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Abstract

This work aims to identify a new radiomics signature using imaging phenotypes and clinical 

variables for risk prediction of overall survival (OS) in hepatocellular carcinoma (HCC) patients 

treated with stereotactic body radiation therapy (SBRT). 167 patients were retrospectively 

analyzed with repeated nested cross-validation to mitigate overfitting issues. 56 radiomic features 

were extracted from pre-treatment contrast-enhanced (CE) CT images. 37 clinical factors were 

obtained from patients’ electronic records. Variational autoencoders (VAE) based survival models 

were designed for radiomics and clinical features and a convolutional neural network (CNN) 

survival model was used for the CECT. Finally, radiomics, clinical and raw image deep learning 

network (DNN) models were combined to predict the risk probability for OS. The final models 

yielded c-indices of 0.579 (95%CI: 0.544–0.621), 0.629 (95%CI: 0.601–0.643), 0.581 (95%CI: 

0.553–0.613) and 0.650 (95%CI: 0.635–0.683) for radiomics, clinical, image input and combined 

models on nested cross validation scheme, respectively. Integrated gradients method was used to 

interpret the trained models. Our interpretability analysis of the DNN showed that the top ranked 

features were clinical liver function and liver exclusive of tumor radiomics features, which 

suggests a prominent role of side effects and toxicities in liver outside the tumor region in 

determining the survival rate of these patients. In summary, novel deep radiomic analysis provides 

improved performance for risk assessment of HCC prognosis compared with Cox survival models 

and may facilitate stratification of HCC patients and personalization of their treatment strategies. 

Liver function was found to contribute most to the OS for these HCC patients and radiomics can 

aid in their management.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Phys Med. Author manuscript; available in PMC 2022 March 10.

Published in final edited form as:
Phys Med. 2021 February ; 82: 295–305. doi:10.1016/j.ejmp.2021.02.013.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Hepatocellular Carcinoma (HCC); overall survival; radiomics; deep learning; variational 
autoencoder (VAE); convolutional neural network (CNN); computed tomography (CT)

Introduction

Liver cancer is a leading cause of cancer related deaths worldwide, with increasing 

incidences [1]. Hepatocellular carcinoma (HCC) is the most common type of primary liver 

cancer. Surgical resection and liver transplantation are used with curative intent for selected 

patients [2]. However, the majority of HCC patients are ineligible for surgery due to the 

location of the tumor or poor liver function [3]. There are several non-surgical liver-directed 

treatments including radiofrequency ablation (RFA), microwave ablation (MWA), trans-

arterial chemoembolization (TACE) and, more recently, stereotactic body radiotherapy 

(SBRT). RFA/MWA can be limited by lesion size and proximity to critical organs; TACE is 

non-curative, with limitations such as poor neovascularization of some tumors or portal vein 

involvement [4]. Recently, with the development of advanced radiotherapy delivery 

technologies, more precise partial liver irradiation using SBRT has become an important 

option for HCC patients that are not suitable for resection [5, 6].

Although over 90% of tumors will be controlled by SBRT [5, 7], and the survival rate has 

been improved, the current survival rate is still not satisfying [8]. Radiomics, which is a field 

of medical image analytics, may aid in developing models to predict patient outcomes, such 

as overall survival and thus improving cancer management based on the prediction. Images 

are converted into a large number of quantitative features with subsequent datamining that 

relates these features to biological and clinical endpoints [9, 10]. It has been widely applied 

in cancer research and has shown to be able to capture distinct phenotypic differences and be 

associated with clinical prognosis in many cancer types [11–17]. These current studies in 

overall survival use mostly Cox models or random survival forests.

This study focuses on pre-SBRT arterial phase contrast-enhanced computed tomography 

(CECT) images, involving a relatively large dataset of 167 patients. The novelty of our work 

can be summarized as: (1) development of a comprehensive model based on radiomics 

(features from both gross tumor volume (GTV) regions and liver exclusive of the GTVs 

(liver-GTV)), clinical features and raw CT images; (2) novel VAE based survival model 

combining different sources of information; (3) investigations of correlation and contribution 

of clinical, radiomics, image features and miRNA data; (4) patch-based training that 

augmented data and improved the performance; (5) interpretability of the results, providing 

possible interpretation of underlying mechanism. This manuscript contributes to a better 

understanding of the HCC heterogeneity across patients, guidance for personalized HCC 

treatment planning in clinical practice and development of new methods that fuse 

conventional and deep learning based radiomic analyses.
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Methods and Materials

A brief description of the workflow presented in this study is shown in Fig. 1. Details are 

provided in the following. The detail network structures (VAE and CNN) are shown in Fig. 

2.

Patient cohort

After IRB approval, a HIPAA compliant retrospective analysis of HCC patients treated with 

SBRT was performed. A total of 303 HCC patients treated with SBRT were reviewed. 

Patients without: (1) contrast-enhanced CT (CECT) images; (2) gross tumor or liver contour 

in the database were excluded from analysis. A total of 167 HCC patients met the inclusion 

criteria. The overall survival (OS) events were right censored if no death until the last 

follow-up date (censor rate: 38.9 %).

