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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, which is usually 

diagnosed at an advanced stage. The late disease diagnosis, the limited availability of effective 

therapeutic interventions and lack of robust diagnostic biomarkers, are some of the primary 

reasons for the dismal 5-year survival rates (~8%) in patients with PDAC. The pancreatic cancer 

develops through accumulation of a series of genomic and epigenomic alterations which lead to 

the transformation of normal pancreatic epithelium into an invasive carcinoma – a process that can 

take up to 15-20 years to develop, from the occurrence of first initiating mutational event. These 

facts highlight a unique window of opportunity for the earlier detection of PDAC, which could 

allow timely disease interception and improvement in the overall survival outcomes in patients 

suffering from this fatal malignancy. Non-coding RNAs (ncRNAs) have been recognized to play 

a central role in PDAC pathogenesis and are emerging as attractive candidates for biomarker 

development in various cancers, including PDAC. More specifically, the ncRNAs play a pivotal 

role in PDAC biology as they affect tumor growth, migration, and invasion by regulating cellular 

processes including cell cycle, apoptosis, and epithelial-mesenchymal transition. In this review, 

we focus on three types of well-established ncRNAs — microRNAs (miRNAs), long noncoding 

RNAs (lncRNAs), and circular RNAs (circRNAs) — and discuss their potential as diagnostic, 

prognostic and predictive biomarkers in PDAC.
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1. INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) ranks as the 11th most commonly diagnosed 

cancer in the United States, with an estimated 57,600 new cases in 2020 [1]. While the 

relative incidence of PDAC may not be as frequent, it remains one of the most lethal 

malignancies and the 3rd leading cause of cancer-related deaths in the United States [2]. The 

rising mortality rates from this cancer has projected it to become the second leading cause 

of cancer-related mortality by the year 2030. This is partly because at initial diagnosis most 

patients with PDAC already are at an advanced stage, with only ~10-20% patients with a 

resectable disease. Not surprisingly, in spite of all the medical advances made in the last 

decade, the overall 5-year survival rates for metastatic PDAC remain only ~8% [2].

At present, surgical resection is the only curative treatment option available for patients 

with PDAC; however, 5-year survival rates following surgical resection alone still remain 

relatively low [3, 4]. As per the National Comprehensive Cancer Network (NCCN) 

guidelines, gemcitabine-based or fluorouracil (5-FU)-based adjuvant treatment is the 

mainstay for most PDAC patients with a resectable disease. However, due to an elevated 

risk of complications or poor performance status, some patients are not ideal candidates for 

receiving such adjuvant treatments. To overcome this clinical challenge, data gathered in the 

past decade has highlighted the potential therapeutic impact of neoadjuvant chemotherapy or 

chemoradiotherapy for improving patient survival and tumor resectability status, particularly 

in PDAC patients with a locally advanced disease [5–11]. In addition, while the introduction 

of newer gemcitabine-based adjuvant chemotherapy regimens referred to as modified 

FOLFIRINOX (mFOLFIRINOX) that include a combination of fluorouracil, leucovorin, 

irinotecan, and oxaliplatin, have somewhat improved the prognosis of patients with 

resectable PDAC, a significant number of patients still experience disease relapse and their 

prognosis remains relatively poor [4, 12]. Taken together, this highlights the underlying 

issue that for a complete cure or improved survival, early detection of cancer might have 

the greatest impact on patient outcomes. This certainly has been observed in several other 

cancers, including breast, colon, prostate, and cervical – in each instance, the survival 

outcomes were significantly improved due to earlier detection of the cancer [13–17]. 

However, this has not yet been possible in PDAC, because currently there is a lack of 

robust diagnostic modalities available for the early detection of this fatal disease.

