 

supported by the gene set over-representation analysis. Using the list of genes found to 

associate with cognitive function among nonagenarians and centenarians at a nominal 

significance level from the MAGMA gene-based analysis, the analysis identified several 

significantly over-represented gene sets related to GPCR signaling. The GPCRs comprise 

the largest family of transmembrane proteins in humans and share a common structure of 

seven transmembrane helical regions. Roughly 50% of GPCRs have sensory functions, and 

around 90% of the non-sensory GPCRs are expressed in the brain, where they play 

important roles in numerous neuronal functions, including regulation of neuronal 
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communication at the synapse (Huang and Thathiah, 2015) as well as structural and synaptic 

plasticity, which have been associated with learning and memory and thereby cognitive 

function (Leung and Wong, 2017). Furthermore, GPCRs have been implicated in a number 

of neurodegenerative diseases like Alzheimer’s disease, vascular dementia, frontotemporal 

dementia, Parkinson’s disease, and Huntington’s disease (Huang et al., 2017). Interestingly, 

the Reactome gene set ‘Interaction between L1 and Ankyrins’ was also among the gene sets 

in which genes associated with cognitive function at a nominal significance level were 

significantly over-represented. L1-type proteins are transmembrane cell adhesion molecules 

(CAMs) that play important roles in several neural processes, including axonal formation, 

growth and branching, synapse development, and regulation of synaptic plasticity (Skaper, 

2012). Several of these processes might be regulated by interaction between L1-type CAMs 

and ankyrins (Hortsch et al., 2009).

The ‘G alpha (12/13) signaling events’ pathway replicated at a nominal significance level (P 

< 0.05) in the study by Davies et al. (Davies et al., 2018), and the more generic pathways 

‘MAPK signaling pathway’ and ‘Cell cycle’ both replicated in at least two of the studies by 

Davies et al., Hill et al., or Savage et al. (Davies et al., 2018; Hill et al., 2019; Savage et al., 

2018).

Using a Bonferroni-corrected significance level threshold, which is the default in the 

MAGMA gene-set analysis performed as part of FUMA, no gene sets were found to be 

significant. However, in connection with another gene-set analysis algorithm it has been 

argued that using a Bonferroni-corrected significance level is too stringent as the gene sets 

are not independent. Instead, a significance level of P < 1×10−5 has been suggested to be 

sufficient to ensure no inflation of the type 1 error rate (Mishra and Macgregor, 2015). Using 

this significance level, one gene set, the ‘hirsch cellular transformation signature dn’ gene 

set (Hirsch et al., 2010) was found to be significantly associated with cognitive function (see 

Supplementary Table 2). This gene set was previously found to be associated with general 

cognitive function and intelligence with the same direction of effect as seen in this study at a 

nominal significance level in the studies by Davies et al. and Hill et al. (Davies et al., 2018; 

Hill et al., 2019).

In addition to uncovering several suggestive findings of the genetic basis of cognitive 

function among long-lived individuals, the present study also added support for several 

previously reported associations. While this suggests that there is overlap between the 

genetic contribution to cognitive function in younger and long-lived individuals, the 

proportion of replicated findings (around 5%) is somewhat smaller than in other studies 

(typically more than 10%), which is likely to be explained by differences, primarily in the 

age of the study populations, but potentially also in degree of genetic homogeneity, 

phenotypes and analysis methods.

This study has some methodological limitations that should be taken into account when 

considering the significance and generalizability of the results. First, the sample size is 

limited, which means that the power, especially in the SNP-based association analysis, is 

challenged and thus chance findings cannot be excluded. However, a quite sizeable 

percentage (nearly 10%) of the independent and candidate SNPs were in silico verified in 
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large and well-powered studies and also, the gene-property analysis results showed a clear 

tendency as the 10 tissue-specific expression profiles most correlated with the results of the 

gene-based analysis were from various parts of the brain (see Figure 2). These results 

support the biological importance of our findings, despite the general lack of statistical 

significance. Second, the individuals included in this study are selected in the sense that 

individuals with severe cognitive impairment are likely to have been represented among 

those without a cognitive assessment. This is supported by the proportion of study 

participants with MMSE scores between 0 and 17 (15.9%, see Table 1) being lower than 

among all participants in the 1905 birth cohort study (22% and 39.2% with severe cognitive 

impairment at age 92–93 and 100, respectively (Christensen et al., 2013; Engberg et al., 

2008) and the 1915 birth cohort study (17% with severe cognitive impairment at age 95 

(Christensen et al., 2013)). In addition, individuals donating a blood sample, and who can 

hence be included in genetic studies, have a higher functional level than those not donating a 

blood sample (Mengel-From et al., 2011). However, if anything, these limitations and biases 

are likely to attenuate the association between genetic variants and cognitive function, and 

thus make it harder to find significant associations, which increase the confidence in our 

significant findings.

In conclusion, this study presents suggestive evidence that several genes and gene sets 

implicated in neurological and brain-related processes, especially G protein-coupled 

receptor signaling, contribute to variation in cognitive function among long-lived 

individuals. We acknowledge the limited size of the study, and consequently conclude that 

larger studies of nonagenarians and centenarians are needed to validate the findings of this 

study, with the overall goal of clarifying if the genetic landscape of cognitive function in 

long-lived individuals diverges from that found in predominantly younger individuals, and 

providing new insight into the genetic background of cognitive aging.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This study was financially supported by The National Program for Research Infrastructure 2007 (grant no. 
09-063256), the Danish Agency for Science Technology and Innovation, the Velux Foundation, the US National 
Institute of Health (P01 AG08761), the Danish Agency for Science, Technology and Innovation/The Danish 
Council for Independent Research (grant no. 11-107308), The Danish Interdisciplinary Research Council, the 
European Union’s Seventh Framework Programme (FP7/2007-2011) under grant agreement n° 259679, and the 
INTERREG 4 A programme Syddanmark-Schleswig-K.E.R.N. (by EU funds from the European Regional 
Development Fund).

References

Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M, 1993. Selective expression of the 
glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem Biophys Res 
Commun 197(3), 1267–1276. [PubMed: 7506541] 

Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ, 2015. Second-generation PLINK: 
rising to the challenge of larger and richer datasets. Gigascience 4, 7. [PubMed: 25722852] 

Nygaard et al. Page 11

Mech Ageing Dev. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Christensen K, McGue M, Petersen I, Jeune B, Vaupel JW, 2008. Exceptional longevity does not result 
in excessive levels of disability. Proc Natl Acad Sci U S A 105(36), 13274–13279. [PubMed: 
18711139] 

Christensen K, Thinggaard M, Oksuzyan A, Steenstrup T, Andersen-Ranberg K, Jeune B, McGue M, 
Vaupel JW, 2013. Physical and cognitive functioning of people older than 90 years: a comparison of 
two Danish cohorts born 10 years apart. Lancet 382(9903), 1507–1513. [PubMed: 23849796] 

Consortium G, 2015. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene 
regulation in humans. Science 348(6235), 648–660. [PubMed: 25954001] 