37 clinical features, including patient basic information (e.g., gender, age, etc.), biological 

test results (e.g., liver function, immune cells count, etc.) and treatment (SBRT) related 

information (e.g., fraction number and mean liver dose) were obtained from patient records. 

56 radiomics features, including seven distinct features (correlation, GLN (GLRLM), 

HGRE, SZE, GLN (GLSZM), ZSN, SZHGE) were extracted from both gross tumor volume 

(GTV) and liver-GTV regions. Due to the small sample size, though there are more 

radiomics features available, we limited the feature dimension via checking previously 

published paper on radiomic reproducibility and repeatability [18–22]. 84 miRNA features 

were included as well. Univariate Cox model c-index for clinical, radiomics and miRNA 

were investigated for these features. P-values of <0.05 were considered significant.

CT Images Acquisition and Processing

Arterial phase images and structure sets including liver, GTV, and liver-GTV from CECT 

were exported from an Eclipse treatment planning system (Varian Medical Systems Inc, Palo 

alto, CA). The contours were delineated based on the MR and CECT images by one 

physician and checked by at least another physician, one dosimetrist and one physicist. 

Eclipse was used as the workstation for the manual contouring process. The resolution of 

raw images ranged from 0.80 to 1.37 mm in-plane with 3 mm slice thickness. In order to 

extract texture features from the 3D volumes, the images were resampled to isotropic voxel 

sizes of 1×1×1 mm to obtain rotational invariance and also consistency across different 

patients. A trilinear interpolation algorithm was used for the resampling. Gray level 

quantization is required for the calculation of texture features (tractability). We applied the 

Lloyd-Max quantization. Lloyd-Max quantization is a method that tries to find a quantizer 

that minimizes the mean squared error (MSE) of original and new images, which can 

conserve most information in the images while discretizing.

Model Evaluation Metrics and Framework

Models were trained separately using clinical, radiomics and imaging data. Then, the 

individual models were fused and evaluated. The model fusion was implemented by 

concatenating the last layers of the individual models and fine-tuning the fused model. Cox 

proportional hazard regression [23] was applied for comparison. These models were trained 

Wei et al. Page 3

Phys Med. Author manuscript; available in PMC 2022 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and evaluated by strictly splitting data into training, validation and testing sets with a 

stratified 10 times 5-fold scheme, including the benchmarking methods. First, the data was 

split into training (75% of 4 folds), validation (25% of 4 folds) and testing fold (1 fold). The 

hyper-parameters were tuned on the validation data. Then, the trained model was tested on 

the test fold. This process was repeated 10 times to obtain the average performance and 

corresponding confidence intervals. The metric used was the Harrel’s c-index [24], with 

Kaplan-Meier plots for high and low risk groups for survival analysis. The risk groups were 

determined by a criterion using the median value of the outputs from the survival model. 

Confidence intervals were calculated by a bias-corrected and accelerated (BCa) bootstrap 

interval algorithm [25].

Patch-based Variational Autoencoder Survival Joint Model for Radiomics and Clinical 
Features

For feature selection, algorithms such as Relief-F [26], support vector machine- recursive 

features elimination (SVM-RFE) [27], Minimum Redundancy Maximum Relevance 

(mRMR) [28], etc., are available. However, these methods might cause selection bias and 

lead to over-optimistic results if the data are not split correctly. In addition, it is more tedious 

with two steps in the analysis: feature selection and subsequent model building. In 

comparison, the VAE-SurvNet method automatically learns a latent space to represent the 

important signals and train the survival model in one step efficiently.

Kingma et al. [29] introduced the Variational Autoencoders (VAEs) that resemble the naive 

autoencoders and variational Bayesian methods. Instead of learning a function that 

represents the data, variational autoencoders are able to learn a probability distribution from 

the data. The short coming of a pure VAE for a classification problem is that it is an 

unsupervised learning and the features obtained from the latent space might be irrelevant to 

the endpoint of interest. Thus, a supervised joint training network with a classification part 

was designed, which takes the latent space features as an input, goes through a fully-

connected (FC) layer and outputs the risk probability. By this technique, the latent features 

learned by VAE are more specific to the desired task.

Specifically, the VAE consists of an encoder, which takes the input and converts it into two 

latent vectors (a vector of means, μ, and a vector of standard deviations, σ) that parameterize 

a Gaussian distribution and a decoder that reconstructs a latent space sample z back to the 

original space. The loss function of the VAE model is defined by two parts: (1) a 

reconstruction loss that measures how similar is the output comparing with the input; and (2) 

a regularization loss determined by Kullback-Leibler divergence (KL divergence), that 

measures how closely the latent variables match Gaussian distributions.