While imaging-based methods such as computed tomography (CT) and magnetic resonance 

imaging (MRI) are routinely used for PDAC diagnosis, their diagnostic sensitivity and 

specificity remains quite poor for the detection of early-stage lesions [18]. Likewise, 

in terms of non-invasive markers, currently carbohydrate antigen 19-9 (CA19-9) and 

carcinoembryonic antigen (CEA) are the only tumor markers currently used in the clinic; 

however, these suffer from poor diagnostic accuracy [19]. The present challenges with the 

imaging-based approaches, and the issues with tumor markers as robust biomarkers for the 

early-detection of PDAC highlight the need for development of molecular biomarkers that 

are more robust and can be used in the clinic for the identification of patients at risk for 

developing this fatal disease.
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One such molecular substrate that has garnered a lot of attention in the past several years is 

the development of various non-coding RNAs (ncRNAs) as biomarkers for early diagnosis 

and determining prognosis of patients with PDAC. The ncRNAs not only function as 

important epigenetic regulators in PDAC pathogenesis but have also emerged as attractive 

targets for their potential clinical use as diagnostic, prognostic, and predictive biomarkers in 

various human cancers including PDAC. In recent years, technological advancements such 

as genome-wide sequencing have discovered novel ncRNAs, and this list is continuously 

growing each day. In this review article, we highlight the importance of early detection in 

PDAC and discuss the accumulating evidence for ncRNAs in terms of their potential as 

diagnostic, prognostic, and predictive biomarkers in this malignancy.

2. IMPORTANCE OF EARLY DETECTION IN PDAC

Late onset of symptoms and a rapid progression to death are hallmarks of PDAC. Due to 

the asymptomatic nature of the disease, most patients present with non-resectable, locally 

advanced or metastatic disease at initial diagnosis – at which time surgical resection is not 

possible; hence, limiting the availability of treatment options in these patients. To muddy 

the waters further, the currently available treatment options in PDAC are less effective when 

offered to patients with an advanced disease.

2.1. Pancreatic precursor lesions and progression to invasive carcinoma – a window of 
opportunity for early detection

As depicted in Figure 1, the development of PDAC from non-invasive stages is a slow and 

gradual process [20]. More specifically, invasive PDAC develops from precursor lesions that 

are classified into three different histological categories: pancreatic intraepithelial neoplasia 

(PanIN), intraductal pancreatic mucinous neoplasia (IPMN), and mucinous cystic neoplasia 

(MCN) [21, 22]. Among these, PanINs are the most common precursor lesions of PDAC. 

PanINs are microscopic lesions (often <5 mm in size) originating from the small pancreatic 

ducts and are composed of columnar and cuboidal cells with varying amounts of mucin 

[23, 24]. Based on a number of molecular and histological alterations that transform a 

normal pancreatic duct into PanINs, these can be classified into low-grade dysplasia (PanIN

IA and -IB) and high-grade dysplasia (PanIN-II and -III) [25]. Similar to PanINs, the 

IPMNs are mucin-producing epithelial neoplasms that can arise within the main duct of 

pancreas (MD-IPMN), in one of its side branch-ducts (BD-IPMN), or both (mixed-IPMN). 

Further classification of IPMN is based on the degree of dysplasia, which ranges from 

low-grade dysplasia (IPMN, low-grade), intermediate-grade dysplasia (IPMN, low grade) 

and IPMN with high-grade dysplasia or carcinoma in-situ (IPMN, high grade) [21, 26]. 

In terms of their neoplastic potential, the MD-IPMNs are associated with a higher risk of 

developing invasive disease (~63%) compared to BD-IPMNs (~15%) [27]. Lastly, MCNs 

have a distinct ovarian-type stroma and are more common in women than men [28, 29]. 

All types of cystic neoplasms of the pancreas carry a risk of malignant transformation, 

albeit to varying degrees; thus, finding biomarkers that can accurately predict which of the 

cystic neoplasms will progress to invasive carcinomas may improve surgical management 

and treatment decisions. From an early-detection standpoint, there is substantive evidence 

that it can take more than a decade for a normal pancreatic epithelial cell to progress into an 
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invasive, metastatic pancreatic carcinoma from the time point of first genetic event acquired 

within the tumor-initiating cells [30]. This is particularly attractive from an early-detection 

viewpoint as this long timeframe provides a window of opportunity for the detection of early 

precursors and PDAC lesions, at which time therapeutic intervention could be employed to 

drastically improve the survival rates in patients suffering from this disease [31].