Davies G, Armstrong N, Bis JC, Bressler J, Chouraki V, Giddaluru S, Hofer E, Ibrahim-Verbaas CA, 
Kirin M, Lahti J, van der Lee SJ, Le Hellard S, Liu T, Marioni RE, Oldmeadow C, Postmus I, Smith 
AV, Smith JA, Thalamuthu A, Thomson R, Vitart V, Wang J, Yu L, Zgaga L, Zhao W, Boxall R, 
Harris SE, Hill WD, Liewald DC, Luciano M, Adams H, Ames D, Amin N, Amouyel P, Assareh 
AA, Au R, Becker JT, Beiser A, Berr C, Bertram L, Boerwinkle E, Buckley BM, Campbell H, 
Corley J, De Jager PL, Dufouil C, Eriksson JG, Espeseth T, Faul JD, Ford I, Generation S, 
Gottesman RF, Griswold ME, Gudnason V, Harris TB, Heiss G, Hofman A, Holliday EG, Huffman 
J, Kardia SL, Kochan N, Knopman DS, Kwok JB, Lambert JC, Lee T, Li G, Li SC, Loitfelder M, 
Lopez OL, Lundervold AJ, Lundqvist A, Mather KA, Mirza SS, Nyberg L, Oostra BA, Palotie A, 
Papenberg G, Pattie A, Petrovic K, Polasek O, Psaty BM, Redmond P, Reppermund S, Rotter JI, 
Schmidt H, Schuur M, Schofield PW, Scott RJ, Steen VM, Stott DJ, van Swieten JC, Taylor KD, 
Trollor J, Trompet S, Uitterlinden AG, Weinstein G, Widen E, Windham BG, Jukema JW, Wright 
AF, Wright MJ, Yang Q, Amieva H, Attia JR, Bennett DA, Brodaty H, de Craen AJ, Hayward C, 
Ikram MA, Lindenberger U, Nilsson LG, Porteous DJ, Raikkonen K, Reinvang I, Rudan I, Sachdev 
PS, Schmidt R, Schofield PR, Srikanth V, Starr JM, Turner ST, Weir DR, Wilson JF, van Duijn C, 
Launer L, Fitzpatrick AL, Seshadri S, Mosley TH Jr., Deary IJ, 2015. Genetic contributions to 
variation in general cognitive function: a meta-analysis of genome-wide association studies in the 
CHARGE consortium (N=53949). Molecular psychiatry 20(2), 183–192. [PubMed: 25644384] 

Davies G, Lam M, Harris SE, Trampush JW, Luciano M, Hill WD, Hagenaars SP, Ritchie SJ, Marioni 
RE, Fawns-Ritchie C, Liewald DCM, Okely JA, Ahola-Olli AV, Barnes CLK, Bertram L, Bis JC, 
Burdick KE, Christoforou A, DeRosse P, Djurovic S, Espeseth T, Giakoumaki S, Giddaluru S, 
Gustavson DE, Hayward C, Hofer E, Ikram MA, Karlsson R, Knowles E, Lahti J, Leber M, Li S, 
Mather KA, Melle I, Morris D, Oldmeadow C, Palviainen T, Payton A, Pazoki R, Petrovic K, 
Reynolds CA, Sargurupremraj M, Scholz M, Smith JA, Smith AV, Terzikhan N, Thalamuthu A, 
Trompet S, van der Lee SJ, Ware EB, Windham BG, Wright MJ, Yang J, Yu J, Ames D, Amin N, 
Amouyel P, Andreassen OA, Armstrong NJ, Assareh AA, Attia JR, Attix D, Avramopoulos D, 
Bennett DA, Bohmer AC, Boyle PA, Brodaty H, Campbell H, Cannon TD, Cirulli ET, Congdon E, 
Conley ED, Corley J, Cox SR, Dale AM, Dehghan A, Dick D, Dickinson D, Eriksson JG, 
Evangelou E, Faul JD, Ford I, Freimer NA, Gao H, Giegling I, Gillespie NA, Gordon SD, 
Gottesman RF, Griswold ME, Gudnason V, Harris TB, Hartmann AM, Hatzimanolis A, Heiss G, 
Holliday EG, Joshi PK, Kahonen M, Kardia SLR, Karlsson I, Kleineidam L, Knopman DS, Kochan 
NA, Konte B, Kwok JB, Le Hellard S, Lee T, Lehtimaki T, Li SC, Liu T, Koini M, London E, 
Longstreth WT Jr., Lopez OL, Loukola A, Luck T, Lundervold AJ, Lundquist A, Lyytikainen LP, 
Martin NG, Montgomery GW, Murray AD, Need AC, Noordam R, Nyberg L, Ollier W, Papenberg 
G, Pattie A, Polasek O, Poldrack RA, Psaty BM, Reppermund S, Riedel-Heller SG, Rose RJ, Rotter 
JI, Roussos P, Rovio SP, Saba Y, Sabb FW, Sachdev PS, Satizabal CL, Schmid M, Scott RJ, Scult 
MA, Simino J, Slagboom PE, Smyrnis N, Soumare A, Stefanis NC, Stott DJ, Straub RE, Sundet K, 
Taylor AM, Taylor KD, Tzoulaki I, Tzourio C, Uitterlinden A, Vitart V, Voineskos AN, Kaprio J, 
Wagner M, Wagner H, Weinhold L, Wen KH, Widen E, Yang Q, Zhao W, Adams HHH, Arking DE, 
Bilder RM, Bitsios P, Boerwinkle E, Chiba-Falek O, Corvin A, De Jager PL, Debette S, Donohoe G, 
Elliott P, Fitzpatrick AL, Gill M, Glahn DC, Hagg S, Hansell NK, Hariri AR, Ikram MK, Jukema 
JW, Vuoksimaa E, Keller MC, Kremen WS, Launer L, Lindenberger U, Palotie A, Pedersen NL, 
Pendleton N, Porteous DJ, Raikkonen K, Raitakari OT, Ramirez A, Reinvang I, Rudan I, Dan R, 
Schmidt R, Schmidt H, Schofield PW, Schofield PR, Starr JM, Steen VM, Trollor JN, Turner ST, 
Van Duijn CM, Villringer A, Weinberger DR, Weir DR, Wilson JF, Malhotra A, McIntosh AM, 
Gale CR, Seshadri S, Mosley TH Jr., Bressler J, Lencz T, Deary IJ, 2018. Study of 300,486 
individuals identifies 148 independent genetic loci influencing general cognitive function. Nat 
Commun 9(1), 2098. [PubMed: 29844566] 

Nygaard et al. Page 12

Mech Ageing Dev. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Davies G, Marioni RE, Liewald DC, Hill WD, Hagenaars SP, Harris SE, Ritchie SJ, Luciano M, 
Fawns-Ritchie C, Lyall D, Cullen B, Cox SR, Hayward C, Porteous DJ, Evans J, McIntosh AM, 
Gallacher J, Craddock N, Pell JP, Smith DJ, Gale CR, Deary IJ, 2016. Genome-wide association 
study of cognitive functions and educational attainment in UK Biobank (N=112 151). Molecular 
psychiatry 21(6), 758–767. [PubMed: 27046643] 

Davies G, Tenesa A, Payton A, Yang J, Harris SE, Liewald D, Ke X, Le Hellard S, Christoforou A, 
Luciano M, McGhee K, Lopez L, Gow AJ, Corley J, Redmond P, Fox HC, Haggarty P, Whalley LJ, 
McNeill G, Goddard ME, Espeseth T, Lundervold AJ, Reinvang I, Pickles A, Steen VM, Ollier W, 
Porteous DJ, Horan M, Starr JM, Pendleton N, Visscher PM, Deary IJ, 2011. Genome-wide 
association studies establish that human intelligence is highly heritable and polygenic. Molecular 
psychiatry 16(10), 996–1005 [PubMed: 21826061] 

de Leeuw CA, Mooij JM, Heskes T, Posthuma D, 2015. MAGMA: generalized gene-set analysis of 
GWAS data. PLoS computational biology 11(4), e1004219. [PubMed: 25885710] 

Deary IJ, 2012. Intelligence. Annu Rev Psychol 63, 453–482. [PubMed: 21943169] 

Docherty SJ, Davis OS, Kovas Y, Meaburn EL, Dale PS, Petrill SA, Schalkwyk LC, Plomin R, 2010. 
A genome-wide association study identifies multiple loci associated with mathematics ability and 
disability. Genes Brain Behav 9(2), 234–247 [PubMed: 20039944] 

Dokkedal U, Wod M, Thinggaard M, Hansen TG, Rasmussen LS, Christensen K, Mengel-From J, 
2020. Apolipoprotein E epsilon4 and cognitive function after surgery in middle-aged and elderly 
Danish twins. Eur J Anaesthesiol.