Considering the ith input sample xi, the output from the encoder is a hidden representation z, 

which has weights and biases θ. The encoder can be denoted as qθ(Z|x). For the decoder 

network, a value Z is denoted as input, and a reconstructed output x(*) is generated from 

some conditional distribution pφ(x|Z), which represents the decoder network. Thus, the loss 

function can be expressed as follows:
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li(θ, φ) = − Ez qθ(z |xi) logpφ xi ∣ z + KL qθ z ∣ xi ∥ p(z) , #(1)

where li is the loss for a single data point. The first term is the reconstruction loss, which 

encourages the network to reconstruct the input data; the second term is the KL divergence 

between the encoder’s distribution and the prior distribution p(z), which measures how much 

information is lost during the compression. This term also serves as a regularizer that 

prevents the network from simply copying the input and leading to overfitting.

The VAE architecture was determined by minimizing the validation loss with respect to 

different networks (latent space dimension and layer number). To determine the network 

structure, first, the classification part was ignored and only the VAE part was tuned. The 

number of layers and nodes in the layers were grid-searched based on the loss function. 

Once the VAE part was fixed, the VAE-SurvNet (including the survival part) was jointly 

trained by optimizing the total loss function that consists of VAE and the survival loss. A 

key point here is the ratio (τ) between VAE (lvae) and survival losses (lCox), which regulates 

the supervised and unsupervised portions, as shown in Eqn. (5). This hyper-parameter was 

tuned on the validation part of the training folds. Similar joint training approach was 

proposed in Ren et al.’s work [30].

Radiomics and clinical features are 1D vectors with 56 and 37 variables for each sample, 

while the CT image input is 3D matrix, which was resized to the liver size of (224, 224, 48) 

to be fed into the CNN network. Another important technique we used is the patch-based 

training, which can augment the data and improve the performance. The random crop 

dimension we used is (80, 80, 40), which was determined by experiments.

Neural Network based Survival Analysis

Cox proportional hazard model (CPH) is the most commonly used survival analysis method 

to explore the relationships between patients’ covariates and the survival time. It assumes 

that the log-risk of failure is a linear combination of the covariates. The hazard function is 

represented as the formula below:

λ(t ∣ x) = λ0(t)exp(ℎ(x)), ℎ(x) = βTx, #(2)

h(x) is a linear function of variables x. The weights β are tuned by optimizing the Cox 

partial likelihood, as shown below:

Lc(β) = ∏
i:Ei = 1

rβ xi
∑j ∈ R Ti rβ xj

= ∏
i:Ei = 1

exp ℎβ xi
∑j ∈ R Ti exp ℎβ xj

, #(3)

Ti is the duration, Ei is the event indicator, and xi is the input feature for subject i. The risk 

set R(Ti) = (i: Ti ≥ t)s is the set of patients that are still at risk at time t.

However, this assumption might be too simplistic for complex relationships. To model 

potential nonlinearity relationship between features and the risk of failure, deep neural 

networks (DNNs) are used in Katzman et al.’s work, called the DeepSurv [31]. Instead of 
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using h(x) as shown in Eqn. (2), DNN was used to estimate the log-risk function, with the 

output giving ℎβ(xi), where β are the DNN parameters. Similarly, the objective function of 

the DNN is still the Cox partial likelihood:

l(β) = − 1
NE = 1

log ∏
i:Ei = 1

exp ℎβ xi
∑j ∈ R Ti exp ℎβ xj

+ λ ⋅ ∥ β ∥2
2 + γ

⋅ ∑
:Ei = 1

ℎβ xi ,
#(4)

NE = 1 is the number of patients that are not censored and contribute to the log-likelihood 

loss calculation. The last two terms are penalties that aim to regularize the loss function, 

where the first penalty is an L2 norm penalty and second term is a penalty for the prediction 

to restrain its value not to deviate too much and cause overflow during training.

For the modeling of ℎβ(xi), the original work used a pure multilayer perceptron (MLP), 

while in our study, a VAE architecture was applied with two advantages, (1) the latent 

features could be obtained; (2) jointly training partial likelihood in Eqn. (3) for survival and 

the VAE loss function (KL divergence and reconstruction binary cross entropy loss) makes 

the generated model more robust. The total loss function in the DNN is thus:

ltotal = lCox + τ ⋅ lV AE, #(5)

τ is a weight that balances the two parts of losses, which is tuned on the training set.

Interpretation of the Deep Neural Networks

As the models become more and more complex, the interpretation becomes increasingly 

important, especially in the medical field. First, we did Spearman rank correlation for the 

three categories variables: clinical, radiomics, and raw image inputs. The average values of 

the second last fully connected layer of the CNN models were used as the features from raw 

image. Captum, a library for model interpretability, was used in this study for model 

visualization and interpretation [32]. The integrated gradient method was used to estimate 

the feature importance for clinical and radiomics features and the critical regions (voxels) for 

the raw image input. This method constructs a sequence of images interpolating from a 

baseline to the actual image and then averages the gradients across these images [33].

Results

Univariate analysis

Supplementary tables 1 and 2 show the univariate analysis of clinical and radiomics for the 

overall survival (OS) endpoint. Tables 1–3 show the significant clinical/radiomics/miRNA 

features. There are 13 significant clinical variables, 6 radiomics and 3 miRNA features.

