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Abstract

Emerging adulthood (18–25 years) represents a window of opportunity to modify the trajectory of 

cardiometabolic disease risk into older adulthood. Not known is the extent to which rest-activity 

rhythms (RAR) may be related to biomarkers of cardiometabolic health in this population. In this 

cross-sectional, observational study, 52 healthy emerging adults wore wrist accelerometers (14 

consecutive days; 24h/day) for assessment of nonparametric RAR metrics, including interdaily 

stability (IS; day-to-day RAR consistency), intradaily variability (IV; within-day RAR 

fragmentation), and relative amplitude (RA; robustness of RAR), as well as autocorrelation 

(correlation of rest/activity levels at 24-hour lag-times). Cardiometabolic biomarkers, including 

body mass index (BMI), body fat percentage, blood pressure (BP), fasting lipids, glucose, and C-

reactive protein (CRP) were assessed. Additional measures including physical activity, sleep 

duration, and habitual caffeine and alcohol consumption were also evaluated. A series of 

multivariable regression models of cardiometabolic biomarkers were used to quantify associations 

with RAR metrics. On average, participants were 20±1 years of age (21 male, 31 female), non-

obese, and non-hypertensive. All were non-smokers and free of major diseases or conditions. In 

separate models, which adjusted for sex, BMI, moderate-vigorous physical activity, sleep duration, 

caffeine, and alcohol consumption, IS was inversely associated with total cholesterol (p≤0.01) and 

non-HDL cholesterol (p<0.05), IV was positively associated with CRP (p<0.05), and 

autocorrelation was inversely associated with total cholesterol (p<0.05) and CRP (p<0.05). 

Conversely, associations between RA and cardiometabolic biomarkers were nonsignificant after 

adjustment for BMI, alcohol, and caffeine consumption. In conclusion, RAR metrics, namely a 

higher IS, lower IV, and higher autocorrelation, emerged as novel biomarkers associated with more 

favorable indices of cardiometabolic health in this sample of apparently healthy emerging adults.
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Introduction

Cardiometabolic diseases including type-2 diabetes, hypertension, and obesity represent the 

most prevalent and deadly set of conditions that affect one in two American adults 

(Benjamin et al. 2019). Currently, 12% of adults have diabetes (U.S. Department of Health 

and Human Services 2020), 42.4% are obese (Hales et al. 2020), and 45% are hypertensive 

(Ostchega et al. 2020). Poor cardiometabolic health often begins in childhood and escalates 

across the lifespan (Gundogan et al. 2009; Wang et al. 2018). “Emerging adulthood” is a 

recently defined developmental period spanning the 18–25 y of age post-high-school age-

range (Arnett et al. 2006; Gilmore 2019) that may be particularly important to thwarting 

cardiometabolic disease initiation and progression. For example, while cardiometabolic 

health behaviors are poor in high-school youth (52% are physically inactive (Kapteyn et al. 

2018), 32% obtain insufficient sleep (Liu et al. 2016), 91% report not eating sufficient fruits 

and vegetables (Lee-Kwan et al. 2017)), they decline even further in the emerging adult 

phase (Frech 2012). Specifically, significant declines in physical activity are reported (Li et 

al. 2016; Corder et al. 2019), and this age group demonstrates greater increases in 

overweight and obesity than in any other life stage (Ng et al. 2014). Identifying novel factors 

in youth, including emerging adults, that may modify their trajectory of cardiometabolic 

disease risk is a key research priority (NHLBI 2019).

Current recommendations for cardiometabolic health behaviors are one-dimensional in that 

they prioritize duration. For example, physical activity recommendations are for ≥150 min/

week of moderate-intensity, ≥75 min of vigorous-intensity aerobic activity, or an equivalent 

combination of both (Piercy et al. 2018), while sleep duration guidelines are for ≥7h/night 

(Watson et al. 2015). One plausible extension of this paradigm is to also consider 

rhythmicity of these behaviors and their interaction with endogenous biological rhythms 

(Bae et al. 2019). Experimental evidence suggests that circadian misalignment, induced via 

rapid and extreme (e.g., 8–12h) shifts in sleep-wake cycles, may contribute to excess 

cardiometabolic disease risk (Scheer et al. 2009; Leproult et al. 2014; Morris et al. 2016). 

Subsequently, habitual irregularity in sleep timing and/or duration have emerged as potential 

prognostic indicators of increased cardiometabolic disease risk, even in milder contexts (e.g., 

1–3h shifts), such as those experienced by community-dwelling adults in free-living settings 

(Huang et al. 2019; Huang et al. 2020). However, examining sleep regularity in isolation 

permits assumptions, rather than objective assessment, of the extent of rhythmicity in 

activity exhibited during wakefulness.

Instead, continuous actigraphy allows for reliable and objective estimation of diurnal 

patterns of 24h movement over time (i.e., “rest-activity rhythms” (Ancoli-Israel et al. 2003; 

Littner et al. 2003)), which may provide additional insight on the link between behavioral 

rhythmicity and cardiometabolic health. For example, greater interdaily stability (IS), which 

describes day-to-day consistency in rest-activity rhythms, has been associated with a lower 

odds of diabetes, hypertension, and obesity in midlife and older adults (Sohail et al. 2015; 

Abbott et al. 2019). Intradaily variability (IV), which depicts the frequency and extent of 

transitions between rest and activity within a day, has also been associated with higher odds 

of obesity, lower cardiorespiratory fitness, and higher metabolic risk in adolescents (Garaulet 
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et al. 2017). Lower relative amplitude (RA; indicative of a less robust rest-activity rhythm) 

has been associated with a higher body mass index (BMI) in both adolescents and adults 

(Cespedes Feliciano et al. 2017; Quante et al. 2019). Additionally, a lower RA is associated 

with increased risk of cardiovascular events in older men (Paudel et al. 2011), while patients 

with type-2 diabetes demonstrate a significantly lower IS, higher IV, and lower RA as 

compared to healthy controls (Cavalcanti-Ferreira et al. 2018). While the majority of this 

work has been conducted in adolescence or middle-aged/older adults, it consistently 

culminates to suggest that low rhythmicity and irregularity in rest-activity patterns may be 

part of an upstream behavioral phenotype of excess risk for cardiometabolic disease.