2.2. Limitations of current diagnostic approaches in PDAC – the need for development of 
robust molecular biomarkers for its early detection

Currently, various technical and molecular approaches are used for the diagnosis of 

PDAC (Table 1); with each of these modalities with their own inherent advantages and 

disadvantages. Imaging-based approaches that utilize multi-detector CT accompanied by 

3D-reconstruction and MRI is frequently used to stage PDAC patients, prior to surgery 

[32, 33]. However, these imaging tools for diagnosing and staging PDAC patients lack 

adequate sensitivity, are beset with false negative results, and frequently fail to detect small 

and potentially curable pancreatic lesions [18]. Endoscopic ultrasound, which is another 

commonly used screening tool for high-risk PDAC patients, is an expensive and invasive 

modality [34–36]. In addition, due to an overall lower incidence rate of PDAC and high cost

to-benefit ratio, the existing methods for the screening of average-risk general population for 

PDAC are unlikely to have a substantial impact on patient outcomes.

In addition to imaging-based approaches, there are only two noninvasive, serological 

diagnostic biomarkers that are often used for PDAC diagnosis in the clinic – the CA19-9 and 

CEA; both of which suffer from limited sensitivity and specificity for PDAC. In addition, 

elevated expression of these biomarkers is usually associated with advanced disease stage 

but may also indicate the presence of diseases other than PDAC [37, 38]; highlighting 

their inadequacy for the early detection of PDAC. Moreover, 5-10% of patients who lack 

fucosyltransferase activity due to germline variants do not produce CA19-9 [39]. Various 

protein and DNA biomarkers have been reported that show diagnostic and prognostic 

potential in PDAC patients either alone or in combination with CA19-9 [39–44]. However, 

there are currently no available reliable liquid biopsy assays with high sensitivity and 

specificity to detect early pancreatic cancer.

In view of the limitations of existing methods described above, there has been unprecedented 

interest in developing novel diagnostic biomarkers for the detection of PDAC in its earliest 

stages. There is no question that detecting the disease early will have a direct impact on the 

management of PDAC and improving patient survival.

3. NCRNAS AND THEIR IMPORTANT ROLE IN PDAC

The ncRNAs are important functional components of the human genome that are transcribed 

from DNA but are not translated into proteins. While there is lack of clear consensus 

on the various categories of ncRNAs, based on size these can be classified into small 

ncRNAs (<200 nucleotides in length) and long non-coding RNAs (lncRNAs; size>200 

nucleotides) [45]. While the nomenclature and discovery of various ncRNAs continue to 

evolve, at this time, small ncRNAs primarily encompass microRNAs (miRNAs), small 

inhibitory RNAs (siRNAs), PlWI-interacting RNAs (piRNAs), and small nucleolar RNAs 

Sharma et al. Page 4

Semin Cancer Biol. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(snoRNAs). In contrast, lncRNAs mostly consist of large intergenic non-coding RNAs 

(lincRNAs), transcribed ultraconserved regions (T-UCRs), and circular RNAs (circRNAs) 

[45]. Even though ncRNAs are not translated into proteins, they have been recognized to 

be critical regulators for various biological processes such as DNA replication, translation, 

RNA splicing, and epigenetic regulation (Figure 2). Deregulation of ncRNAs has been 

reported in many diseases, including cancer [45–47]. Additionally, with the advent of next

generation sequencing technologies, various categories of ncRNAs are continuously being 

discovered, characterized for their biological roles, and have been developed as potential 

disease biomarkers through their expression analysis not only in tissues, but as well as in 

other bodily fluids such as blood (plasma and serum), saliva, pancreatic juice, cerebrospinal 

fluid and urine – highlighting their promise as potential biomarkers for cancer diagnosis, 

prognosis and disease monitoring [48–51]. Moreover, some ncRNAs, specially miRNAs 

and lncRNAs have also shown therapeutic potential and different delivery systems for 

ncRNA-based therapeutics have also been previously described [52].