Engberg H, Christensen K, Andersen-Ranberg K, Jeune B, 2008. Cohort changes in cognitive function 
among Danish centenarians. A comparative study of 2 birth cohorts born in 1895 and 1905. 
Dement Geriatr Cogn Disord 26(2), 153–160. [PubMed: 18679030] 

Finkel D, Reynolds CA, 2009. Behavioral Genetic Investigations of Cognitive Aging, in: Kim YK 
(Ed.) Handbook of Behavior Genetics. Springer, New York, NY, pp. 101–112.

Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini 
JL, McCarthy S, McVean GA, Abecasis GR, 2015. A global reference for human genetic variation. 
Nature 526(7571), 68–74. [PubMed: 26432245] 

Harris SE, Deary IJ, 2011. The genetics of cognitive ability and cognitive ageing in healthy older 
people. Trends Cogn Sci 15(9), 388–394. [PubMed: 21840749] 

Hill WD, Marioni RE, Maghzian O, Ritchie SJ, Hagenaars SP, McIntosh AM, Gale CR, Davies G, 
Deary IJ, 2019. A combined analysis of genetically correlated traits identifies 187 loci and a role 
for neurogenesis and myelination in intelligence. Molecular psychiatry 24(2), 169–181. [PubMed: 
29326435] 

Hirsch HA, Iliopoulos D, Joshi A, Zhang Y, Jaeger SA, Bulyk M, Tsichlis PN, Shirley Liu X, Struhl K, 
2010. A transcriptional signature and common gene networks link cancer with lipid metabolism 
and diverse human diseases. Cancer Cell 17(4), 348–361. [PubMed: 20385360] 

Hortsch M, Nagaraj K, Godenschwege TA, 2009. The interaction between L1-type proteins and 
ankyrins--a master switch for L1-type CAM function. Cell Mol Biol Lett 14(1), 57–69. [PubMed: 
18839070] 

Howie BN, Donnelly P, Marchini J, 2009. A flexible and accurate genotype imputation method for the 
next generation of genome-wide association studies. PLoS Genet 5(6), e1000529. [PubMed: 
19543373] 

Huang Y, Thathiah A, 2015. Regulation of neuronal communication by G protein-coupled receptors. 
FEBS Lett 589(14), 1607–1619. [PubMed: 25980603] 

Huang Y, Todd N, Thathiah A, 2017. The role of GPCRs in neurodegenerative diseases: avenues for 
therapeutic intervention. Curr Opin Pharmacol 32, 96–110. [PubMed: 28288370] 

Jun GR, Chung J, Mez J, Barber R, Beecham GW, Bennett DA, Buxbaum JD, Byrd GS, Carrasquillo 
MM, Crane PK, Cruchaga C, De Jager P, Ertekin-Taner N, Evans D, Fallin MD, Foroud TM, 
Friedland RP, Goate AM, Graff-Radford NR, Hendrie H, Hall KS, Hamilton-Nelson KL, Inzelberg 
R, Kamboh MI, Kauwe JSK, Kukull WA, Kunkle BW, Kuwano R, Larson EB, Logue MW, Manly 
JJ, Martin ER, Montine TJ, Mukherjee S, Naj A, Reiman EM, Reitz C, Sherva R, St George-
Hyslop PH, Thornton T, Younkin SG, Vardarajan BN, Wang LS, Wendlund JR, Winslow AR, 
Alzheimer’s Disease Genetics C, Haines J, Mayeux R, Pericak-Vance MA, Schellenberg G, 

Nygaard et al. Page 13

Mech Ageing Dev. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lunetta KL, Farrer LA, 2017. Transethnic genome-wide scan identifies novel Alzheimer’s disease 
loci. Alzheimers Dement 13(7), 727–738. [PubMed: 28183528] 

Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, Schoech A, Pasaniuc B, Price AL, 
2019. Leveraging Polygenic Functional Enrichment to Improve GWAS Power. American journal 
of human genetics 104(1), 65–75. [PubMed: 30595370] 

Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, Boland A, Vronskaya M, van der 
Lee SJ, Amlie-Wolf A, Bellenguez C, Frizatti A, Chouraki V, Martin ER, Sleegers K, 
Badarinarayan N, Jakobsdottir J, Hamilton-Nelson KL, Moreno-Grau S, Olaso R, Raybould R, 
Chen Y, Kuzma AB, Hiltunen M, Morgan T, Ahmad S, Vardarajan BN, Epelbaum J, Hoffmann P, 
Boada M, Beecham GW, Garnier JG, Harold D, Fitzpatrick AL, Valladares O, Moutet ML, Gerrish 
A, Smith AV, Qu L, Bacq D, Denning N, Jian X, Zhao Y, Del Zompo M, Fox NC, Choi SH, Mateo 
I, Hughes JT, Adams HH, Malamon J, Sanchez-Garcia F, Patel Y, Brody JA, Dombroski BA, 
Naranjo MCD, Daniilidou M, Eiriksdottir G, Mukherjee S, Wallon D, Uphill J, Aspelund T, 
Cantwell LB, Garzia F, Galimberti D, Hofer E, Butkiewicz M, Fin B, Scarpini E, Sarnowski C, 
Bush WS, Meslage S, Kornhuber J, White CC, Song Y, Barber RC, Engelborghs S, Sordon S, 
Voijnovic D, Adams PM, Vandenberghe R, Mayhaus M, Cupples LA, Albert MS, De Deyn PP, Gu 
W, Himali JJ, Beekly D, Squassina A, Hartmann AM, Orellana A, Blacker D, Rodriguez-
Rodriguez E, Lovestone S, Garcia ME, Doody RS, Munoz-Fernadez C, Sussams R, Lin H, 
Fairchild TJ, Benito YA, Holmes C, Karamujic-Comic H, Frosch MP, Thonberg H, Maier W, 
Roschupkin G, Ghetti B, Giedraitis V, Kawalia A, Li S, Huebinger RM, Kilander L, Moebus S, 
Hernandez I, Kamboh MI, Brundin R, Turton J, Yang Q, Katz MJ, Concari L, Lord J, Beiser AS, 
Keene CD, Helisalmi S, Kloszewska I, Kukull WA, Koivisto AM, Lynch A, Tarraga L, Larson EB, 
Haapasalo A, Lawlor B, Mosley TH, Lipton RB, Solfrizzi V, Gill M, Longstreth WT Jr., Montine 
TJ, Frisardi V, Diez-Fairen M, Rivadeneira F, Petersen RC, Deramecourt V, Alvarez I, Salani F, 
Ciaramella A, Boerwinkle E, Reiman EM, Fievet N, Rotter JI, Reisch JS, Hanon O, Cupidi C, 
Andre Uitterlinden AG, Royall DR, Dufouil C, Maletta RG, de Rojas I, Sano M, Brice A, 
Cecchetti R, George-Hyslop PS, Ritchie K, Tsolaki M, Tsuang DW, Dubois B, Craig D, Wu CK, 
Soininen H, Avramidou D, Albin RL, Fratiglioni L, Germanou A, Apostolova LG, Keller L, 
Koutroumani M, Arnold SE, Panza F, Gkatzima O, Asthana S, Hannequin D, Whitehead P, 
Atwood CS, Caffarra P, Hampel H, Quintela I, Carracedo A, Lannfelt L, Rubinsztein DC, Barnes 
LL, Pasquier F, Frolich L, Barral S, McGuinness B, Beach TG, Johnston JA, Becker JT, Passmore 
P, Bigio EH, Schott JM, Bird TD, Warren JD, Boeve BF, Lupton MK, Bowen JD, Proitsi P, Boxer 
A, Powell JF, Burke JR, Kauwe JSK, Burns JM, Mancuso M, Buxbaum JD, Bonuccelli U, Cairns 
NJ, McQuillin A, Cao C, Livingston G, Carlson CS, Bass NJ, Carlsson CM, Hardy J, Carney RM, 
Bras J, Carrasquillo MM, Guerreiro R, Allen M, Chui HC, Fisher E, Masullo C, Crocco EA, 
DeCarli C, Bisceglio G, Dick M, Ma L, Duara R, Graff-Radford NR, Evans DA, Hodges A, Faber 
KM, Scherer M, Fallon KB, Riemenschneider M, Fardo DW, Heun R, Farlow MR, Kolsch H, 
Ferris S, Leber M, Foroud TM, Heuser I, Galasko DR, Giegling I, Gearing M, Hull M, Geschwind 
DH, Gilbert JR, Morris J, Green RC, Mayo K, Growdon JH, Feulner T, Hamilton RL, Harrell LE, 
Drichel D, Honig LS, Cushion TD, Huentelman MJ, Hollingworth P, Hulette CM, Hyman BT, 
Marshall R, Jarvik GP, Meggy A, Abner E, Menzies GE, Jin LW, Leonenko G, Real LM, Jun GR, 
Baldwin CT, Grozeva D, Karydas A, Russo G, Kaye JA, Kim R, Jessen F, Kowall NW, Vellas B, 
Kramer JH, Vardy E, LaFerla FM, Jockel KH, Lah JJ, Dichgans M, Leverenz JB, Mann D, Levey 
AI, Pickering-Brown S, Lieberman AP, Klopp N, Lunetta KL, Wichmann HE, Lyketsos CG, 
Morgan K, Marson DC, Brown K, Martiniuk F, Medway C, Mash DC, Nothen MM, Masliah E, 
Hooper NM, McCormick WC, Daniele A, McCurry SM, Bayer A, McDavid AN, Gallacher J, 
McKee AC, van den Bussche H, Mesulam M, Brayne C, Miller BL, Riedel-Heller S, Miller CA, 
Miller JW, Al-Chalabi A, Morris JC, Shaw CE, Myers AJ, Wiltfang J, O’Bryant S, Olichney JM, 
Alvarez V, Parisi JE, Singleton AB, Paulson HL, Collinge J, Perry WR, Mead S, Peskind E, Cribbs 
DH, Rossor M, Pierce A, Ryan NS, Poon WW, Nacmias B, Potter H, Sorbi S, Quinn JF, 
Sacchinelli E, Raj A, Spalletta G, Raskind M, Caltagirone C, Bossu P, Orfei MD, Reisberg B, 
Clarke R, Reitz C, Smith AD, Ringman JM, Warden D, Roberson ED, Wilcock G, Rogaeva E, 
Bruni AC, Rosen HJ, Gallo M, Rosenberg RN, Ben-Shlomo Y, Sager MA, Mecocci P, Saykin AJ, 
Pastor P, Cuccaro ML, Vance JM, Schneider JA, Schneider LS, Slifer S, Seeley WW, Smith AG, 
Sonnen JA, Spina S, Stern RA, Swerdlow RH, Tang M, Tanzi RE, Trojanowski JQ, Troncoso JC, 
Van Deerlin VM, Van Eldik LJ, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, 
Wilhelmsen KC, Williamson J, Wingo TS, Woltjer RL, Wright CB, Yu CE, Yu L, Saba Y, 

Nygaard et al. Page 14

Mech Ageing Dev. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Alzheimer Disease Genetics C, European Alzheimer’s Disease I, Cohorts for H, Aging Research 
in Genomic Epidemiology, C., Genetic, Environmental Risk in Ad/Defining Genetic P, 
Environmental Risk for Alzheimer’s Disease, C., Pilotto A, Bullido MJ, Peters O, Crane PK, 
Bennett D, Bosco P, Coto E, Boccardi V, De Jager PL, Lleo A, Warner N, Lopez OL, Ingelsson M, 
Deloukas P, Cruchaga C, Graff C, Gwilliam R, Fornage M, Goate AM, Sanchez-Juan P, Kehoe 
PG, Amin N, Ertekin-Taner N, Berr C, Debette S, Love S, Launer LJ, Younkin SG, Dartigues JF, 
Corcoran C, Ikram MA, Dickson DW, Nicolas G, Campion D, Tschanz J, Schmidt H, Hakonarson 
H, Clarimon J, Munger R, Schmidt R, Farrer LA, Van Broeckhoven C, M, C.O.D., DeStefano AL, 
Jones L, Haines JL, Deleuze JF, Owen MJ, Gudnason V, Mayeux R, Escott-Price V, Psaty BM, 
Ramirez A, Wang LS, Ruiz A, van Duijn CM, Holmans PA, Seshadri S, Williams J, Amouyel P, 
Schellenberg GD, Lambert JC, Pericak-Vance MA, 2019. Genetic meta-analysis of diagnosed 
Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid 
processing. Nature genetics 51(3), 414–430. [PubMed: 30820047] 

Lam M, Trampush JW, Yu J, Knowles E, Davies G, Liewald DC, Starr JM, Djurovic S, Melle I, Sundet 
K, Christoforou A, Reinvang I, DeRosse P, Lundervold AJ, Steen VM, Espeseth T, Raikkonen K, 
Widen E, Palotie A, Eriksson JG, Giegling I, Konte B, Roussos P, Giakoumaki S, Burdick KE, 
Payton A, Ollier W, Chiba-Falek O, Attix DK, Need AC, Cirulli ET, Voineskos AN, Stefanis NC, 
Avramopoulos D, Hatzimanolis A, Arking DE, Smyrnis N, Bilder RM, Freimer NA, Cannon TD, 
London E, Poldrack RA, Sabb FW, Congdon E, Conley ED, Scult MA, Dickinson D, Straub RE, 
Donohoe G, Morris D, Corvin A, Gill M, Hariri AR, Weinberger DR, Pendleton N, Bitsios P, 
Rujescu D, Lahti J, Le Hellard S, Keller MC, Andreassen OA, Deary IJ, Glahn DC, Malhotra AK, 
Lencz T, 2017. Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural 
Expression and Potential Nootropic Drug Targets. Cell Rep 21(9), 2597–2613. [PubMed: 
29186694] 

Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, Nguyen-Viet TA, Bowers P, Sidorenko 
J, Karlsson Linner R, Fontana MA, Kundu T, Lee C, Li H, Li R, Royer R, Timshel PN, Walters 
RK, Willoughby EA, Yengo L, andMe Research T, Cogent, Social Science Genetic Association, 
C., Alver M, Bao Y, Clark DW, Day FR, Furlotte NA, Joshi PK, Kemper KE, Kleinman A, 
Langenberg C, Magi R, Trampush JW, Verma SS, Wu Y, Lam M, Zhao JH, Zheng Z, Boardman 
JD, Campbell H, Freese J, Harris KM, Hayward C, Herd P, Kumari M, Lencz T, Luan J, Malhotra 
AK, Metspalu A, Milani L, Ong KK, Perry JRB, Porteous DJ, Ritchie MD, Smart MC, Smith BH, 
Tung JY, Wareham NJ, Wilson JF, Beauchamp JP, Conley DC, Esko T, Lehrer SF, Magnusson 
PKE, Oskarsson S, Pers TH, Robinson MR, Thom K, Watson C, Chabris CF, Meyer MN, Laibson 
DI, Yang J, Johannesson M, Koellinger PD, Turley P, Visscher PM, Benjamin DJ, Cesarini 
D,2018. Gene discovery and polygenic prediction from a genome-wide association study of 
educational attainment in 1.1 million individuals. Nature genetics 50(8), 1112–1121. [PubMed: 
30038396] 

Lee T, Henry JD, Trollor JN, Sachdev PS, 2010. Genetic influences on cognitive functions in the 
elderly: a selective review of twin studies. Brain Res Rev 64(1), 1–13. [PubMed: 20152859] 

Leung CCY, Wong YH, 2017. Role of G Protein-Coupled Receptors in the Regulation of Structural 
Plasticity and Cognitive Function. Molecules 22(7).

Li D, Bachinski LL, Roberts R, 2001. Genomic organization and isoform-specific tissue expression of 
human NAPOR (CUGBP2) as a candidate gene for familial arrhythmogenic right ventricular 
dysplasia. Genomics 74(3), 396–401. [PubMed: 11414768] 

Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP, 2011. Molecular 
signatures database (MSigDB) 3.0. Bioinformatics 27(12), 1739–1740. [PubMed: 21546393] 

Makoff A, Pilling C, Harrington K, Emson P, 1996. Human metabotropic glutamate receptor type 7: 
molecular cloning and mRNA distribution in the CNS. Brain Res Mol Brain Res 40(1), 165–170. 
[PubMed: 8840028] 

McGue M, Christensen K, 2001. The heritability of cognitive functioning in very old adults: evidence 
from Danish twins aged 75 years and older. Psychol Aging 16(2), 272–280. [PubMed: 11405315] 

McGue M, Christensen K, 2002. The heritability of level and rate-of-change in cognitive functioning 
in Danish twins aged 70 years and older. Experimental aging research 28(4), 435–451. [PubMed: 
12227922] 

McGue M, Christensen K, 2013. Growing old but not growing apart: twin similarity in the latter half of 
the lifespan. Behav Genet 43(1), 1–12. [PubMed: 22927095] 

Nygaard et al. Page 15

Mech Ageing Dev. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mengel-From J, Christensen K, McGue M, Christiansen L, 2011. Genetic variations in the CLU and 
PICALM genes are associated with cognitive function in the oldest old. Neurobiology of aging 
32(3), 554 e557–511.

Mengel-From J, Soerensen M, Nygaard M, McGue M, Christensen K, Christiansen L, 2016. Genetic 
Variants in KLOTHO Associate With Cognitive Function in the Oldest Old Group. The journals of 
gerontology. Series A, Biological sciences and medical sciences 71(9), 1151–1159.

Miller SA, Dykes DD, Polesky HF, 1988. A simple salting out procedure for extracting DNA from 
human nucleated cells. Nucleic acids research 16(3), 1215. [PubMed: 3344216] 

Mishra A, Macgregor S, 2015. VEGAS2: Software for More Flexible Gene-Based Testing. Twin 
research and human genetics : the official journal of the International Society for Twin Studies 
18(1), 86–91. [PubMed: 25518859] 

Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA, Turley P, Chen GB, Emilsson V, 
Meddens SF, Oskarsson S, Pickrell JK, Thom K, Timshel P, de Vlaming R, Abdellaoui A, 
Ahluwalia TS, Bacelis J, Baumbach C, Bjornsdottir G, Brandsma JH, Pina Concas M, Derringer J, 
Furlotte NA, Galesloot TE, Girotto G, Gupta R, Hall LM, Harris SE, Hofer E, Horikoshi M, 
Huffman JE, Kaasik K, Kalafati IP, Karlsson R, Kong A, Lahti J, van der Lee SJ, deLeeuw C, Lind 
PA, Lindgren KO, Liu T, Mangino M, Marten J, Mihailov E, Miller MB, van der Most PJ, 
Oldmeadow C, Payton A, Pervjakova N, Peyrot WJ, Qian Y, Raitakari O, Rueedi R, Salvi E, 
Schmidt B, Schraut KE, Shi J, Smith AV, Poot RA, St Pourcain B, Teumer A, Thorleifsson G, 
Verweij N, Vuckovic D, Wellmann J, Westra HJ, Yang J, Zhao W, Zhu Z, Alizadeh BZ, Amin N, 
Bakshi A, Baumeister SE, Biino G, Bonnelykke K, Boyle PA, Campbell H, Cappuccio FP, Davies 
G, De Neve JE, Deloukas P, Demuth I, Ding J, Eibich P, Eisele L, Eklund N, Evans DM, Faul JD, 
Feitosa MF, Forstner AJ, Gandin I, Gunnarsson B, Halldorsson BV, Harris TB, Heath AC, 
Hocking LJ, Holliday EG, Homuth G, Horan MA, Hottenga JJ, de Jager PL, Joshi PK, Jugessur A, 
Kaakinen MA, Kahonen M, Kanoni S, Keltigangas-Jarvinen L, Kiemeney LA, Kolcic I, Koskinen 
S, Kraja AT, Kroh M, Kutalik Z, Latvala A, Launer LJ, Lebreton MP, Levinson DF, Lichtenstein P, 
Lichtner P, Liewald DC, LifeLines Cohort S, Loukola A, Madden PA, Magi R, Maki-Opas T, 
Marioni RE, Marques-Vidal P, Meddens GA, McMahon G, Meisinger C, Meitinger T, Milaneschi 
Y, Milani L, Montgomery GW, Myhre R, Nelson CP, Nyholt DR, Ollier WE, Palotie A, 
Paternoster L, Pedersen NL, Petrovic KE, Porteous DJ, Raikkonen K, Ring SM, Robino A, 
Rostapshova O, Rudan I, Rustichini A, Salomaa V, Sanders AR, Sarin AP, Schmidt H, Scott RJ, 
Smith BH, Smith JA, Staessen JA, Steinhagen-Thiessen E, Strauch K, Terracciano A, Tobin MD, 
Ulivi S, Vaccargiu S, Quaye L, van Rooij FJ, Venturini C, Vinkhuyzen AA, Volker U, Volzke H, 
Vonk JM, Vozzi D, Waage J, Ware EB, Willemsen G, Attia JR, Bennett DA, Berger K, Bertram L, 
Bisgaard H, Boomsma DI, Borecki IB, Bultmann U, Chabris CF, Cucca F, Cusi D, Deary IJ, 
Dedoussis GV, van Duijn CM, Eriksson JG, Franke B, Franke L, Gasparini P, Gejman PV, Gieger 
C, Grabe HJ, Gratten J, Groenen PJ, Gudnason V, van der Harst P, Hayward C, Hinds DA, 
Hoffmann W, Hypponen E, Iacono WG, Jacobsson B, Jarvelin MR, Jockel KH, Kaprio J, Kardia 
SL, Lehtimaki T, Lehrer SF, Magnusson PK, Martin NG, McGue M, Metspalu A, Pendleton N, 
Penninx BW, Perola M, Pirastu N, Pirastu M, Polasek O, Posthuma D, Power C, Province MA, 
Samani NJ, Schlessinger D, Schmidt R, Sorensen TI, Spector TD, Stefansson K, Thorsteinsdottir 
U, Thurik AR, Timpson NJ, Tiemeier H, Tung JY, Uitterlinden AG, Vitart V, Vollenweider P, Weir 
DR, Wilson JF, Wright AF, Conley DC, Krueger RF, Davey Smith G, Hofman A, Laibson DI, 
Medland SE, Meyer MN, Yang J, Johannesson M, Visscher PM, Esko T, Koellinger PD, Cesarini 
D, Benjamin DJ, 2016. Genome-wide association study identifies 74 loci associated with 
educational attainment. Nature 533(7604), 539–542. [PubMed: 27225129] 

