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Abstract

Aortic stiffening is a major independent risk factor for cardiovascular diseases, kidney dysfunction 

and cognitive impairment. Doxorubicin (DOXO) chemotherapy-treated cancer survivors have 

greater aortic stiffness relative to healthy controls, but the mechanisms by which DOXO induces 

arterial stiffening are unknown. We tested the hypothesis that DOXO increases aortic stiffness by 

increasing intrinsic mechanical wall stiffness due to pro-inflammatory signaling-induced adverse 

structural changes, including collagen deposition (fibrosis), elastin fragmentation and/or formation 

of advanced glycation end products (AGEs). In vivo aortic stiffness (assessed via aortic pulse-

wave velocity [PWV]), aortic intrinsic wall stiffness (ex vivo assessment of elastic modulus [EM]) 

and potential underlying mechanisms were assessed 4 weeks after administration of DOXO (10 

mg/kg) or vehicle (saline) in young adult male C57BL6/J mice. Aortic PWV increased by ~30% 

following DOXO (Pre: 341±18 vs. Post: 431±28 cm/s, mean±SEM, P=0.001) and aortic EM was 

~100% higher following DOXO (5438±445 kPa) vs. vehicle (2659±433 kPa) (P=0.003). These 

effects of DOXO were associated with an ~3-fold greater formation of AGEs (P=0.01) and an 

~50% reduction in elastin (P=0.01), whereas collagen deposition was unaffected. DOXO increased 

aortic pro-inflammatory cytokines (P=0.03) without a compensatory increase in the anti-

inflammatory cytokine interleukin-10. Direct ex vivo exposure of aorta rings to DOXO mimicked 

the increase in aortic EM observed in vivo with DOXO, whereas tumor necrosis factorα (TNFα) 

inhibition prevented this response. DOXO induces aortic stiffening in vivo due in part to an 

increase in intrinsic wall stiffness associated with elastin degradation and AGES formation and 

mediated by TNFα-dependent vascular inflammation.

Summary

We show that doxorubicin-induced aortic stiffening is mediated by an increase in intrinsic 

mechanical wall stiffness associated with elastin degradation and accelerated formation of 
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advanced glycation end products linked to tumor necrosis factor alpha-related vascular 

inflammation. Our results identify several potential therapeutic targets for reducing cardiovascular 

risk associated with aortic stiffening in cancer patients treated with anthracycline-based 

chemotherapy.
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INTRODUCTION

The National Cancer Institute estimates 2 million new cancer cases and 600,000 cancer-

related deaths in the United States in 20211. Approximately 650,000 people undergo 

chemotherapy treatment annually2. In many cases, these treatments are effective at treating 

the cancer, but damage the cardiovascular system of the surviving patients3. As a result, 

cardiovascular diseases (CVD) are a leading cause of later morbidity and mortality among 
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chemotherapy-treated cancer survivors4. A major cause of chemotherapy-associated 

increases in CVD risk in cancer survivors stems from use of anthracyclines5. Anthracyclines 

are a class of chemotherapeutics used to treat several common cancers, including leukemias 

and lymphomas, that elicit particularly toxic effects on the CV system6, 7. Doxorubicin 

(DOXO) is the most commonly administered anthracycline8, and its use markedly increases 

the risk of subsequent CVD9.

Much of the CVD-related mortality associated with DOXO is linked to clinical 

atherosclerotic diseases and stroke10–13, and the major antecedent of these CV disorders is 

arterial dysfunction14. A key feature of arterial dysfunction is, in turn, aortic stiffening15, 16, 

which is also a major risk factor for cognitive dysfunction, Alzheimer’s Disease, chronic 

kidney disease and many other chronic disorders17–19. Aortic stiffness is determined in part 

by the intrinsic stiffness of the arterial wall, which is influenced by the composition of the 

extracellular matrix, including the abundance of the main structural proteins -- collagen and 

elastin -- and the presence or absence of advanced glycation end products (AGEs), which 

form cross-links between structural proteins20–22. Cellular processes such as chronic low-

grade inflammation can stimulate changes in these determinants of arterial stiffness23. 