Multivariate analysis and Benchmarking

For multivariate analysis, the radiomics, clinical and CT raw image individual models’ 

results are summarized in table 4. Proposed models were compared with the Cox model as a 
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benchmark for time-to-event analysis. The same scheme of repeated cross validation as 

described previously was used for both Cox model and the proposed method. The average c-

indices for the test sets are 0.554 (CI: 0.531–0.577), 0.599 (CI: 0.581–0.617) and 0.546 (CI: 

0.519–0.573) for radiomics, clinical and combined models, respectively using Cox models. 

The average c-indexes for test sets are 0.579 (CI: 0.544–0.621, p-value: 0.0005), 0.629 (CI: 

0.601–0.643, p-value: 0.149), 0.581 (CI: 0.553–0.613) and 0.650 (CI: 0.635–0.683, p-value: 

<0.0001) for radiomics, clinical, CT image input and combined models, respectively using 

DNNs. The p-values are for the comparison between corresponding deep learning models 

and Cox models. The Cox model cannot handle image inputs. The combined models for 

DNN outperformed the clinical models alone, which indicates the value of complementary 

information that imaging can provide. The deep learning models outperformed the Cox 

models significantly in all categories except the clinical model. Notice that the architecture 

presented here might not be the optimal structure, however, based on our experiments, the 

performance is not sensitive to the structure, and the goal of this work is to show the concept 

that VAE-SurvNet model possess predictive power, and not to find the optimal solution. The 

Kaplan-Meyer plots for the combined models that show stratification between high and low 

risk groups are shown in Fig. 3. The architecture details were shown in Fig. 2. The optimizer 

used is Adam. For VAE-SurvNet, the hyper-parameters τ in Eqn. (5) was tuned to be 1e-6, 

learning rate was 0.01, l2 penalty was 1e-4. For the CNN network, learning rate was 0.001 

with no l2 penalty. The combined model, learning rate was 0.0001 for the pretrained 

parameters and 0.01 for the other.

To enhance the raw image input performance, experiments of transfer learning from 3D 

pretrained network were carried out as well. The pretrained models are based on Resnet-18 

and trained on the 3D Kinetics dataset [34, 35]. The c-indexes were calculated on test set 

using the repeated cross validation scheme to provide out-of-sample verification as well. The 

average test c-index was 0.556 (CI: 0.537–0.575), which is not better than the basic CNN 

structure 0.581 (CI: 0.553–0.613). This might be due to the large difference between medical 

images and the Kinetics dataset. So, we used the basic CNN for the image inputs. 

Convolutional VAE regularized training similar as discussed [30] were performed for the 

image input as well. The training was difficult to converge probably due to the large amount 

of parameters for the convolutional VAE network. In Mobadersany et al.’s work, the 

genomics data was integrated to the fully connected layer directly [36]. In order to compare 

with this method, we applied the same architecture by integrating the radiomics and clinical 

features to the fully connected layer of the CNN network. The result was 0.593 (CI: 0.574–

0.613), which is significantly lower than the proposed methods 0.650 (CI: 0.635–0.683). The 

c-indexes here were also calculated on test set using the repeated cross validation scheme.

The individual models were first trained and the last layers of the three pretrained models 

were concatenated and fine-tuned to obtain the final results. We also tried directly training 

the model from scratch without the pretrained models, which is hard to converge and give 

good results.
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Correlation analysis of clinical, radiomics, and DL-driven variables and Interpretation of 
models

There are three categories of features: DL-driven, radiomics and clinical features. DL-driven 

features were extracted from the first fully connected layer (64 nodes) of the CNN model. 

Since there are 50 (10 times 5-fold cross-validation) trained models, the average values were 

calculated on the test sets. The Spearman rank correlation matrices were shown in Fig. 4 for 

the three categories pairwise.

Due to the large size of the correlation matrices, we focused on the significantly correlated 

features. For the DL-driven vs. radiomics features, significantly correlated feature pairs were 

mostly between liver-GTV radiomics and DL-driven features (as shown in Fig. 4 left). The 

histogram in Fig. 5 top left showed the frequency of each radiomics feature that was 

significantly correlated with DL-driven features. The first 28 were GTV features and the last 

28 were liver-GTV features. The frequency that liver-GTV features strongly correlates with 

DL-driven features are more than GTV features. It is consistent with the fact that the input 

raw images are dominant by liver regions as well as the prominent role that toxicity plays in 

overall survival. It also showed that the CNN models indeed learned some complex high-

level features from the images that are similar to hand-crafted radiomics features. Fig. 5 top 

right showed the number of each DL-driven feature that was significantly correlated with 

radiomics features. Feature # 47 DL-driven was found to be correlated with GLN (GLSZM), 

ZSN and SZHGE with different gray levels from GTV regions and with correlation, SZE, 

GLN (GLRLM) from liver-GTV regions.