These lines of evidence: (1) the exacting clinical and population health burden of 

cardiometabolic disease, (2) the potential for emerging adulthood as a window of 

opportunity to forestall the progression of cardiometabolic disease, (3) the need to expand 

paradigms of cardiometabolic health behavior prescription to be more holistic, and, (4) the 

potential for rest-activity rhythmicity to inform an upstream phenotype of risk for 

cardiometabolic disease in emerging adults, provide the conceptual premise of the current 

investigation. The purpose of this study was to evaluate the relation between rest-activity 

rhythms (derived from 14 d of actigraphy) and cardiometabolic biomarkers in a sample of 

generally healthy emerging adults (18–25 y of age). We expected to find that more regular 

and more robust rest-activity rhythms would be associated with better cardiometabolic 

health in this sample.

Methods

Study Participants

Participants were recruited from the University of Delaware and the surrounding Newark, 

DE region. Participants were healthy, full-time undergraduate college students between the 

ages of 18 and 25 y. Individuals were excluded from participation if they: 1) had a history of 

any major chronic diseases or conditions (including cardiovascular, renal, metabolic, 

autoimmune, or chronic respiratory diseases, cancer, or sleep disorders), 2) were currently 

working night-shift-work, 3) were using sleep medication, 4) were diagnosed with 

depression, 5) had a seated resting blood pressure (BP) >140/90 mmHg, 6) were currently 

pregnant, 7) or were smokers (≥1 cigarette in last month). This study was approved by the 

Institutional Review Board at the University of Delaware and was conducted in accordance 

with international ethical standards including the Declaration of Helsinki and those specific 

to performing biological rhythms research on humans (Portaluppi et al. 2010). All 

participants provided verbal and written informed consent prior to participation.

Wrist Actigraphy

Participants were provided with an accelerometer (Micro Motionlogger; Ambulatory 

Monitoring Inc, Ardsley, NY) to be worn on the non-dominant wrist 24h/d, except for during 

water-based activities (i.e., showering), for 14 consecutive days and nights. Data were 

collected in zero-crossing mode and were stored in 60 s epochs. To be included in final rest-

activity analyses, ≥10 d of accelerometry with >1000 min of data/d were required. All 

actigraphy data were visually screened and analyzed by the same researcher. Since all 
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participants were college students, monitoring procedures were performed during the school 

semester when all participants were enrolled in a full-time course load and excluded any 

periods when students were on holiday breaks or during final examinations.

Rest-Activity Rhythm Analyses

Nonparametric analyses of rest-activity data were performed, as these methods make no 

assumptions about the waveform (i.e., shape) of the 24h activity pattern when data are 

plotted as a time series (Witting et al. 1990; Van Someren et al. 1999). Three nonparametric 

parameters were used to estimate 24h rest-activity rhythms for each participant: 1) IS, 2) IV, 

and 3) RA. All computations for nonparametric analyses are based on raw-data epochs that 

were resampled into 1h bins prior to analysis.

IS indicates the extent to which rest-activity patterns of individual days resemble each other 

and may reflect better coupling of rest-activity rhythms to supposedly stable external 

zeitgebers (i.e., external cues for entraining circadian rhythms). Values can range from 0 to 

1, with 0 indicating very unstable day-to-day rhythms and 1 indicating perfect stability. IS is 

calculated as the ratio between the variance of the average 24h activity pattern around the 

mean and the overall variance, according to the following equation:

IS =
n ℎ = I

p (x−ℎ − x−)2

p i = I
n (xi − x−)2

where n is the total number of data, p is the number of data per day (i.e., 24), x−ℎ are the 

hourly means of activity, x− is the mean of all data, and xi represents the individual data 

points.

IV indicates the magnitude of the hour-to-hour (i.e., within-day) transitions between rest and 

activity. For example, higher IV values are likely to be observed in individuals who often 

nap during the daytime or who often demonstrate increased activity during the nighttime. 

Values can range from 0 to 2 (or greater, rarely (Van Someren et al. 1999)), where 0 

represents a perfect sine wave and larger values represent more fragmentation. IV is 

calculated as the ratio of the mean squares of the difference between all successive hours and 

the mean squares around the grand mean (i.e., the overall variance), according to the 

following equation:

IV =
n i = 2

n (xi − xi − 1)2

(n − 1) i = I
n (xi − x−)2

RA depicts the difference between the most active 10h period (M10; the 10h block with the 

largest mean activity) and the least active 5h period (L5; the 5h block with the smallest mean 

activity) in the average 24h pattern. Greater RA values indicate a more robust 24h rhythm, 

reflective of relatively higher activity during wake and/or lower activity during sleep. 
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Additionally, RA values are normalized to the overall activity, as seen in the following 

equation:

RA = M10 − L5
M10 + L5

In addition to nonparametric analyses, autocorrelation analysis was performed, as this 

method also makes no assumptions about the waveform of activity data. Autocorrelation 

provides a correlation coefficient which reflects the association between the level of activity 

at specified time-lags (in this case, 24h). For example, high autocorrelation at clock times 

which are 24h apart would indicate a more predictable and consistent activity rhythm. All 

rest-activity rhythm analyses were performed using Action4 software version 1.16 

(Ambulatory Monitoring, Inc., Ardsley, NY).

Cardiometabolic Biomarkers

BMI was calculated as weight in kilograms divided by height in meters squared (kg/m2) 

using a calibrated scale and a wall-mounted stadiometer at the time of participant screening. 

Body fat percentage (%) was also determined via bioelectrical impedance analysis (Tania 

TBF-300A, Arlington Heights, IL).