Herein, we discuss the biomarker potential of three types of ncRNAs in PDAC – the 

miRNAs, lncRNAs, and circRNAs, and provide a succinct yet comprehensive state of 

literature for their emerging role as diagnostic, prognostic and predictive biomarkers.

4. MIRNAs AS POTENTIAL BIOMARKERS IN PDAC

Among the ncRNAs, miRNAs are the most widely explored as biomarkers in malignant 

diseases. miRNAs are 18–25 nucleotides long and regulate gene expression at the post

transcriptional level [53, 54]. Abnormal expression levels of miRNAs have been implicated 

in the pathogenesis of PDAC [55, 56]. One of the most attractive features of miRNAs is their 

stability in bodily fluids (blood, urine, saliva), which makes them ideal targets for liquid 

biopsies.

4.1. Diagnostic significance of miRNAs in pancreatic cancer

The last decade has witnessed an explosion in the number of studies that have focused on 

the identification of miRNAs that are differentially expressed in clinical specimens from 

patients with PDAC compared to healthy controls (Table 2).

4.1.1. Diagnostic potential in PDAC—Due to the presence of thick stromal layer 

and persistent inflammation in patients with chronic pancreatitis (CP) and PDAC, the 

diagnostic utility of imaging-based approaches has been clinically challenging. In an effort 

to overcome this issue for improved discrimination between CP and PDAC, several studies 

have focused on the interrogation of miRNA expression profiles. In one of the first 

such studies, Bloomston et al. identified a panel of 25 miRNAs that were significantly 

deregulated in PDAC compared to adjacent healthy tissues [57]. Of these, miR-196a, 

miR-196b, miR-203, miR-210, miR-217, miR-222,, and miR-375 were dysregulated only 

in PDAC, whereas miR-29c, miR-96, miR-143, miR-145, miR-148b, and miR-150 were 

abnormally expressed in both CP and PDAC. These findings suggested that the latter group 

of miRNAs were likely responsible for causing a desmoplastic reaction, as opposed to 

tumorigenesis. More specifically, several studies have noted significant downregulation of 

miR-92, miR-132, miR-148a, miR-216a, and miR-217 in PDAC [56, 58–61]. In contrast, 
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miR-31, miR-143, miR-145, miR-146a, miR-150, miR-155, miR-194, miR-196a, miR-196b, 

miR-210, miR-222, and miR-223 were observed to be markedly upregulated in PDAC 

compared to healthy specimens [55–57, 62–67].

These initial studies for the observed deregulation of miRNA expression became the basis 

for subsequent studies that began evaluating their biomarker potential. For example, Lee et 
al. identified upregulation of miR-21, miR-301, and miR-376a in PDAC tissues compared 

to normal pancreatic tissues, indicating their potential to detect patients with PDAC from 

healthy individuals [55]. Later studies reported elevated expression of miR-1290 in patients 

with early-stage PDAC patients, which also exhibited significantly superior diagnostic 

potential compared to the classic tumor marker, CA19-9, in differentiating early-stage 

PDAC from controls [68]. Significant upregulation of miR-135b was observed in PDAC 

vs. non-diseased control specimens, and could also distinguish patients with PDAC from 

those with CP with relatively high sensitivity and specificity [69].

Following the observation of encouraging results in tissues, researchers started to explore the 

feasibility of translating these miRNA biomarkers in blood (serum or plasma) specimens. 

In one such effort, the previously identified miRNAs miR-21, miR-155, and miR-196a 

were also found to be upregulated in sera from patients with PDAC compared with 

healthy subjects [70]. While individual miRNAs have shown potential to detect PDAC, a 

combination of circulating miRNAs often results in an increased diagnostic accuracy. For 

instance, a combination of miR-196a and miR-217 expression levels discriminated PDAC 

from healthy controls and CP cases [56]. More intriguingly, diagnostic performance of 

circulating miRNAs together with tumor markers such as CA19-9 has also been analyzed. 