The clinical features that correlated most frequently with DL-driven features were age, 

Total_EQD2, LIVER_GTV_Mean_Dose, ECOG_PS, Protime_with_INR and 

Barcelona_score, a shown in Fig. 5 bottom left. There are more significantly correlated 

radiomics and clinical feature pairs than DL-driven features. Based on the histogram shown 

in Fig. 5 bottom right, PVT, number of fractions, total EQD2, tumor volume, liver-GTV 

volume, liver-GTV mean dose, albumin and Barcelona score are most frequently correlated 

with radiomics features.

In general, the imaging features (DL-driven and radiomics features) are significantly 

correlated with liver function, which was represented by the clinical features (e.g., Barcelona 

score). In addition, the results also showed that the GTV, liver-GTV volumes are correlated 

with the radiomics features significantly, as discussed by Traverso et al. [37].

Figs. 6 and 7 show the feature importance for clinical and radiomics variables. The top 

ranked clinical features are total number of fractions (5), albumin (17), hematocrit (34), 

liver-GTV volume (11), ALBI raw score (27), platelet (33), treatment break (7), total 

bilirubin (20), abslymph (35) and cirrhosis (2). The top ranked radiomics features are GTV 

SZHGE, liver-GTV ZSN, which are ranked high for most of the gray levels (8,16,32,64). 

There are also several radiomics features that ranked high for particular gray level, including 

GTV_64_HGRE, GTV_32_SZE, liver-GTV_8_GLN (GLRLM), liver-GTV_16_GLN 

(GLSZM), liver-GTV_8_correlation, and liver-GTV_64_SZE. Fig. 8 shows the correlation 

matrix for these top ranked features. Within the radiomics features, the correlation of GTV-

HGRE/SZHGE 0.512 (p-value <0.0001), liver-GTV GLN (GLRLM)/GLN (GLSZM) 0.689 

Wei et al. Page 8

Phys Med. Author manuscript; available in PMC 2022 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(p-value: <0.0001), liver-GTV correlation/GLN (GLRLM) 0.933 (p-value <0.0001) are high. 

Within clinical variables, since ALBI score is calculated based on albumin and bilirubin, 

their correlation is intrinsically high. The correlation of albumin/number of fractions 0.378 

(p-value: <0.0001), albumin/liver-GTV volume 0.276 (p-value: 0.0003), albumin/Sodium 

0.295 (p-value: 0.0001) are high. More interestingly, across radiomics and clinical feature 

groups, correlations of liver-GTV volume/GLN (GLRLM) 0.315 (p-value: <0.0001), liver-

GTV volume/correlation 0.241 (p-value: 0.002), bilirubin/liver-GTV GLN (GLSZE) 0.271 

(p-value: 0.0004), bilirubin/liver-GTV SZE −0.172 (p-value: 0.026), platelet/GTV-HRGE 

0.200 (p-value: 0.010), hematocrit/GTV-HGRE 0.264 (p-value: 0.0006), hematocrit/liver-

GTV SZE −0.202 (p-value: 0.009) are high. Taken together, these results may suggest a 

prominent role of side effects and toxicities in determining the survival rate of these patients. 

In order to visualize the important radiomics features, Fig. 9 shows some example images 

with high/low liver-GTV GLN values, and the corresponding integrated gradient images that 

show the critical voxels for raw images CNN. It is found that the higher GLN values 

corresponds to higher risk, and the critical voxels distributed over the normal liver tissue. 

Meanwhile, lower GLN values corresponds to lower risk, and the critical pixels mostly 

concentrated on high intensity regions (e.g., vessels) but not through the normal tissue.

Subset analysis of miRNA data

Due to the small number of patients that having miRNA data, training the models for genetic 

information was not plausible. Instead, the correlation of miRNA and other top ranked 

features were investigated. Table 5 shows the correlation of the 3 significant miRNAs with 

the top ranked clinical and radiomics features. These three miRNA features are highly 

correlated with each other, with hsa-let-7i-5p and hsa-miR-10b-5p 0.459 (p-value: 0.021), 

hsa-let-7i-5p and hsa-miR-660–5p 0.537 (p-value: 0.006), hsa-let-7i-5p and hsa-miR-660–

5p 0.511 (p-value: 0.009). hsa-let-7i-5p is significantly correlated with GTV-SZHGE_64 

(−0.403, p-value: 0.046), liver-GTV-ZSN_16 (−0.452, p value: 0.023), liver-GTV-

correlation_8 (−0.404, p-value: 0.045). hsa-miR-10b-5p is significantly correlated with 

GTV-SZHGE_64 (−0.544, p-value: 0.005), total_bilirubin (−0.423, p-value: 0.035). hsa-

miR-660–5p is significantly correlated with GTV-SZHGE_64 (−0.457, p-value: 0.022), In 

general, it was found that the three miRNAs are significantly correlated with GLN 

(GLSZM), SZHGE, ZSN with different gray levels.