Upon completion of the 14 d actigraphy protocol, participants returned to the lab prior to 

13:00h. Participants were instructed to fast for 12h, to abstain from caffeine, alcohol, 

exercise for a minimum of 12h, and to withhold any anti-inflammatory medications for a 

minimum of 24h prior to this visit. Following at least 10 min of rest in the supine position, 

participants underwent three brachial BP measurements, each separated by 1 min of quiet 

rest, using an oscillometric cuff on the upper right arm (SphygmoCor XCEL, ATCOR 

Medical, Naperville, IL). Measurements were averaged to derive a final representative 

resting BP value. Venous blood samples were also obtained and analyzed clinically for 

fasting glucose, lipids (total cholesterol, high-density lipoproteins [HDL], low-density 

lipoproteins [LDL], non-HDL cholesterol), triglyceride concentrations via 

spectrophotometry (Quest Diagnostics, Inc., Philadelphia, PA). C-reactive protein (CRP) 

concentrations were also determined in a subset of participants. Serum samples were 

collected in vacuum tubes without anticoagulant and centrifuged for 15 min at 1000 x g at 4° 

C. Serum was aliquoted and stored at −80° C until analysis using an enzyme-linked 

immunosorbent assay (R&D Systems, Inc, Minneapolis, MN).

Other Measures

Wrist accelerometry data were also processed to derive estimates of mean sleep duration (h/

night). Data were scored with ActionW-2 software (Ambulatory Monitoring, Inc., Ardsley, 

NY) using the University of California, San Diego scoring algorithm. Use of this algorithm 

has been validated to produce accurate and reliable sleep estimates relative to 

polysomnography (Jean-Louis et al. 2001). Participants were also provided with a 

standardized sleep diary (Carney et al. 2012) to be used simultaneously with wrist 

accelerometry and were instructed to record in the diary daily. Sleep diaries were primarily 

used as a supplementary reference during retrospective analysis in the case of any 
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inconsistencies with accelerometry data. Relative to recommendations which suggest >7 

nights of accelerometry data be used for evaluation of sleep duration (Aili et al. 2017; 

Fekedulegn et al. 2020), a more conservative threshold of ≥10 nights of sleep accelerometry 

data was required for inclusion in final analyses.

A torso accelerometer (ActiGraph wgt3x-bt, ActiGraph L.L.C., Pensacola, FL) was provided 

to all participants for estimation of habitual moderate-vigorous physical activity (MVPA; 

mean min/d). Participants were instructed to wear the accelerometer during all waking hours 

for 7 consecutive days which overlapped with wrist accelerometry. ActiGraphs were 

analyzed using ActiLife software version 6.11.9. Wear time was validated using the Troiano 

algorithm (Troiano et al. 2008) and activity variables were calculated using the Freedson 

Combination 1998 algorithm (Freedson et al. 1998). To be included in final analyses, a 

minimum of 4 d with ≥10 h of wear time were required (Colley et al. 2010).

Habitual alcohol consumption was estimated for each participant via self-reported 

questionnaire which asked, “How many alcoholic beverages do you drink per week, on 

average?” with specific instructions to consider all beer, wine, and liquor beverages. 

Similarly, habitual caffeine consumption was estimated per self-reported responses to “How 

many caffeinated beverages do you drink per week, on average?” with specific instructions 

to consider all coffee, tea, and soft drinks.

Statistical Analyses

Subject characteristics and rest-activity rhythm parameters were summarized using means 

and standard deviations (SD). Four linear regression models were then used to examine 

associations between rest-activity rhythms and cardiometabolic biomarkers, with the first of 

these models (model 1) controlling only for sex.

To determine if the association between rest-activity rhythms and cardiometabolic 

biomarkers was independent of sleep duration and MVPA, in addition to sex, model 2 

additionally adjusted for these covariates.

To determine if the association between rest-activity rhythms and cardiometabolic 

biomarkers was independent of habitual alcohol and caffeine consumption, in addition to 

sex, model 3 adjusted for these covariates.

Finally, to examine the association between rest-activity rhythms and cardiometabolic 

biomarkers independent of the potential influence of adiposity, model 4 adjusted for both sex 

and BMI. This covariate was chosen over % body fat to avoid multicollinearity (a strong 

point-biserial correlation was observed between sex and % body fat [rpb=−0.77, p<0.001]).

Regression results were presented using β values and 95% confidence intervals (CI) in terms 

of SD-units; in other words, β gives the expected change in a given outcome for a 1-SD 

increase in an accompanying rest-activity rhythm parameter. Significance was set at α=0.05 

for all tests. All analyses were performed using the Statistical Package for the Social 

Sciences (SPSS version 26.0, IBM, NY).
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RESULTS

Subject characteristics and rest-activity parameters

A total of 59 participants were enrolled in this study. Three participants were withdrawn 

prior to completion of sleep monitoring (two upon disclosure of treatment for depression, 

one unable to complete actigraphy monitoring), two participants provided incomplete 

actigraphy data (i.e., <10 d), and two participants were unable to complete the study 

protocol due to COVID-19-related research restrictions during their enrollment. Thus, 52 

participants were included in the final analytic sample.

Participant characteristics are displayed in Table 1. Participants were 20 ± 1 y of age (21 

males, 31 females; 69% white). Fasting lipids and glucose values were available for 51 

participants, and CRP was available in a smaller subset (n=42). By design, participants were 

generally healthy, as demonstrated by mean BMI, resting BP, fasting lipids, fasting glucose, 

and CRP values all within normal ranges for this age group. Participants obtained an average 

of 7.1 ± 0.7 h/night of sleep and 67 ± 24 min/d of MVPA. Additionally, participants reported 

an average of 5.4 ± 5.6 alcoholic beverages and 5.1 ± 5.4 caffeinated beverages/week, 

respectively.

Participants in the analytic sample provided a mean of 13.5 ± 0.8 d of valid wrist actigraphy 

data, with a mean of 1427 ± 51 min of valid data/d. Rest-activity rhythm parameters for the 

sample are also displayed in Table 1. Additionally, Figure 1 illustrates eight examples of 

rest-activity patterns across 14 consecutive days and nights for eight emerging adults who 

demonstrated either low or high IS, IV, RA, or autocorrelation.