DOXO-treated cancer survivors develop greater aortic stiffness compared with age-matched 

healthy controls, as indicated by higher carotid-femoral pulse wave velocity (PWV)5, 24–26. 

However, the mechanisms by which DOXO induces aortic stiffening have not been 

systematically investigated.

Here we use complementary experimental approaches to investigate the cellular and 

molecular mechanisms underlying DOXO treatment-evoked aortic stiffening. We first 

determined the temporal development of aortic stiffening following DOXO treatment in vivo 
by measuring aortic PWV in young adult mice. Using this model, we established that DOXO 

induces aortic stiffening within 4 weeks of administration compared with vehicle-treated 

controls. Next, we used an ex vivo stress-strain model to show that the increase in aortic 

PWV with DOXO is accompanied by a corresponding increase in intrinsic mechanical wall 

stiffness, and that direct incubation of aorta rings from untreated animals with DOXO 

induces a similar effect. We then show that these increases in aortic stiffness are associated 

with changes in the extracellular matrix of the aortic wall featuring elastin degradation and 

increases in the formation of AGEs. Finally, we demonstrate that the aortas of DOXO-

treated mice show increased abundance of pro-inflammatory cytokines, most predominantly 

tumor necrosis factor α (TNFα), in the absence of compensatory induction of anti-

inflammatory cytokines, and that inhibition of TNFα prevents DOXO-stimulated increases 

in intrinsic mechanical wall stiffness. Overall, our results extend current insight into the 

pathophysiological mechanisms by which DOXO administration induces aortic stiffening 

and identify potential therapeutic targets for preventing arterial stiffness in DOXO-treated 

cancer survivors.

METHODS

All data presented in this article and in the Online Supplement will be made available upon 

reasonable request to the corresponding author.
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Animals

All animal protocols were approved by the University of Colorado Boulder Institutional 

Animal Care and Use Committee (protocol #2618) and complied with the National Institutes 

of Health Guide for the Care and Use of Laboratory Animals. A total of 61 male C57BL/6 J 

mice were obtained for these studies from Jackson Laboratories (mice received at 3 months 

of age). Male mice were selected as male C57BL/6 mice are an established model or arterial 

stiffness in response to various stressors (e.g. aging27, 28 and Western-style diet29). All mice 

were housed in a conventional facility on a 12-hour light/dark cycle, given ad libitum access 

to rodent chow and drinking water, and allowed to acclimate to our facility for 4 weeks 

before the start of any testing. Mice that were assigned to receive in vivo injections of 

vehicle or DOXO were single housed for the duration of the study to prevent indirect 

exposure of DOXO, as DOXO and its primary metabolites are secreted in the urine and feces 

for up to ~96 hours following injection30. Food (Envigo 7917) and water intake were 

assessed every other day for the duration of the study and averaged. Energy intake was 

calculated my multiplying food intake (g) by kcal/g of the diet.

All mice were euthanized by exsanguination while maintained under anesthesia (inhaled 

isoflurane). The thoracic aorta was excised, dissected free of surrounding tissue, sectioned 

and stored appropriately for later stress-strain testing to assess aortic intrinsic mechanical 

stiffness, protein abundance by WES capillary electrophoresis-based immunoblotting 

(Protein Simple, San Jose, CA) and concentrations of pro-inflammatory cytokines. 

Investigators were blinded to treatment group for data collection and biochemical analyses. 

Details on all procedures, antibodies, and kits used are provided in the Online Supplement.

Aortic pulse wave velocity and blood pressure

Aortic PWV was assessed using Doppler ultrasound, as we have previously 

described27, 28, 31, 32. Briefly, mice were anesthetized via inhaled isoflurane (2.5–3%) and 

positioned supine on a warmed platform with paws secured to electrocardiogram leads. 