Discussion

Due to the challenges associated with the heterogeneity of liver cancers among different 

patients and the complicated etiologic factors associated with HCC, limited work to date has 

been done for HCC patients’ prognosis analysis. Cozzi et al. [38] conducted a retrospective 

study of 138 HCC patients treated with VMAT for the prediction of overall survival and 

local control. They applied univariate and logistic regression for clinical response and Cox 

regression model for survival analysis on clinical and radiomic features, which showed 

significant prediction performance. However, the features were extracted from non-contrast-

enhanced images, which usually suffer from poor image quality, especially for liver with 

disease. Also linear regression methods fall short of capturing the complexity of survival 

analysis. Zhou et al. [18] developed a CT-based radiomics signature for preoperatively 
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predicting the early recurrence of HCC using the LASSO algorithm. They built a radiomic 

and clinical combined model with AUC of 0.836 for the prediction of early recurrence. It 

focused on patients who underwent hepatectomy and did not consider time to event or 

survival analysis. Kiryu et al. [39] investigated the relationship of texture features with 

filtration at different filter levels and the prognosis of HCC 5-year overall survival and 

disease-free survival using preoperative non-contrast enhanced CT images. They showed the 

KM curves for OS and DFS were significantly different between patient groups 

dichotomized by cut-off values for all CT texture features. Bakr et al. [40] explored 

noninvasive biomarkers of microvascular invasion in patients with HCC (28 patients) using 

quantitative image features extracted from contrast-enhanced CT. Chaudhary et al. [41] 

conducted a deep learning study using multi-omics features (methylation, miRNA and RNA 

sequencing data) to identify survival subgroups of HCC. The model provides two subgroups 

with significant survival differences and model fit of c-index 0.68. Although, this work 

integrated information from different sources, it didn’t include imaging data. In addition, 

they used auto-encoder in an unsupervised way to obtain labels for the samples, then used 

SVM to predict the assigned labels, which may not be ideal, since the assigned labels tend to 

include some training information and may lead to biased results. Comparing with their 

work, our input data - radiomics, clinical, and raw imaging input are different from their 

gene sequencing data. In terms of methods, we used variational version of auto-encoder and 

directly carried out survival analysis instead of assigning labels to the samples. 

Mobadersanya et al. developed a model using survival CNN to integrate information from 

histology images and genomic biomarkers to predict time-to-event outcomes [36]. Though 

we both used the deepsurv network to predict time-to-event endpoints, VAE was used for 

dimension reduction for the clinical and radiomics input in our case, whereas the genomic 

data was directly fed to the fully connected layers in their model. For the visualization of the 

patterns in the images, integrated gradient method was used in our study, which surpasses 

the original heatmap method since the direction provided by the integrated gradients lead 

better towards the global optimum than the normal gradient which may lead to local optima 

that is used in basic heat map method. Additionally, the input data (CECT imaging and 

clinical data vs. histology imaging and genomics data) is different as well.

In general, compared to the studies above, this study assessed the prediction potential of 

radiomic features extracted from contrast-enhanced CT pre-treatment images, the original 

images, and pre-treatment clinical factors for risk assessment of overall survival using neural 

networks. The radiomics/raw image prediction models showed modest performance in our 

experiments. The possible reasons are: (1) we used a relatively strict validation framework 

that adopted repeated nested cross-validation; (2) Overall survival is a complex target to 

predict. CT images might not have sufficient predictive power; (3) the data size is too small 

to learn the underlying mechanism; (4) the absolute value might fluctuate for different 

datasets. Nonetheless, the contribution of this work comes in three ways: (1) It showed the 

complementary information from images that could help the clinical factors; (2) We 

proposed a novel VAE-Survnet that could combine multi-omics features including raw 

images, which outperformed the traditional Cox modeling; (3) Interpretation of the 

developed models by integrated gradients methods to help understand the mechanism.
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The DNN based models (individuals and combined) outperformed those of the Cox based 

models, showing superiority of the DNN based approach in modeling non-linear, complex 

relationships. Although the raw imaging based individual models performed worse than the 

clinical models, they are still significantly better than random. One possible reason of the 

low predictive power of the imaging features might be the lack of good soft tissue contrast in 

CT, low signal to noise ratio, etc. To improve the raw image CNN model performance, 

different strategies were applied, such as transfer learning, it turns out the performance were 

all pretty similar. Thus, we used the basic CNN structure for the CT image data. We also 

used random crop to augment the CT image input network.

Based on the interpretation network, there are more top ranked radiomics features from 

liver-GTV regions than the GTV regions. These features reflect the heterogeneity in 

intensities in the ROIs. Feature HGRE, GLNs from both GLRLM and GLSZM, SZHGE 

turned out to be significant predictors for overall survival in the work by Cozzi etal [38]. 

Correlation was selected in the radiomiccs signature for the early recurrence prediction by 

Zhou et al [18]. Peritumoral HGRE was included in the early recurrence model by Shan etal 
[19]. The top ranked clinical features include three main categories: liver function related 

variables (albumin, bilirubin, ALBI), treatment related variables (total number of fractions, 

treatment break) and immune related variables (platelet, hematocrit). Liver function related 

variables were shown to be correlated with overall survival by other studies as well [42–44]. 