Rest-activity rhythms and cardiometabolic biomarkers

Associations between rest-activity parameters and cardiometabolic biomarkers are displayed 

in Table 2. After adjusting for sex, every 1-SD increase in IS (i.e., increased similarity in 

rest-activity rhythms from one day to the next) was inversely associated with % body fat 

(−1.48%, 95% CI: −2.95, −0.03), total cholesterol (−10.39 mg/dL, 95% CI: −17.42, −3.37), 

LDL (−7.21 mg/dL, 95% CI: −13.44, −0.98), non-HDL cholesterol (−8.45 mg/dL, 95% CI: 

−15.05, −1.85), and triglycerides (−9.38 mg/dL, 95% CI: −17.61, −1.16). Associations were 

similar after adjusting for sex, MVPA, and sleep duration; however, only the associations 

between IS with total cholesterol and non-HDL cholesterol remained in models adjusting for 

sex, alcohol, and caffeine consumption (total cholesterol: −10.23 mg/dL, 95% CI: −17.71, 

−2.75; non-HDL cholesterol: −7.45, 95% CI: −14.44, −0.47).

Of all cardiometabolic biomarkers tested, IV was only associated with CRP concentration, 

such that every 1-SD increase in IV (i.e., greater within-day fragmentation of activity 

rhythms) was positively associated with a 0.30 mg/L increase in CRP concentration (95% 

CI: 0.05, 0.56) after adjusting for sex. This association remained after including MVPA and 

sleep duration in the model, and again in models adjusting for sex, alcohol, and caffeine 

consumption.

Every 1-SD increase in RA (i.e., more robust rest-activity rhythms) was inversely associated 

with BMI (−0.69 kg/m2, CI: −1.35, −0.02), % body fat (−1.63%, CI: −3.07, −0.19), LDL 
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(−6.52 mg/dL, CI: −12.77, −0.27), and non-HDL cholesterol (−7.17, CI: −13.84, −0.49). 

Associations between LDL and non-HDL cholesterol remained significant after adjusting for 

sex plus MVPA and sleep duration, while the associations between RA and adiposity 

measures were lost. Associations between RA and all cardiometabolic biomarkers were 

eventually lost in models that adjusted for sex plus alcohol and caffeine consumption.

Each 1-SD increase in the activity 24h autocorrelation lag time (i.e., correlation in activity 

levels at the same clock time for each day) was inversely associated with circulating lipids, 

namely total cholesterol (−8.61 mg/dL, CI: −15.78, −1.63) and non-HDL cholesterol (−7.01 

mg/dL, CI: −13.70, −0.32), as well as lower CRP concentrations (−0.24 mg/L, CI: −0.48, 

0.00). After adding MVPA and sleep duration to the model, inverse associations with total 

cholesterol (−8.27 mg/dL, CI: −15.99, −0.54) and CRP (−0.25 mg/dL, CI: −0.50, 0.00) 

remained, while the association with non-HDL cholesterol became nonsignificant (p=0.08). 

Results were similar in models adjusting for sex, alcohol, and caffeine consumption.

Influence of BMI

To determine if associations between rest-activity parameters and cardiometabolic 

biomarkers were independent of adiposity, all associations (except % body fat) were 

evaluated after adjustment for BMI plus sex (Table 3). IS remained significantly inversely 

associated with total cholesterol (−9.92 mg/dL, 95% CI: −17.05, −2.79) and non-HDL 

cholesterol (−7.82 mg/dL, 95% CI: −14.46, −1.17), while inverse associations with LDL 

(−6.51 mg/dL, 95% CI: −12.74, −0.27) and triglycerides (−10.10 mg/dL, 95% CI: −18.41, 

−1.79) also emerged. As seen in all prior models, IV remained positively associated with 

CRP concentrations (0.30 mg/L, 95% CI: 0.06, 0.55). Similarly, the activity 24h 

autocorrelation remained significantly inversely associated with total cholesterol (−8.24 

mg/dL, 95% CI: −15.44, −1.04) and CRP concentrations (−0.24 mg/L, −0.48, −0.01). 

Conversely, all associations between RA and cardiometabolic biomarkers remained 

nonsignificant.

DISCUSSION

The identification of novel markers of cardiometabolic health in youth, especially those that 

are modifiable to intervention, represents a key research priority (NHLBI 2019). We used 

multivariable regression models to test associations between rest-activity rhythm parameters 

of IS, IV, RA, and activity 24h autocorrelation with several cardiometabolic measures of 

fasting cholesterol, triglycerides, and glucose, CRP, BMI, % body fat, and resting systolic 

and diastolic BP in a sample of emerging adults. After adjustments for several possible 

confounding variables, the key and novel findings were that IS was consistently inversely 

associated with serum lipids, namely total cholesterol and non-HDL cholesterol, IV was 

consistently positively associated with CRP, and activity 24h autocorrelation was 

consistently inversely associated with total cholesterol and CRP in this sample. These data 

suggest that rest-activity rhythm metrics may be novel, modifiable targets with which to 

attenuate the trajectory of cardiometabolic disease risk in emerging adulthood.

A central finding of this study was that increased IS and activity 24h autocorrelation were 

associated with a more optimal lipid profile, and these associations were independent of sex, 
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adiposity, sleep duration, MVPA, and alcohol and caffeine consumption. Specifically, for 

every 1-SD increase in IS (i.e., increased similarity in rest-activity patterns from one day to 

the next), total cholesterol decreased by ~10 mg/dL and non-HDL cholesterol decreased by 

~8 mg/dL, while every 1-SD increase in activity 24h autocorrelation (i.e., increased 

correlation of activity levels at 24h time lags) was associated with ~8 mg/dL lower total 

cholesterol levels. These changes represent a 5–8% reduction when compared to mean 

values. Lowering cholesterol is a high clinical priority for preventing CVD morbidity and 

mortality (Arnett et al. 2019), even in young adults, as higher cholesterol in young adulthood 

is associated with a significantly greater risk of CVD later in life (Jeong et al. 2018; Zhang 

et al. 2019). While a 10% reduction in serum cholesterol has been recognized for its 

beneficial impact on lowering CVD risk (Law et al. 1994; Gould et al. 1995), smaller 

changes are also relevant, as every 1% reduction in total cholesterol is estimated to yield a 

2% reduction in CV events (Fager et al. 1997). Considering our data are derived from 

generally healthy young adults with relatively normal circulating lipid concentrations, these 

findings suggest that encouraging regular rest-activity rhythms may have amplified benefits 

for those demonstrating less optimal lipid profiles. Moreover, the full risk-reduction benefits 

from lowered lipid concentrations are found when maintained over longer periods (Law et 

al. 1994), suggesting that initiating interventions that promote rest-activity rhythmicity 

earlier in life (e.g., emerging adulthood) may provide more potent protection from future 

cardiometabolic complications than those initiated later in adulthood.