Olbrich H, Haffner K, Kispert A, Volkel A, Volz A, Sasmaz G, Reinhardt R, Hennig S, Lehrach H, 
Konietzko N, Zariwala M, Noone PG, Knowles M, Mitchison HM, Meeks M, Chung EM, 
Hildebrandt F, Sudbrak R, Omran H, 2002. Mutations in DNAH5 cause primary ciliary dyskinesia 
and randomization of left-right asymmetry. Nature genetics 30(2), 143–144. [PubMed: 11788826] 

Oughtred R, Stark C, Breitkreutz BJ, Rust J, Boucher L, Chang C, Kolas N, O’Donnell L, Leung G, 
McAdam R, Zhang F, Dolma S, Willems A, Coulombe-Huntington J, Chatr-Aryamontri A, 
Dolinski K, Tyers M, 2019. The BioGRID interaction database: 2019 update. Nucleic acids 
research 47(D1), D529–D541. [PubMed: 30476227] 

Pedersen DA, Larsen LA, Nygaard M, Mengel-From J, McGue M, Dalgard C, Hvidberg L, Hjelmborg 
J, Skytthe A, Holm NV, Kyvik KO, Christensen K, 2019. The Danish Twin Registry: An Updated 

Nygaard et al. Page 16

Mech Ageing Dev. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Overview. Twin research and human genetics : the official journal of the International Society for 
Twin Studies 22(6), 499–507. [PubMed: 31544734] 

Peng F, Li Q, Niu SQ, Shen GP, Luo Y, Chen M, Bao Y, 2019. ZWINT is the next potential target for 
lung cancer therapy. J Cancer Res Clin Oncol 145(3), 661–673. [PubMed: 30643969] 

Polderman TJ, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM, Posthuma D, 
2015. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature 
genetics 47(7), 702–709. [PubMed: 25985137] 

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker 
PI, Daly MJ, Sham PC, 2007. PLINK: a tool set for whole-genome association and population-
based linkage analyses. American journal of human genetics 81(3), 559–575. [PubMed: 
17701901] 

Rasmussen SH, Andersen-Ranberg K, Thinggaard M, Jeune B, Skytthe A, Christiansen L, Vaupel JW, 
McGue M, Christensen K, 2017. Cohort Profile: The 1895, 1905, 1910 and 1915 Danish Birth 
Cohort Studies - secular trends in the health and functioning of the very old. International journal 
of epidemiology 46(6), 1746–1746j. [PubMed: 28449061] 

Reiner A, Levitz J, 2018. Glutamatergic Signaling in the Central Nervous System: Ionotropic and 
Metabotropic Receptors in Concert. Neuron 98(6), 1080–1098. [PubMed: 29953871] 

Sanchez-Mut JV, Aso E, Heyn H, Matsuda T, Bock C, Ferrer I, Esteller M, 2014. Promoter 
hypermethylation of the phosphatase DUSP22 mediates PKA-dependent TAU phosphorylation and 
CREB activation in Alzheimer’s disease. Hippocampus 24(4), 363–368. [PubMed: 24436131] 

Savage JE, Jansen PR, Stringer S, Watanabe K, Bryois J, de Leeuw CA, Nagel M, Awasthi S, Barr PB, 
Coleman JRI, Grasby KL, Hammerschlag AR, Kaminski JA, Karlsson R, Krapohl E, Lam M, 
Nygaard M, Reynolds CA, Trampush JW, Young H, Zabaneh D, Hagg S, Hansell NK, Karlsson 
IK, Linnarsson S, Montgomery GW, Munoz-Manchado AB, Quinlan EB, Schumann G, Skene 
NG, Webb BT, White T, Arking DE, Avramopoulos D, Bilder RM, Bitsios P, Burdick KE, Cannon 
TD, Chiba-Falek O, Christoforou A, Cirulli ET, Congdon E, Corvin A, Davies G, Deary IJ, 
DeRosse P, Dickinson D, Djurovic S, Donohoe G, Conley ED, Eriksson JG, Espeseth T, Freimer 
NA, Giakoumaki S, Giegling I, Gill M, Glahn DC, Hariri AR, Hatzimanolis A, Keller MC, 
Knowles E, Koltai D, Konte B, Lahti J, Le Hellard S, Lencz T, Liewald DC, London E, 
Lundervold AJ, Malhotra AK, Melle I, Morris D, Need AC, Ollier W, Palotie A, Payton A, 
Pendleton N, Poldrack RA, Raikkonen K, Reinvang I, Roussos P, Rujescu D, Sabb FW, Scult MA, 
Smeland OB, Smyrnis N, Starr JM, Steen VM, Stefanis NC, Straub RE, Sundet K, Tiemeier H, 
Voineskos AN, Weinberger DR, Widen E, Yu J, Abecasis G, Andreassen OA, Breen G, 
Christiansen L, Debrabant B, Dick DM, Heinz A, Hjerling-Leffler J, Ikram MA, Kendler KS, 
Martin NG, Medland SE, Pedersen NL, Plomin R, Polderman TJC, Ripke S, van der Sluis S, 
Sullivan PF, Vrieze SI, Wright MJ, Posthuma D, 2018. Genome-wide association meta-analysis in 
269,867 individuals identifies new genetic and functional links to intelligence. Nature genetics 
50(7), 912–919. [PubMed: 29942086] 

Skaper SD, 2012. Neuronal growth-promoting and inhibitory cues in neuroprotection and 
neuroregeneration. Methods in molecular biology 846, 13–22. [PubMed: 22367797] 

Sniekers S, Stringer S, Watanabe K, Jansen PR, Coleman JRI, Krapohl E, Taskesen E, Hammerschlag 
AR, Okbay A, Zabaneh D, Amin N, Breen G, Cesarini D, Chabris CF, Iacono WG, Ikram MA, 
Johannesson M, Koellinger P, Lee JJ, Magnusson PKE, McGue M, Miller MB, Ollier WER, 
Payton A, Pendleton N, Plomin R, Rietveld CA, Tiemeier H, van Duijn CM, Posthuma D, 2017. 
Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes 
influencing human intelligence. Nature genetics 49(7), 1107–1112. [PubMed: 28530673] 

Squillario M, Abate G, Tomasi F, Tozzo V, Barla A, Uberti D, Alzheimer’s Disease Neuroimaging I, 
2020. A telescope GWAS analysis strategy, based on SNPs-genes-pathways ensamble and on 
multivariate algorithms, to characterize late onset Alzheimer’s disease. Sci Rep 10(1), 12063. 
[PubMed: 32694537] 

Trampush JW, Yang MLZ, Yu J, Knowles E, Davies G, Liewald DC, Starr JM, Djurovic S, Melle I, 
Sundet K, Christoforou A, Reinvang I, DeRosse P, Lundervold AJ, Steen VM, Espeseth T, 
Raikkonen K, Widen E, Palotie A, Eriksson JG, Giegling I, Konte B, Roussos P, Giakoumaki S, 
Burdick KE, Payton A, Ollier W, Horan M, Chiba-Falek O, Attix DK, Need AC, Cirulli ET, 
Voineskos AN, Stefanis NC, Avramopoulos D, Hatzimanolis A, Arking DE, Smyrnis N, Bilder 