Doppler probes were placed at the transverse aortic arch and abdominal aorta to detect pulse 

waves. Three consecutive 2-second recordings were made for each animal and used to 

determine the time delay between the electrocardiogram R-wave and the foot of the Doppler 

signal for each site (Δtimeabdominal and Δtimetransverse). Aortic PWV was then calculated as: 

aortic PWV = (physical distance between the two probes)/(Δtimeabdominal minus 

Δtimetransverse) and reported in centimeters per second. In vivo blood pressure was measured 

in the second cohort of mice at baseline and 4 weeks following injection of DOXO or 

vehicle on three consecutive days using a non-invasive tail-cuff method (CODA; Kent 

Scientifc, Torrington, CT), as we have previously described27, 28, 31, 32.

DOXO administration

At 4 months of age, mice received a single injection of DOXO (10 mg/kg intraperitoneal 

injection; n = 14) or vehicle (intraperitoneal injection of saline; n = 10). Groups were 

matched for baseline body weight and aortic PWV. This method of administration causes 

cardiac dysfunction in 4-month-old male C57BL/6 J mice33. Estrogen may be protective 

against DOXO-induced cardiac dysfunction34; thus, only male mice were used in the present 

study to determine the mechanism by which DOXO causes aortic stiffening without the 
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confounding effects of female sex hormones. All mice were sacrificed 4 weeks following 

treatment, with the exception of the pilot longitudinal cohort of animals.

Statistical analyses

Detailed descriptions of all statistical analyses performed are provided in the Data 

Supplement. Data are presented as mean ± SEM in text, figures, and tables unless specified 

otherwise. Statistical significance was set to α=0.05. All statistical analyses were performed 

using Prism, version 8 (GraphPad Software, Inc, La Jolla, CA).

RESULTS

Animals

Four-month old C57BL/6J mice were administered DOXO (single 10 mg/kg intraperitoneal 

injection; in sterile saline) or vehicle (body weight to volume-matched intraperitoneal 

injection of sterile saline). In C57BL/6J mice, this age is equivalent to ~25 years of age in 

humans35, which falls within the adolescent and young adult (AYA) age range for cancer 

(15–39 years of age) – a common age range for diagnosis of lymphoma and leukemia36, 37 

and subsequent treatment with DOXO37.

After 4 weeks post injection, mice that received DOXO had lower body mass, energy intake, 

water intake, and quadricep skeletal muscle and epididymal white adipose mass as observed 

previously in rodent models38, 39 and similar to the effects of DOXO chemotherapy in 

humans40, 41. DOXO did not alter spleen weight, aortic diameter or blood pressure (Table 

S1).

Aortic stiffness

Patients who receive DOXO have higher aortic stiffness (carotid-femoral PWV) relative to 

age-matched untreated controls24–26, but the underlying mechanisms are unknown. First, we 

first conducted a pilot study to determine the temporal response of aortic stiffening after 

DOXO treatment assessed in vivo using serial non-invasive measurements of aortic pulse 

wave velocity [PWV] and found that aortic PWV peaks 4 weeks post-injection, and remains 

elevated, in young adult (5 mo) male C57BL/6 J mice [Figure S1]).

Guided by the results of this pilot study, in a second cohort of young adult (4 months of age) 

male C57BL/6 J mice, we next determined aortic PWV prior to and 4 weeks following a 

single injection of DOXO or vehicle and assessed several potential mechanisms of action. 