Our findings converge with previous work examining the association between IS and the 

activity 24h autocorrelation with cardiometabolic outcomes in several ways. For example, in 

a group of 83 working adults (44.3 ± 11.9 y of age) who wore a Fitbit for 21 d, greater steps-

based IS was associated with a better lipid profile characterized by higher HDL and lower 

triglycerides (Rykov et al. 2020). In a sample of 1137 older adults, higher IS was 

independently associated with numerous cardiometabolic comorbidities, including a lower 

odds of having metabolic syndrome, diabetes, obesity, hypertension, dyslipidemia, and CVD 

(Sohail et al. 2015). Additionally, activity autocorrelation at the 24h lag time has previously 

been related to LDL-cholesterol, triglycerides, and health-related quality of life, which 

remained after adjustment for demographics, physical activity, and sleep disturbances in a 

small group of middle-aged adults (Buman et al. 2016). The current study converges with 

these previous studies and extends them by showing that actigraphy-derived metrics of 

between-day behavioral rhythmicity are sensitive biomarkers of cardiometabolic health, and 

particularly lipid profile, even in a sample of otherwise healthy emerging adults.

This study also showed that for every 1-SD increase in IV, CRP increased by ~0.30 mg/L, 

while every 1-SD increase in the activity 24h autocorrelation yielded a reduction in CRP by 

~0.25 mg/L. Considering a lower autocorrelation indicates less day-to-day consistency in 

rest/activity levels at any given time, our autocorrelation results are comparable to the 

growing body of evidence that links circadian disruption with inflammation. For example, 

epidemiological evidence suggests that inflammatory markers may be higher in shift 

workers than daytime workers (Sookoian et al. 2007; Burgueno et al. 2010; Puttonen et al. 

2011). Highly controlled experimental studies have also identified an independent influence 

of circadian misalignment on circulating inflammatory markers, including CRP, 

interleukin-6, TNF-α, and resistin, in both shift-working and non-shift-working adults 
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(Leproult et al. 2014; Wright et al. 2015; Morris et al. 2016; Morris et al. 2017). The current 

study also compliments and extends prior sleep regularity studies suggesting that relatively 

mild day-to-day irregularity in behavioral rhythms may independently associate with 

elevated inflammatory activity (Okun et al. 2011; Park et al. 2016). To our knowledge, only 

one other study has specifically reported on actigraphy-derived rest-activity rhythm 

parameters and circulating markers of inflammation. Consistent with our findings, Buman et 

al. previously found autocorrelation of activity levels at 24h lag-time to be associated with 

circulating levels of CRP in a sample of 17 men and 3 women (49.7 ± 9.1 y of age) (Buman 

et al. 2016). Our finding that CRP was higher in those with higher IV is also plausible, as IV 

indicates the extent of fragmentation of the rest-activity rhythm and could reflect a greater 

occurrence of daytime naps and/or nocturnal awakenings (Cespedes Feliciano et al. 2017). 

Indeed, sleep disturbances (Irwin et al. 2016), poor sleep quality (Nowakowski et al. 2018; 

Vallat et al. 2020), and daytime napping (Leng et al. 2014; Devine et al. 2016) have 

previously been associated with elevated inflammatory markers in several studies, including 

those examining adolescents and young adults (El-Sheikh et al. 2007; Okun et al. 2009; 

Leng et al. 2014).

Our study conveys distinct public health relevance in light of our focus on emerging adults 

enrolled in higher education. Full-time college students, especially those who live on-

campus, spend the majority of time in a structured school setting and are inadvertently 

exposed to ecological and environmental factors specific to that setting, such as artificial 

lighting, varying class schedules, housing conditions, public transportation, green space, 

food availability, access to technology, and access to recreational facilities. Consequently, 

school environments have a strong influence on all components of the rest-activity rhythm 

(i.e., sleep, wake, physical activity). Indeed, it has been reported that diurnal physical 

activity (Sulemana et al. 2006) and sleep-wake patterns (Onyper et al. 2012) are largely 

determined by school schedules. Our findings support the notion that higher education 

institutions have great potential to promote health behaviors (Plotnikoff et al. 2015), and 

suggest that integrating healthy patterns of rest and activity into the university setting could 

enhance efforts to improve cardiometabolic health in this life stage.

Our findings partially diverge from prior studies, as adjusted RA was not found to associate 

with any of the cardiometabolic metrics measured. Higher RA, which represents higher 

activity during wakefulness and lower activity during the night, has previously been shown 

to be associated with measures of adiposity in both adolescents and adults (Cespedes 

Feliciano et al. 2017; Quante et al. 2019). One possible reason for our null finding is a 

“ceiling effect.” Our young adult college student sample consisted of generally healthy non-

smokers who reported a mean RA of 0.81 ± 0.06, a mean MVPA of 67 ± 24 min/d, and 7.1 ± 

0.7h of sleep/night. Thus, on average, the RA was relatively high, and likely a result of 

examining participants who were very active and met sleep duration guidelines (Watson et 

al. 2015). Young adults who do not go to college are often less healthy: they are more likely 

to smoke, less likely to engage in regular physical activity, and less likely to eat a healthful 

diet (Cutler et al. 2010; Lawrence 2017). Our data underscore that to fully understand the 

relationship between rest-activity metrics, and particularly RA, with cardiometabolic factors 

in emerging adults, future studies should include those who do not go to college.
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Identifying mechanisms linking rest-activity rhythms with lipid profile and inflammation is 

important for conceptual understanding and for developing effective interventions. One 

candidate is dietary intake, and in particular, meal timing. Cross-sectional observational 

studies have found meal irregularity to associate with higher BMI and waist circumference, 

low-grade inflammation, and increased risk of metabolic syndrome in adults (Sierra-Johnson 

et al. 2008; Pot et al. 2014; Guinter et al. 2019). Similarly, human laboratory studies have 

reported beneficial effects of regular mean frequency on fasting lipids and postprandial 

insulin profiles when compared to an irregular meal frequency (Farshchi et al. 2004; 2005). 