Nygaard et al. Page 17

Mech Ageing Dev. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RM, Freimer NA, Cannon TD, London E, Poldrack RA, Sabb FW, Congdon E, Conley ED, Scult 
MA, Dickinson D, Straub RE, Donohoe G, Morris D, Corvin A, Gill M, Hariri AR, Weinberger 
DR, Pendleton N, Bitsios P, Rujescu D, Lahti J, Le Hellard S, Keller MC, Andreassen OA, Deary 
IJ, Glahn DC, Malhotra AK, Lencz T, 2017. GWAS meta-analysis reveals novel loci and genetic 
correlates for general cognitive function: a report from the COGENT consortium. Molecular 
psychiatry 22(11), 1651–1652. [PubMed: 29068436] 

Tucker-Drob EM, 2011. Neurocognitive functions and everyday functions change together in old age. 
Neuropsychology 25(3), 368–377. [PubMed: 21417532] 

Uddin MS, Stachowiak A, Mamun AA, Tzvetkov NT, Takeda S, Atanasov AG, Bergantin LB, Abdel-
Daim MM, Stankiewicz AM, 2018. Autophagy and Alzheimer’s Disease: From Molecular 
Mechanisms to Therapeutic Implications. Front Aging Neurosci 10, 04. [PubMed: 29441009] 

Vaupel JW, 2010. Biodemography of human ageing. Nature 464(7288), 536–542. [PubMed: 
20336136] 

Watanabe K, Taskesen E, van Bochoven A, Posthuma D, 2017. Functional mapping and annotation of 
genetic associations with FUMA. Nat Commun 8(1), 1826. [PubMed: 29184056] 

Wijsman EM, Pankratz ND, Choi Y, Rothstein JH, Faber KM, Cheng R, Lee JH, Bird TD, Bennett 
DA, Diaz-Arrastia R, Goate AM, Farlow M, Ghetti B, Sweet RA, Foroud TM, Mayeux R, Group 
N-LNFS, 2011. Genome-wide association of familial late-onset Alzheimer’s disease replicates 
BIN1 and CLU and nominates CUGBP2 in interaction with APOE. PLoS Genet 7(2), e1001308. 
[PubMed: 21379329] 

Witoelar A, Rongve A, Almdahl IS, Ulstein ID, Engvig A, White LR, Selbaek G, Stordal E, Andersen 
F, Braekhus A, Saltvedt I, Engedal K, Hughes T, Bergh S, Brathen G, Bogdanovic N, Bettella F, 
Wang Y, Athanasiu L, Bahrami S, Le Hellard S, Giddaluru S, Dale AM, Sando SB, Steinberg S, 
Stefansson H, Snaedal J, Desikan RS, Stefansson K, Aarsland D, Djurovic S, Fladby T, 
Andreassen OA, 2018. Meta-analysis of Alzheimer’s disease on 9,751 samples from Norway and 
IGAP study identifies four risk loci. Sci Rep 8(1), 18088. [PubMed: 30591712] 

Xu C, Zhang D, Wu Y, Tian X, Pang Z, Li S, Tan Q, 2017. A genome-wide association study of 
cognitive function in Chinese adult twins. Biogerontology 18(5), 811–819. [PubMed: 28808816] 

Zariwala MA, Knowles MR, Omran H, 2007. Genetic defects in ciliary structure and function. Annu 
Rev Physiol 69, 423–450. [PubMed: 17059358] 

Nygaard et al. Page 18

Mech Ageing Dev. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• A significant role in cognition of gene sets related to GPCR signaling is found

• Other significant gene sets are found, e.g. interaction between L1 and 

ankyrins

• Suggestively significant SNPs are mapped to several interesting genes

• These include ZWINT, CELF2, DNAH5, and the glutamate receptor genes 

GRID2 and GRM7

Nygaard et al. Page 19

Mech Ageing Dev. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Manhattan (a) and Q-Q (b) plots of P-values of the association between single nucleotide 

polymorphisms (SNPs) and cognitive function. The threshold for genome-wide significance 

(P < 5×10−8) is indicated by the red line and the threshold for suggestive significance (P < 

1×10−5) is indicated by the blue line.
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Figure 2. 
Results of the gene-property analysis carried out using MAGMA examining the correlations 

between tissue-specific expression profiles for 53 specific tissues types obtained from GTEx 

v6 and the associations between genes and cognitive function.
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Table 1.

Study population characteristics.

N 490

N Women (%) 383 (78.2)

Age, mean (SD)* 96.8 (3.1)

Age, range* 90.1–100.8

Birth Year, range 1901–1915

Cognitive Score, mean (SD) 27.1 (9.3)

Cognitive Score, range 4.1–63.9

N with severe cognitive impairment, MMSE 0–17 (%) 78 (15.9)

N with mild cognitive impairment, MMSE 18–23 (%) 169 (34.6)

N with no cognitive impairment, MMSE 24–30 (%) 242 (49.5)

*
Age at cognitive assessment.
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Table 2.

Summary statistics for the 65 SNPs associated with cognitive function at a suggestive significance level (P < 

1×10−5). SNP positions and distance to nearest gene are based on the GRCh37/hg19 genome build. Nearest 

gene refers to nearest RefSeq gene. SNPs identified by FUMA as independent SNPs are highlighted in bold. 

Independent SNPs in LD with candidate SNPs found to replicate (P < 0.05) are marked with *.

SNP Chr Position Locus Ma MAF Beta P Nearest Gene Distance

rs17265690 5 13816888 5p15.2 G 0.0138 13.63 1.22E-07 DNAH5 0 (intron)

rs114012368 5 13845391 5p15.2 G 0.0153 11.14 1.70E-07 DNAH5 0 (intron)

rs187473706* 10 58207108 10q21.1 A 0.1277 −4.579 2.73E-07 ZWINT 86074

rs4405235 10 58103101 10q21.1 G 0.1313 −4.577 2.74E-07 ZWINT 14098

rs11005326 10 58117124 10q21.1 G 0.1313 −4.577 2.74E-07 ZWINT 75

rs11005338 10 58125900 10q21.1 G 0.1313 −4.577 2.74E-07 ZWINT 4866

rs11005320 10 58096959 10q21.1 C 0.1319 −4.564 3.32E-07 ZWINT 20240

rs28502528 3 7210895 3p26.1 G 0.3073 3.391 3.74E-07 GRM7 0 (intron)

rs58796432 10 58208170 10q21.1 T 0.1304 −4.493 4.30E-07 ZWINT 87136

rs11005358 10 58209898 10q21.1 A 0.1304 −4.493 4.30E-07 ZWINT 88864

rs74137635 10 58210671 10q21.1 C 0.1304 −4.493 4.30E-07 ZWINT 89583

rs12266849 10 58218034 10q21.1 G 0.1304 −4.493 4.30E-07 ZWINT 97000

rs12257459 10 58208672 10q21.1 G 0.1303 −4.487 4.94E-07 ZWINT 87638

rs2087837 10 58222830 10q21.1 A 0.1303 −4.487 4.94E-07 ZWINT 101796

rs11005363 10 58237680 10q21.1 C 0.1302 −4.487 4.94E-07 ZWINT 116646

rs58386275 10 58241470 10q21.1 C 0.1301 −4.487 4.94E-07 ZWINT 120436

rs11005366 10 58242596 10q21.1 T 0.1301 −4.487 4.94E-07 ZWINT 121562

rs4935645 10 58021087 10q21.1 C 0.1391 −4.405 5.04E-07 ZWINT 96112

rs2393046 10 58023980 10q21.1 T 0.1388 −4.405 5.04E-07 ZWINT 93219

rs74137642 10 58243119 10q21.1 G 0.1306 −4.427 6.16E-07 ZWINT 122085

rs7091142 10 58244433 10q21.1 T 0.1306 −4.427 6.16E-07 ZWINT 123399

rs141232317 10 58206613 10q21.1 T 0.1208 −4.453 8.32E-07 ZWINT 85579

rs2263916 10 58161893 10q21.1 G 0.1317 −4.386 9.30E-07 ZWINT 40859

rs10763369 10 58175630 10q21.1 A 0.1315 −4.386 9.30E-07 ZWINT 54596

rs10733958 10 58179399 10q21.1 G 0.1315 −4.386 9.30E-07 ZWINT 58365

rs1516302 3 7208953 3p26.1 A 0.3005 3.199 1.24E-06 GRM7 0 (intron)