Prior to the injections (Pre) there were no differences in aortic PWV between the DOXO- 

and vehicle-treated groups. However, 4 weeks following the injections (Post), mice that 

received DOXO had a 30% increase (P = 0.004) in aortic PWV, while mice that received the 

vehicle showed no change (Figure 1). These data are consistent with observations in humans 

that DOXO chemotherapy increases carotid-femoral PWV by ~30% at 4 weeks following 

treatment5.
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Intrinsic stiffness of the aortic wall

To investigate whether increased aortic PWV caused by DOXO is associated with increased 

intrinsic mechanical stiffness of aortic wall, we measured the elastic modulus of aorta rings 

isolated from mice treated with vehicle or DOXO. Elastic modulus is the strain on the 

arterial wall in response to a given stress (stretch), which is indicative of the intrinsic 

mechanical stiffness of the aorta27, 28, 31, 32. Figure 2 shows representative stress-strain 

curves and group average aortic elastic moduli from vehicle- and DOXO-treated mice. The 

aortic elastic modulus was ~100% greater (P = 0.003) in DOXO- vs vehicle-treated mice, 

indicating that DOXO increases the intrinsic stiffness of the aortic wall.

Direct effect of DOXO on aortic stiffening

To determine whether DOXO directly affects aortic stiffening, i.e., independent of changes 

in the circulating plasma and endovascular milieu, thoracic aorta rings (1 mm in length) 

from young adult (4 months of age) untreated C57BL6/J male mice were incubated with = 

medium (DMEM + 10% fetal calf serum + 1% penicillin-streptomycin) containing vehicle 

or DOXO (1 μM) for 72 hours (2 rings for each condition per mouse), an experimental 

paradigm previously utilized by our laboratory to systemically interrogate mechanisms 

underlying changes in aortic stiffness in response to various treatments42, 43. 1 μM was 

previously shown to be the peak concentration of DOXO in plasma following administration 

in humans44. Intrinsic mechanical wall stiffness was assessed after the 72-hour incubation 

period. Similar to in vivo treatment with DOXO, ex vivo DOXO exposure increased the 

aortic elastic modulus by ~2-fold (P = 0.03 vs. vehicle) (Figure 3), suggesting that DOXO 

directly increases aortic stiffening independent of potential changes in circulating factors or 

other in vivo processes that might have occurred with in vivo treatment.

Effects of DOXO on arterial wall structural proteins and advanced glycation end products

Aortic stiffening is increased by collagen deposition31 and/or cross-linking by advanced 

glycation end products (AGEs)43, and the latter can occur independent of changes in 

collagen abundance45. Elastin degradation (reduced elastin abundance) also contributes to 

aortic stiffening in various settings as this is the structural protein that confers elasticity to 

the arterial wall46. Therefore, we assessed the abundance of collagen, AGEs and elastin in 

aortic lysates from DOXO- and vehicle-treated mice by immunoblotting. Aortic collagen 

was unchanged after DOXO treatment (P = 0.89) (Figure 4A). In contrast, aortic AGEs were 

~3-fold higher (P = 0.012) (Figure 4B) and aortic elastin was ~2.5-fold lower (P = 0.011) 

(Figure 4C) after DOXO treatment. Next, we aimed to determine whether the DOXO-

mediated elastin degradation and increased formation of AGEs were associated with the 

corresponding DOXO-associated increases in aortic PWV and elastic modulus. Linear 

regression analyses revealed that DOXO-induced aortic elastin degradation was indeed 

related to the increases in aortic PWV (P = 0.007; Figure S2A) and aortic elastic modulus (P 
= 0.003, Figure S2C), as were the DOXO-associated increases in aortic AGEs (P = 0.002 vs. 

change in aortic PWV, Figure S2B; P = 0.0007 vs. change in elastic modulus, Figure S2D). 

These results suggest that DOXO induces aortic stiffening, at least in part, by degrading 

elastin and increasing AGEs-related cross-linking.
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Effect of DOXO on aortic inflammatory cytokines

We have previously demonstrated an association between higher aortic inflammatory 

cytokine abundance and aortic stiffening28, 47, 48. Furthermore, DOXO stimulates 

inflammation systemically39 and in specific tissues, including CV tissues49. Therefore, we 

asked if higher levels of inflammatory cytokines are associated with DOXO-induced aortic 

stiffening. To address this, we assessed pro- and anti-inflammatory cytokines in aortic 

lysates from DOXO- and vehicle-treated mice by multiplex ELISA. Indeed, aortas from 

mice that received DOXO had higher protein concentrations of the pro-inflammatory 

mediators IFNγ (P = 0.04) (Figure 5A), IL-1β (P = 0.03) (Figure 5B), IL-2 (P = 0.03) 