Serum sodium concentration was also found to be prognostic predictor for HCC [45–47]. 

Platelet count has been shown by several studies to be predictive for HCC overall survival 

[42, 43, 48]. Changes in lymphocytes and platelets counts, pre-treatment hematocrits, 

neutrophil counts were found to be the most important factors for locoregional failure in 

HCC [49]. The results of CNN integrated gradients method show the importance of voxels 

distributed in normal tissues for the survival prediction. All these results point out that the 

status of the normal tissue in the liver contributes to the overall survival and its exposure to 

unnecessary radiation may have worsened overall survival of these HCC patients.

It is of interest to investigate the relationship between imaging features and clinical/miRNA 

variables. Bilirubin--liver-GTV GLN, liver-GTV SZE, platelet--GTV-HGRE, hematocrit--

GTV-HGRE and liver-GTV SZE, miRNA--GTV-SZHGE and liver-GTV-ZSN are highly 

correlated. These results showed potential ability for imaging features as non-invasive 

methods to investigate the tissue molecular status (e.g., miRNA), which has been found in 

breast cancer [50], head and neck cancer [51]. However, there are only 25 patients that have 

miRNA data, these findings need to be validated in larger cohort in the future. Various 

studies have suggested that heterogeneity of tumors is associated with genomic 

heterogeneity and tumoral microenvironment [52, 53], thus plays an important role in the 

cancer prognosis, which is found in our work as well.

The proposed methods that integrated imaging and clinical information have showed 

promising predictive power for the overall survival of SBRT treated HCC patients. Since we 

used pretreatment CECT images, which are commonly available for these SBRT treated 

patients clinically. This method could be used in practice to provide additional information 

to the physician about the individual risk of each patient. Adaptive treatment thus could be a 

viable option for the patient with high risk, e.g., more fractions of radiation, higher dose per 
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fraction, etc. During the treatment planning, physician could also try to limit the organs at 

risk (OAR) exposure with more conservative dose due to the potential probability of 

retreatment later. Or simply being aware of the high risk patient groups, recommending 

more frequent follow-up and monitoring closely could be very beneficial for these patients’ 

prognosis compared to the general population. Although this work is able to provide 

preliminary guidance for the treatment planning based on the pre-treatment data, future work 

on adaptation of treatment plans (e.g., dose distribution) that customize better to the patient 

need to be investigated. Though we have conducted strict cross-validation to evaluate the 

performance, these identified biomarkers and clinical factors warrant further validation in 

independent, external and multi-institutional prospective studies to assess generalizability 

and further be applied to personalized treatment planning for HCC patients.

Conclusion

A new deep survival radiomics analysis was built based on supervised learning of imaging 

and clinical features for overall prognosis of liver cancer patients treated with SBRT, which 

showed better performance than Cox model. Interpretation of developed deep learning 

models suggested the importance of normal tissue status (radiomics features from liver-GTV, 

liver function clinical variables, and critical voxels highlighted in the normal liver regions) 

for the patient prognosis for overall survival, which can be used to personalize future liver 

cancer treatment with SBRT.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Novel VAE-based survival model combining radiomics, clinical features and 

raw CT images

• Patch-based training for CNN that augmented heterogeneous data and 

improved overall performance

• Investigations of correlation of clinical, imaging features and miRNA data

• Interpretability of the DNN models: importance of different features

• Prediction of the role of liver toxicity in overall survival
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Fig. 1. 
Workflow for the radiomics survival modeling with deep learning of HCC SBRT patients. 

There were 167 patients enrolled in the study. Repeated 5-fold cross-validation was used. 

Three categories of variables – 37 clinical, 56 radiomics and raw CECT images input were 

integrated as a combined model.
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Fig. 2. 
VAE-SurvNet and CNN-SurvNet structure. Clinical and radiomics features were input to the 

VAE SurvNet as shown in the left sub-networks. 3D CECT patches were fed into the CNN 

network as shown in the rightmost sub-network. FC: fully connected, Conv3D: 3D 

convolutional layer. Numbers in parenthesis represent the kernel dimensions
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Fig. 3. 
Kaplan Meier plot for high and low risk groups for overall survival. The cutoff is the median 

value of the output of the network for the test set. High and low risk group were stratified 

significantly (p-value = 0.022).
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Fig. 4. 
Spearman rank correlation matrices for DL-driven vs. radiomics features (left), DL-driven 

vs. clinical features (middle) and radiomics vs. clinical features (right).
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Fig. 5. 
Histograms that show the frequency of each radiomics feature that significantly correlated 

with CNN features (top left); each CNN feature with radiomics features (top right); each 

clinical feature with CNN features (bottom left) and each clinical feature with radiomics 

features (bottom right).
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Fig. 6. 
Clinical features importance using integrated gradients method for the VAE network. 