rs11005287 10 58024579 10q21.1 A 0.1378 −4.246 1.24E-06 ZWINT 92620

rs114240283 5 13799563 5p15.2 A 0.0148 11.63 1.33E-06 DNAH5 0 (intron)

rs12264147 10 58025087 10q21.1 T 0.1387 −4.187 1.62E-06 ZWINT 92112

rs2393054 10 58056974 10q21.1 C 0.1395 −4.167 1.66E-06 ZWINT 60225

rs12257337 10 58062019 10q21.1 T 0.1390 −4.146 1.86E-06 ZWINT 55180

rs7099218 10 58067127 10q21.1 C 0.1390 −4.146 1.86E-06 ZWINT 50072

rs12255620 10 58076723 10q21.1 G 0.1387 −4.146 1.86E-06 ZWINT 40476

rs73280169 10 58077515 10q21.1 T 0.1388 −4.146 1.86E-06 ZWINT 39684
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SNP Chr Position Locus Ma MAF Beta P Nearest Gene Distance

rs114740310 5 13870802 5p15.2 T 0.0144 11.17 1.92E-06 DNAH5 0 (intron)

rs114933297 5 13874625 5p15.2 T 0.0145 11.17 1.92E-06 DNAH5 0 (intron)

rs595286 18 60280097 18q21.33 G 0.4679 −2.964 2.10E-06 ZCCHC2 26121

rs9392881 6 791124 6p25.3 G 0.1214 −4.441 2.42E-06 LOC101927691 77374

rs9392150 6 791318 6p25.3 A 0.1211 −4.421 2.46E-06 LOC101927691 77180

rs62384998 6 791566 6p25.3 C 0.1212 −4.426 2.47E-06 LOC101927691 76932

rs7763687 6 791850 6p25.3 T 0.1212 −4.426 2.47E-06 LOC101927691 76648

rs306213 18 60291954 18q21.33 A 0.3434 −3.146 2.67E-06 ZCCHC2 37978

rs62385000 6 792759 6p25.3 A 0.1214 −4.432 2.79E-06 LOC101927691 75739

rs11005317 10 58088163 10q21.1 G 0.1407 −4.021 2.90E-06 ZWINT 29036

rs3750796 10 58088534 10q21.1 G 0.1407 −4.021 2.90E-06 ZWINT 28665

rs7094892 10 58088575 10q21.1 T 0.1407 −4.021 2.90E-06 ZWINT 28624

rs2393065 10 58089291 10q21.1 C 0.1407 −4.021 2.90E-06 ZWINT 27908

rs9971280 10 58090264 10q21.1 C 0.1406 −4.021 2.90E-06 ZWINT 26935

rs59704796 10 58090554 10q21.1 C 0.1406 −4.021 2.90E-06 ZWINT 26645

rs637216 18 60282910 18q21.33 G 0.4677 −2.919 3.18E-06 ZCCHC2 28934

rs3750795 10 58088644 10q21.1 G 0.1403 −4.012 3.30E-06 ZWINT 28555

rs72773940 10 11148581 10p14 T 0.0287 −8.131 3.58E-06 CELF2 0 (intron)

rs117481327 10 11154826 10p14 G 0.0293 −8.121 3.61E-06 CELF2 0 (intron)

rs2016129* 10 29288295 10p12.1 T 0.0682 5.091 3.84E-06 C10orf126 117468

rs114594327 4 91942029 4q22.1 T 0.0268 7.955 5.09E-06 CCSER1 0 (intron)

rs74897566 3 5083637 3p26.1 C 0.0196 10.88 6.29E-06 BHLHE40 56771

rs306216 18 60295543 18q21.33 G 0.3009 −3.131 6.92E-06 ZCCHC2 41567

rs1556397* 10 24851710 10p12.1 A 0.3311 −2.923 7.86E-06 KIAA1217 14938

rs141363063 9 116670492 9q32 T 0.0110 11.55 8.44E-06 ZNF618 0 (intron)

rs148488001 9 116691092 9q32 G 0.0110 11.55 8.44E-06 ZNF618 0 (intron)

rs192345176 9 116700201 9q32 G 0.0109 11.55 8.44E-06 ZNF618 0 (intron)

rs138203943 9 116704225 9q32 A 0.0109 11.55 8.44E-06 ZNF618 0 (intron)

rs56139919* 6 155914380 6q25.3 A 0.0207 8.531 8.72E-06 LOC105378068 67228

rs489500 1 65525901 1p31.3 G 0.0139 9.476 8.94E-06 JAK1 0 (intron)

rs11007349 10 29287378 10p12.1 T 0.0674 5.102 9.50E-06 C10orf126 116551
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Table 3.

Significant (FDR < 0.05) gene sets identified in the MSigDB over-representation analysis using the 

REACTOME and KEGG databases as reference.

Gene set # Genes in 
gene set (K)

# Genes in 
overlap (k) k/K P FDR q-

value

REACTOME_SIGNALING_BY_GPCR 920 42 0.0457 8.24E-9 4.22E-6

REACTOME_GPCR_LIGAND_BINDING 408 26 0.0637 9.81E-9 4.22E-6

REACTOME_CLASS_A1_RHODOPSIN_LIKE_RECEPTORS 305 21 0.0689 6.98E-8 2.00E-5

REACTOME_GPCR_DOWNSTREAM_SIGNALING 805 33 0.0410 3.38E-6 7.26E-4

REACTOME_PEPTIDE_LIGAND_BINDING_RECEPTORS 188 14 0.0745 4.22E-6 7.26E-4

REACTOME_INTERACTION_BETWEEN_L1_AND_ANKYRINS 23 5 0.2174 3.48E-5 4.30E-3

REACTOME_G_ALPHA1213_SIGNALLING_EVENTS 74 8 0.1081 3.50E-5 4.30E-3

KEGG_MAPK_SIGNALING_PATHWAY 267 15 0.0562 5.51E-5 5.66E-3

KEGG_RNA_DEGRADATION 59 7 0.1186 5.92E-5 5.66E-3

REACTOME_CELL_CYCLE 421 19 0.0451 1.16E-4 9.99E-3

Mech Ageing Dev. Author manuscript; available in PMC 2022 April 01.


	Abstract
	Introduction
	Materials and Methods
	Study population
	Cognitive function
	Genotyping and quality control
	Statistical analyses
	SNP-based analysis
	Gene-based analysis
	Gene-set analyses
	Gene-property analysis
	Gene mapping

	Verification
	Replication of results of previous studies

	Results
	Discussion
	References
	Figure 1.
	Figure 2.
	Table 1.
	Table 2.
	Table 3.