In one cohort study conducted in 1083 youth who were re-contacted across a 27 y period, 

irregular breakfast at age 16 y predicted metabolic syndrome at age 43 y, independent of 

other lifestyle and eating factors (Wennberg et al. 2016). Taken together, this literature 

presents the hypothesis that irregular rest-activity rhythms may be bidirectionally linked to 

meal irregularity (i.e., timing/frequency), which in turn could cause, or exacerbate, 

impairments of lipid metabolism and inflammation. Indeed, accumulating evidence suggests 

that meal timing may impact daily biological rhythms via an exogenous influence on 

behavior (Boulos et al. 1980) as well as an endogenous influence on circadian phase of 

peripheral tissues (Wehrens et al. 2017). Conversely, the inverse may also be true, as the 

timing that one sleeps (or, does not sleep) exerts a direct influence on the timing that one 

eats (Baron et al. 2011; Spaeth et al. 2013). The interactions between rest-activity rhythms, 

other behavioral rhythms (i.e., eating behavior), and cardiometabolic health represents an 

intriguing line of inquiry that will require further examination in future studies.

Limitations of this study include a cross-sectional design which prevents the examination of 

directionality between rest-activity rhythms and cardiometabolic biomarkers, and the use of 

a volunteer sample from a distinct Northeastern U.S. suburban university setting. Thus, our 

findings may not be generalizable to other geographical regions or those with differing racial 

demographics. Additionally, the small sample size limited our ability to include all 

covariates of interest into one model. However, it is important to note that associations 

across regression models were consistent and are in agreement with previous literature on 

rest-activity rhythms and cardiometabolic health in larger and more diverse samples (Sohail 

et al. 2015; Buman et al. 2016; Garaulet et al. 2017; Rykov et al. 2020), supporting the 

validity of our results. We also did not consider diet quality or eating patterns, both of which 

are strong determinants of cardiometabolic outcomes (Schwingshackl et al. 2015; Wennberg 

et al. 2016) and should be considered in future studies. Finally, nonsignificant associations 

between rest-activity rhythms and resting BP in this study highlight the need for future 

investigations to employ ambulatory BP monitoring, as nocturnal BP characteristics are 

strong predictors of cardiovascular disease (Hermida et al. 2018). Strengths of this study 

include the focus on emerging adults (18–25 y of age) who are being recognized as a 

previously overlooked population in the context of cardiometabolic health (Nelson et al. 

2008). The use of 14 consecutive days of accelerometer data of both day and night times to 

provide a rich and rigorous dataset with minimal missing data that builds on previous 

methodologies that relied on fewer days of objective monitoring (Garaulet et al. 2017; 

Quante et al. 2019).

In summary, the current study provides initial evidence that metrics of rest-activity patterns 

in emerging adults may be a modifiable marker of future cardiometabolic disease risk. 
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Specifically, our findings suggest that greater consistency in day-to-day patterns of rest and 

activity, and less fragmentation of the rest-activity rhythm, appear to independently associate 

with more favorable indices of cardiometabolic health in this sample of apparently healthy 

emerging adults. These data present several avenues for future study. For example, 

prospective, cohort examinations are needed to test this hypothesis in large, ecologically 

valid samples of emerging adults that objectively consider other determinants of 

cardiometabolic outcomes, such as diet and tobacco use. Such studies can also help clarify 

the magnitude and temporality of the relationships between rest-activity metrics with 

cardiometabolic outcomes. This may also provide an opportunity to examine the role of 

socioenvironmental factors in these relationships, as numerous socioeconomic (Armstrong et 

al. 2018; Patterson et al. 2018), residential (Grandner et al. 2015), and neighborhood factors 

(Bennett et al. 2007; Basner et al. 2018) influence sleep and physical activity duration, and 

may also influence their regularity. Additionally, while the main effect of rest-activity 

metrics on cardiometabolic measures are indicated here, the mechanisms underpinning these 

relationships are not clear. Elucidating the mechanisms linking rest-activity rhythms with 

cardiometabolic markers is necessary to inform primary interventions, and to continue 

advancing this line of research.
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Figure 1. Activity plots illustrating rest-activity patterns in emerging adults.
Plots representing low and high interdaily stability (A, B), intradaily variability (C, D), 

relative amplitude (E, F), and activity 24h autocorrelation (G, H) are displayed for 

visualization of each rest-activity rhythm parameter. Plots depict activity levels (mean 

counts/min) for every hour across 14 consecutive days and nights for eight emerging adults 

from this sample.
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Table 1.