(Figure 5C), IL-6 (P = 0.04) (Figure 5D), and TNFα (P = 0.04) (Figure 5E), without a 

compensatory upregulation in the anti-inflammatory cytokine, IL-10 (Figure 5F). Among the 

pro-inflammatory cytokines, TNFα appeared to be most strongly stimulated by DOXO 

treatment.

Direct effect of TNFα on DOXO-induced arterial stiffening

Our interrogation into DOXO-induced changes in aortic inflammation demonstrated that 

TNFα was most influenced by DOXO. Accordingly, we next asked whether TNFα is a 

major regulator of aortic stiffening by DOXO. We incubated aorta rings (1 mm in length) 

from a separate cohort of intervention-naïve young adult (5 mo old) C57BL/6 J male mice in 

the following conditions: 1) vehicle (in culture medium); 2) vehicle + the TNFα inhibitor 

C8750, 51 (20 μM); 3) DOXO (1 μM in culture medium); and 4) DOXO + C87. Notably, C87 

directly binds to TNF and prevents its interaction with the TNF receptor52. After 72 hours, 

we assessed the intrinsic mechanical stiffness of the aortic wall as described above. Similar 

to our previous mouse cohort, DOXO increased (P = 0.004) the elastic modulus by ~2-fold 

and C87 completely prevented this increase (P = 0.002, DOXO vs. DOXO + C87; P = 0.41 

vehicle vs. DOXO + C87). There were no differences (P = 0.41) between vehicle and vehicle 

+ C87, suggesting there were no off-target effects of C87 (Figure 6).

DISCUSSION

Aortic stiffening is a key antecedent to the development of clinical CVD, including 

hypertension53, atherosclerotic occlusive diseases54 and stroke55, and is an independent 

predictor of CV-related mortality56. Aortic stiffening is also a major risk factor for chronic 

kidney disease19 and is strongly implicated in impaired cognitive function and risk of 

Alzheimer’s disease and other dementias17, 18. DOXO-treated cancer survivors have greater 

aortic stiffness relative to age-, sex- and CV risk factor-matched healthy individuals and 

demonstrate higher prevalence of the above-mentioned arterial stiffening-related chronic 

disorders with advancing age24–26. As such, it is clinically important that we understand the 

mechanisms of DOXO treatment-associated aortic stiffening in order to identify the 

processes involved that can be targeted therapeutically. However, to date, the mechanisms 

underlying DOXO-induced aortic stiffening have not been systemically investigated.

In the present study, we used complementary in vivo and ex vivo translational models of 

aortic stiffness to gain insight into these issues. Our major findings are that DOXO induces 

aortic stiffening in vivo at least in part by increasing intrinsic mechanical wall stiffness. The 
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latter is, in turn, associated with a marked increase in AGEs formation and elastin 

degradation, as well as aortic inflammation in the absence of an obvious compensatory anti-

inflammatory response. Finally, the increase in intrinsic wall stiffness with DOXO is 

prevented by inhibition of TNFα. Overall, these findings provide new evidence regarding 

the mechanisms by which DOXO increases aortic stiffness and identify several possible 

therapeutic targets for future treatment strategies.

Implications for management and treatment of aortic stiffening after DOXO chemotherapy

At this time, there are no guidelines in place to monitor aortic stiffness during or following 

DOXO chemotherapy treatment. However, a recent meta-analysis on the topic of DOXO 

chemotherapy and aortic stiffness concluded that that non-invasive approaches, including 

assessment of carotid-femoral PWV, should be used to monitor changes in vascular health 

during treatment and throughout survival to better understand the risk of CVD and other 

chronic disorders associated with DOXO25.