Gender; Age; Pre-Tx cirrhosis; Portal vein thrombosis; Number of active liver lesions at 

time of treatment; Total Number Fractions; Total EQD2; Tx Break; Time btwn first and final 

fractions (Days); Pre-RT ICGR15; Tumor volume; Liver-GTV volume (cc); Liver-GTV 

mean dose (Gy); Treatment-related complication; ECOG PS; Sodium; Creatinine (mg/dL); 

Albumin (g/DL); ALT (IU/L); Alkphos (IU/L); Total bilirubin (mg/dL); Protime with INR 

(s); AFP; MELD; MELD-Na; Child-Pugh; Barcelona score; ALBI Raw Score; AST CTCAE 

liver toxicity grade; ALT CTCAE liver toxicity grade; Alkphos CTCAE liver toxicity grade; 

Total bilirubin CTCAE liver toxicity grade; Treated previously; Platelet; Hematocrit; 

Abslymph; Absneutral.
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Fig. 7. 
Radiomics features importance using integrated gradients method for the VAE network. 

There are 7 distinct features, the red lines separate the regions (GTV, liver-GTV) and gray 

levels (8, 16, 32, 64). The 7 radiomics features from left to right are correlation, GLN 

(GLRLM), HGRE, SZE, GLN (GLSZM), ZSN, SZHGE.
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Fig. 8. 
The Spearman rank correlations map for the top ranked clinical and radiomics features.
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Fig. 9. 
Example images for low/high liver-GTV GLN (GLSZE) values. Top row shows the images 

for a patient with GLN 0.756, died in 264 days. Bottom row shows the images for a patient 

with GLN 0.154, survived a760 days (right censored). The left column shows most of the 

liver tissues. The right column shows the zoomed in tissues. The blue dots are the output of 

integrated gradients method that shows the critical pixels for the prediction of the neural 

network.
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Table 1.

Univariate results using Cox model for significant clinical variables (c-indices and corresponding p-values)

Clinical Variables c-index for OS p-value for OS

Number of Active Liver Lesions at Time of Treatment 0.557 0.009

Total Number Fractions 0.558 0.009

Pre-RT ICGR15 0.568 0.003

Na (pre-treatment) 0.620 0.005

Albumin (pre-treatment; g/DL) 0.636 0.000

Total bilirubin (pre-treatment; mg/dL) 0.601 0.000

MELD (baseline) 0.574 0.031

MELD-Na (baseline) 0.596 0.009

Child-Pugh (baseline) 0.626 0.000

ALBI Raw Score (Baseline) 0.624 0.000

Alkphos CTCAE Liver Toxicity Grade (pre-tx) 0.549 0.004

Treated previously? 0.556 0.016

PLATELET_pre 0.535 0.028
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Table 2.

Univariate results using Cox model for significant radiomics variables (c-indices and corresponding p-values). 

There are two regions (GTV and liver-GTV) that the radiomics features were extracted from (column 1). 4 

gray levels were used as the quantization levels for the extraction (column 2). The radiomics feature names 

were given as well (column 3).

Regions Gray levels Radiomics Features c-index for OS p-value for OS

GTV 32 Correlation 0.547 0.033

Liver-GTV 8 ZSN 0.586 0.008

16 GLN 0.585 0.014

16 ZSN 0.596 0.015

32 ZSN 0.578 0.047

64 SZHGE 0.532 0.031
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Table 3.

Univariate results using Cox model for significant miRNA variables (c-indices and corresponding p-values).

miRNA Variables c-index for OS p-value for OS

hsa-let-7i-5p 0.689 0.017

hsa-miR-107 0.621 0.015

hsa-miR-660-5p 0.652 0.046
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Table 4

C-indices for radiomics, clinical, raw image CNN and combined models using Cox model as a benchmark 

(column 2) and the proposed DNN models (column 3), as well as the corresponding Delong test p-values 

comparing Cox model benchmark and the proposed DNN methods.

Cox DNN p-values

Radiomics 0.554 (0.531–0.577) 0.579 (0.544–0.621) 0.0005

Clinical 0.599 (0.581–0.617) 0.629 (0.601–0.643) 0.149

Image NA 0.581 (0.553–0.613) NA

Combined 0.546 (0.519–0.573) 0.650 (0.635–0.683) <0.0001
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Table 5

Spearman rank correlation coefficients and p-values of significant miRNA (from univariate Cox analysis) and 

top ranked clinical/radiomics features obtained from the Captum interpretation model. The radiomics features 

were named by stating the region being extracted, the name of the features and the gray level (e.g., GTV-

SZHGE-64 means the SZHGE feature extracted from GTV with gray level of 64).

miRNA Radiomics/Clinical Variables Correlation coefficients p-values

hsa-let-7i-5p GTV-SZHGE_64 −0.403 0.046

liver-GTV-ZSN_16 −0.452 0.023

liver-GTV-correlation_8 −0.404 0.045

hsa-miR-10b-5p GTV-SZHGE_64 −0.544 0.005

total_bilirubin −0.423 0.035

hsa-miR-660-5p GTV-SZHGE_64 −0.457 0.022
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