Descriptive Characteristics of Study Sample

Measure Mean ± SD (n = 52)

Subject Characteristics

 Age, y 20 ± 1

 Sex, m/f 21/31

 BMI, kg/m2 23.7 ± 2.4

 Body Fat, % 22.8 ± 8.2

 Systolic BP, mmHg 117 ± 9

 Diastolic BP, mmHg 69 ± 7

Blood Chemistry

 Total Cholesterol, mg/dL (n=51) 158 ± 27

 LDL Cholesterol, mg/dL (n=51) 85 ± 23

 HDL Cholesterol, mg/dL (n=51) 58 ± 13

 Non-HDL Cholesterol, mg/dL (n=51) 100 ± 24

 Triglycerides, mg/dL (n=51) 72 ± 30

 Glucose, mg/dL (n=51) 85 ± 7

 CRP, mg/L (n=42) 0.90 ± 0.79

Health Behavior Characteristics

 Mean Sleep Duration, h/night 7.1 ± 0.7

 Mean MVPA, min/day 67 ± 24

 Alcohol Consumption, drinks/week 5.4 ± 5.6

 Caffeine Consumption, drinks/week 5.1 ± 5.4

Rest-Activity Rhythm Parameters (Observable Range)

 Interdaily Stability (0 to 1) 0.64 ± 0.10

 Intradaily Variability (0 to ~2) 0.45 ± 0.09

 Relative Amplitude (0 to 1) 0.81 ± 0.06

 Autocorrelation at 24h (−1 to +1) 0.44 ± 0.10

BMI, body mass index; BP, blood pressure; LDL, low-density lipoprotein; HDL, high-density lipoprotein; CRP, c-reactive protein; MVPA, 
moderate-vigorous physical activity
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Table 2.

Associations between Rest-Activity Rhythms and Cardiometabolic Biomarkers

Rest-Activity Rhythm 
Parameter Cardiometabolic Biomarker

Model 1 Model 2 Model 3

β (95% CI) β (95% CI) β (95% CI)

Interdaily Stability BMI, kg/m2 −0.38 (−1.07, 0.31) −0.16 (−0.85, 0.53) −0.34 (−1.07, 0.40)

Body Fat, % −1.48 (−2.95, −0.03)* −1.24 (−2.75, 0.28) −1.19 (−2.71, 0.32)

Systolic BP, mmHg −1.02 (−3.04, 1.00) −1.10 (−3.25, 1.04) −0.59 (−2.71, 1.52)

Diastolic BP, mmHg −0.45 (−2.36, 1.46) −0.46 (−2.43, 1.51) −0.04 (−2.03, 1.95)

Total-C, mg/dL −10.39 (−17.42, −3.37)
†

−11.41 (−18.77, −4.06)
†

−10.23 (−17.71, −2.75)
†

LDL-C, mg/dL −7.21 (−13.44, −0.98)* −7.91 (−14.53, −1.29)* −6.43 (−13.04, 0.19)

HDL-C, mg/dL −1.94 (−5.55, 1.66) −2.34 (−6.25, 1.58) −2.78 (−6.50, 0.95)

Non-HDL-C, mg/dL −8.45 (−15.05, −1.85)* −9.08 (−16.19, −1.96)* −7.45 (−14.44, −0.47)*

Triglycerides, mg/dL −9.38 (−17.61, −1.16)* −9.04 (−17.71, −0.37)* −7.66 (−16.28, 0.97)

Glucose, mg/dL −0.62 (−2.49, 1.25) −0.85 (−2.88, 1.18) −0.49 (−2.49, 1.51)

CRP, mg/L −0.22 (−0.47, 0.02) −0.21 (−0.47, 0.04) −0.25 (−5.14, 0.02)

Intradaily Variability BMI, kg/m2 0.17 (−0.53, 0.88) −0.17 (−0.87, 0.53) 0.20 (−0.55, 0.96)

Body Fat, % 0.41 (−1.13, 1.95) −0.33 (−1.92, 1.26) 0.58 (−1.00, 2.15)

Systolic BP, mmHg 0.06 (−2.02, 2.13) 0.03 (−2.18, 2.25) 0.07 (−2.09, 2.23)

Diastolic BP, mmHg 0.06 (−1.88, 2.00) −0.34 (−2.36, 1.67) 0.13 (−1.89, 2.16)

Total-C, mg/dL 7.45 (−0.06, 14.97) 7.53 (−0.51, 13.16) 8.57 (0.71, 16.43)*

LDL-C, mg/dL 4.36 (−2.25, 10.96) 4.03 (−3.10, 11.17) 4.62 (−2.30, 11.53)

HDL-C, mg/dL 1.97 (−1.72, 5.66) 2.44 (−1.57, 6.46) 2.87 (−0.94, 6.68)

Non-HDL-C, mg/dL 5.49 (−1.54, 12.51) 5.09 (−2.60, 12.77) 5.71 (−1.60, 13.01)

Triglycerides, mg/dL 7.51 (−1.09, 16.10) 7.59 (−1.46, 16.65) 7.76 (−1.07, 16.59)

Glucose, mg/dL 0.48 (−1.44, 2.40) 0.45 (−1.64, 2.55) 0.43 (−1.61, 2.48)

CRP, mg/L 0.30 (0.05, 0.56)* 0.31 (0.04, 0.58)* 0.38 (0.10, 0.66)
†

Relative Amplitude BMI, kg/m2 −0.69 (−1.35, −0.02)* −0.28 (−1.03, 0.46) −0.67 (−1.37, 0.03)

Body Fat, % −1.63 (−3.07, −0.19)* −1.49 (−3.13, 0.15) −1.44 (−2.90, 0.02)

Systolic BP, mmHg −1.75 (−3.72, 0.22) −2.01 (−4.29, 0.28) −1.49 (−3.52, 0.54)

Diastolic BP, mmHg −0.69 (−2.59, 1.20) −1.59 (−3.69, 0.51) −0.43 (−2.37, 1.51)

Total-C, mg/dL −6.57 (−13.92, 0.77) −8.40 (−16.89, 0.09) −6.23 (−13.88, 1.42)

LDL-C, mg/dL −6.52 (−12.77, −0.27)* −8.19 (−15.45, −0.94)* −5.86 (−12.34, 0.63)

HDL-C, mg/dL 0.60 (−3.02, 4.22) 0.63 (−3.70, 4.95) 0.07 (−3.66, 3.79)

Non-HDL-C, mg/dL −7.17 (−13.84, −0.49)* −9.02 (−16.87, −1.18)* −6.29 (−13.19, 0.60)

Triglycerides, mg/dL −4.93 (−13.42, 3.55) −6.68 (−16.38, 3.01) −3.36 (−12.00, 0.60)