The present results address current research gaps by providing experimental evidence for 

potential targets of future therapies aimed at preventing/treating aortic stiffening with 

DOXO. Specifically, our results suggest that lifestyle and pharmacological strategies that 

inhibit AGEs formation, elastin degradation and TNFα signaling-dependent vascular 

inflammation are among the candidate targets for mitigating DOXO treatment-associated 

aortic stiffening. Of these therapeutic targets, TNFα inhibitors may be the most promising, 

as etanercept, adalimumab and infliximab all are presently in clinical use and have shown 

efficacy for reducing arterial stiffness in other groups, including patients with chronic 

inflammatory disorders and estrogen-deficient postmenopausal women free of clinical 

disease57–60. However, it should be noted that in a preclinical model of atherosclerosis, the 

TNFα inhibitor CNTO5048 was reported to paradoxically exacerbate vascular 

inflammation61.

Other lifestyle and pharmacological interventions aimed at reducing vascular inflammation, 

including voluntary aerobic exercise62, energy restriction63, 64, salicylate treatment65, 66, 

statin therapy67, and dietary supplementation with both mitochondrial antioxidants31, 68 and 

NAD+ boosting compounds69, 70 reduce arterial stiffness in healthy older adults and also 

may be effective for mitigating DOXO-mediated aortic stiffening, which may be viewed as a 

condition of accelerated arterial aging. Inhibition of AGEs formation and crosslinking are 

effective in reducing arterial stiffness in preclinical models71–73 but these compounds are not 

used clinically at this time. Taken together, there are currently a variety of lifestyle and 

pharmacological strategies that may be effective for reducing arterial stiffening in patients 

that have undergone DOXO chemotherapy treatment. Establishing the efficacy of these 

approaches represents an important future goal in cardiovascular-oncology research.

The mouse as a translational model of DOXO-induced aortic stiffening

In general, assessment of aortic stiffness using aortic PWV in C57BL/6 mice is a well-

established translational model of studies of carotid-femoral PWV in humans27, 74. The 

results of the present study extend the use of this model to establish DOXO-treated young 

adult mice as a translational model of DOXO-induced aortic stiffening in clinical settings. 
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Carotid-femoral PWV is reported to be ~30% higher several weeks following DOXO 

administration in cancer patients5, i.e., the same magnitude of increase we observed in aortic 

PWV in the present study. Thus, our findings also provide the first evidence supporting the 

validity of C57BL/6 mice as a translational model for studying the underlying mechanisms 

of DOXO-induced aortic stiffness clinically. Further refinement of this mouse model to 

facilitate more clinically relevant translation to cancer patients include the use of a tumor-

bearing mice to model human cancer and the administration of DOXO intravenously in 

smaller consecutive doses over time, as is used medically25.

Perspectives

Here, we demonstrate for the first time that DOXO-induced aortic stiffening is mediated, at 

least in part, by enhanced TNFα-dependent pro-inflammatory signaling without an obvious 

compensatory anti-inflammatory response. These events trigger pathophysiological changes 

to the extracellular matrix of the aortic wall featuring a marked increase in the formation of 

AGEs and accelerated degradation of elastin in the absence of augmented collagen 

deposition. Collectively, these changes substantially increase the intrinsic mechanical 

stiffness of the wall of the aorta and result in a physiologically and clinically meaningful 

aortic stiffening in vivo, as indicated by an increase in aortic PWV similar to that observed 

in DOXO-treated cancer patients. Lifestyle strategies or targeted pharmacological therapies 

that suppress pro-inflammatory signaling in arteries may be effective strategies for 

preventing and/or treating DOXO chemotherapy-induced aortic stiffening, which could 

ultimately decrease the risk for CVD, kidney dysfunction and cognitive impairment in this 

patient population.