Glucose, mg/dL −0.03 (−1.90, 1.85) 0.48 (−1.75, 2.70) 0.11 (−1.84, 2.07)

CRP, mg/L −0.13 (−0.36, 0.10) −0.12 (−0.40, 0.16) −0.14 (−0.38, 0.11)
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Rest-Activity Rhythm 
Parameter Cardiometabolic Biomarker

Model 1 Model 2 Model 3

β (95% CI) β (95% CI) β (95% CI)

Autocorrelation at 24h BMI, kg/m2 −0.24 (−0.93, 0.45) 0.00 (−0.69, 0.69) −0.21 (−0.95, 0.53)

Body Fat, % −0.89 (−2.38, 0.60) −0.48 (−2.03, 1.08) −0.69 (−2.23, 0.85)

Systolic BP, mmHg −0.76 (−2.78, 1.26) −0.81 (−2.97, 1.35) −0.42 (−2.54, 1.70)

Diastolic BP, mmHg −0.84 (−2.73, 1.04) −0.49 (−2.46, 1.48) −0.60 (−2.58, 1.39)

Total-C, mg/dL −8.61 (−15.78, −1.63)* −8.27 (−15.99, −0.54)* −8.81 (−16.43, −1.18)*

LDL-C, mg/dL −5.96 (−12.26, 0.34) −5.45 (−12.29, 1.39) −5.34 (−12.03, 1.35)

HDL-C, mg/dL −1.60 (−5.19, 2.00) −1.77 (−5.70, 2.17) −2.64 (−6.37, 1.09)

Non-HDL-C, mg/dL −7.01 (−13.70, −0.32)* −6.50 (−13.86, 0.86) −6.16 (−13.25, 0.92)

Triglycerides, mg/dL −7.26 (−15.61, 1.09) −7.89 (−16.65, 0.86) −5.71 (−14.5, 3.03)

Glucose, mg/dL −0.26 (−2.72, 1.61) −0.49 (−2.53, 1.54) −0.09 (−2.09, 1.91)

CRP, mg/L −0.24 (−0.48, 0.00)* −0.25 (−0.50, 0.00)* −0.29 (−0.55, −0.02)*

Results are presented as unstandardized β values and 95% confidence intervals (CI) for every 1-SD increase in each rest-activity rhythm parameter. 
Model 1 adjusts for sex; Model 2 adjusts for sex, MVPA, and sleep duration. Model 3 adjusts for sex, alcohol, and caffeine consumption.

*
p≤0.05

†
p≤0.01. BMI, body mass index; BP, blood pressure; C, cholesterol; LDL, low-density lipoprotein; HDL, high-density lipoprotein; CRP, C-reactive 

protein
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Table 3.

Associations between Rest-Activity Rhythms and Cardiometabolic Biomarkers after adjustment for BMI

Rest-Activity Rhythm Parameter Cardiometabolic Biomarker
Model 4

β (95% CI)

Interdaily Stability Systolic BP, mmHg −0.67 (−2.63, 1.30)

Diastolic BP, mmHg −0.25 (−2.17, 1.66)

Total-C, mg/dL
−9.92 (−17.05, −2.79)

†

LDL-C, mg/dL −6.51 (−12.74, −0.27)*

HDL-C, mg/dL −2.10 (−5.78, 1.57)

Non-HDL-C, mg/dL −7.82 (−14.46, −1.17)*

Triglycerides, mg/dL −10.10 (−18.41, −1.79)*

Glucose, mg/dL −0.51 (−2.42, 1.39)

CRP, mg/L −0.21 (−0.45, 0.04)

Intradaily Variability Systolic BP, mmHg −0.11 (−2.10, 1.88)

Diastolic BP, mmHg −0.03 (−1.96, 1.90)

Total-C, mg/dL 7.75 (−0.94, 16.39)

LDL-C, mg/dL 4.00 (−2.50, 10.50)

HDL-C, mg/dL 2.02 (−1.71, 5.75)

Non-HDL-C, mg/dL 5.15 (−1.81, 12.11)

Triglycerides, mg/dL 7.18 (−0.34, 14.69)

Glucose, mg/dL 0.43 (−1.51, 2.36)

CRP, mg/L 0.30 (0.06, 0.55)*

Relative Amplitude Systolic BP, mmHg −1.19 (−3.17, 0.81)

Diastolic BP, mmHg −0.36 (−2.33, −1.61)

Total-C, mg/dL −6.28 (−15.11, 2.55)

LDL-C, mg/dL −5.39 (−11.87, 1.09)

HDL-C, mg/dL 0.43 (−3.38, 4.24)

Non-HDL-C, mg/dL −6.17 (−13.13, 0.78)

Triglycerides, mg/dL −5.74 (−13.43, 1.95)

Glucose, mg/dL 0.20 (−1.75, 2.15)

CRP, mg/L −0.09 (−0.33, 0.14)

Autocorrelation at 24h Systolic BP, mmHg −0.53 (−2.48, 1.41)

Diastolic BP, mmHg −0.72 (−2.61, 1.16)

Total-C, mg/dL −8.24 (−15.44, −1.04)*

LDL-C, mg/dL −5.47 (−11.70, 0.76)

HDL-C, mg/dL −1.68 (−5.33, 1.96)

Non-HDL-C, mg/dL −6.56 (−13.22, 0.10)

Triglycerides, mg/dL −7.62 (−16.03, 0.78)
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Rest-Activity Rhythm Parameter Cardiometabolic Biomarker
Model 4

β (95% CI)

Glucose, mg/dL −0.19 (−2.07, 1.70)

CRP, mg/L −0.24 (−0.48, −0.01)*

Results are presented as unstandardized β values and 95% confidence intervals (CI) for every 1-SD increase in each rest-activity rhythm parameter. 
Model 4 also adjusts for sex.

*
p≤0.05

†
p≤0.01. BP, blood pressure; C, cholesterol; LDL, low-density lipoprotein; HDL, high-density lipoprotein; CRP, C-reactive protein
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