Future preclinical studies should consider other experimental approaches to facilitate 

translation to patient populations including: 1) studying female animals; 2) administering 

DOXO intravenously in smaller consecutive doses over time to more closely mimic clinical 

therapy; 3) assessing cardiac function in parallel with aortic stiffness; and 4) extending the 

age-range to older animals given the common use of DOXO in middle-aged and older 

patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Novelty and Significance

What Is New?

• Using complementary in vivo and ex vivo translational models, we 

systematically identified key mechanisms underlying doxorubicin-mediated 

aortic stiffening.

• We demonstrate a clear role of increased intrinsic wall stiffness associated 

with remodeling of the extracellular matrix and tumor necrosis factor alpha-

related increases in vascular inflammation as key mechanisms driving aortic 

stiffening with doxorubicin.

What Is Relevant?

• Aortic stiffening is a major antecedent and key initiating step in the 

development of cardiovascular diseases, including hypertension.

• Doxorubicin chemotherapy treatment causes aortic stiffening, but the 

underlying mechanisms have not been systematically investigated.

• This study provides evidence for increased tumor necrosis factor alpha 

signaling as a potentially important upstream mechanism in doxorubicin-

induced aortic stiffening that could be targeted to improve vascular health and 

reduce cardiovascular disease risk in anthracycline-treated cancer survivors.
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Figure 1. In vivo aortic pulse-wave velocity (PWV) is increased in young mice four weeks 
following a single injection of Doxorubicin.
n = 8/group. Data are expressed as mean ± SEM. *P < 0.05 vs. vehicle; †P < 0.05 vs. Pre-

treatment within group.
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Figure 2. Ex vivo aortic elastic modulus (intrinsic mechanical stiffness) is higher in mice treated 
with Doxorubicin (DOXO).
A) Representative stress-strain curve of an aortic ring from vehicle- and DOXO-treated mice 

for determination of ex vivo elastic modulus. B) Aortic elastic modulus in vehicle and 

DOXO-treated mice. n = 8/group. Data are expressed as mean ± SEM. *P < 0.05 vs. vehicle.
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Figure 3. Direct exposure of aorta rings with Doxorubicin (DOXO) increases the elastic modulus 
(intrinsic mechanical stiffness).
Direct exposure of aorta rings with vehicle (DMEM + 10% fetal calf serum + 1% Penicillin-

Streptomycin) or 1 μM DOXO (in vehicle). n = 10/condition. Data (mean ± SEM) in the 

DOXO condition is expressed as fold-change relative to vehicle. *P < 0.05 vs. vehicle.
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Figure 4. In vivo administration of Doxorubicin (DOXO) results in higher advanced glycation 
end products (AGEs), and lower elastin abundance in the aorta.
Aortic abundance of A) collagen-1, B) AGEs, and C) α-elastin in mice treated with vehicle 

or DOXO. n = 10/group. Data are expressed as mean ± SEM. *P < 0.05 vs. vehicle.
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Figure 5. Greater abundance of pro-inflammatory, but not anti-inflammatory cytokines in the 
aorta of Doxorubicin (DOXO) treated mice.
Aortic abundance of A) interferon-gamma (IFNγ), B) interleukin-1β (IL-1β), C) 
interleukin-2 (IL2), D) interleukin-6 (IL-6), E) tumor necrosis factorα (TNFα), and F) 
interleukin-10 (IL10) in mice treated with vehicle or DOXO. n = 8/group. Data are 

expressed as mean ± SEM. *P < 0.05 vs. vehicle.
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Figure 6. Direct exposure of aorta rings with the tumor necrosis factorα (TNFα) inhibitor C87 
prevents Doxorubicin (DOXO)-mediated aortic stiffening.
Direct exposure of aorta rings with vehicle (DMEM + 10% fetal calf serum + 1% Penicillin-

Streptomycin); vehicle + C87 (20 μM); DOXO (1 μM DOXO); and DOXO + C87. n = 10/

condition. Data are the mean ± SEM expressed as fold-change relative to vehicle. *P < 0.05 

vs. vehicle; †P < 0.05 vs. DOXO.
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