In this context, plasma levels of miR-16 and miR-196a combined with CA19-9 offered a 

significantly superior diagnosis of early stage PDAC [70].

As the enthusiasm for miRNA-based biomarkers in PDAC continues to build, various 

researchers also began to systematically examine the functional significance of specific 

miRNAs, their downstream target genes (mRNAs), the signaling pathways and cellular 

processes controlled by individual miRNAs in PDAC (Figure 3). For example, miR-217, 

which has been found to be significantly downregulated in PDAC tissues and cell lines, 

was revealed to target KRAS mRNA [71]. Subsequent studies supported this notion 

and illustrated that miR-217 acts as a tumor suppressor by inhibiting KRAS, thereby 

reducing the constitutive phosphorylation of the downstream signal transducer AKT and 

eventually inhibiting cell proliferation. Kent et al. characterized miRNA expression profiles 

in multiple experimental model systems in which KRAS was constitutively activated due 

to the presence of a KRASG12D mutation [72]. These studies revealed that activated KRAS 

signaling led to the repression of the miR-143/145 cluster, which is required to maintain 

the tumorigenic potential of pancreatic cancer cells. Using a dual-reporter luciferase assay, 

it was demonstrated that downregulation of miR-143/145 was achieved by binding of 

the KRAS-responsive element-binding protein (RREB1) to the miR-143/145 promoter 

region. Likewise, miR-375, which is upstream of PI3K/AKT signaling, acts as a tumor 

suppressor by inhibiting the growth of PDAC cells through AKT signaling pathway [73, 

74]. Specific attention has been placed on the role of miR-21 in PDAC, as it is implicated 

in tumorigenesis, tumor cell invasion, and metastasis of pancreatic tumor cells, as well as 
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desmoplastic reaction and has been consistently observed to be overexpressed in PDAC 

compared to healthy and/or CP samples [75–78]. Phosphatase and tensin homolog (PTEN), 

a tumor suppressor gene known to suppress PI3K-AKT-mTOR signaling and control various 

cellular processes, is targeted by miR-21, miR-221, and miR-181a [79–81]. One of the 

downregulated miRNAs, miR-216a, targets JAK2 mRNA and inhibits its expression, lead 

to reduction in the tumor volume in an animal model by increasing tumor cell apoptosis 

and decreasing cell proliferation [82]. Furthermore, transfection with miR-216a inhibited 

the growth of pancreatic cells and the transcription of the survivin gene and other apoptotic 

genes located downstream of the JAK/STAT pathway [83]. miR-155 is also associated 

with the JAK/STAT pathway, and pancreatic cells with its knockdown resulted in increased 

expression of suppressor of cytokine signaling 1 (SOCS1) – a tumor suppressor protein that 

negatively regulates the JAK/STAT3 signaling pathway [84]. Collectively, these data provide 

a strong evidence supporting the importance of miRNAs as potential biomarkers for the 

diagnosis of PDAC.

4.1.2. Diagnostic potential in PanINs—There exist histological and molecular 

differences between PDAC and its precursor lesions, as well as between different types 

of precursor lesions – PanINs and IPMNs [85]. Moreover, based on the idea that the 

transformation of normal pancreatic tissue into an invasive PDAC manifests over several 

years through the accumulation of a series of genetic and epigenetic changes, miRNA 

expression profiles have been evaluated in low- and high-grade PanINs to identify 

biomarkers that can detect the disease in the earliest stages of neoplastic transformation.

In a PanIN progression model based on miRNA expression profiles, 735 human miRNAs 

were interrogated in PanINs, PDAC, and healthy tissues which led to the identification 

of specific miRNAs that discriminated PanINs from healthy and PDAC [86]. This report 

also revealed that the expression profiles of specific miRNAs correlated with different 

stages of premalignant lesions. Thirteen miRNAs (miR-21, miR-29b, miR-146a, miR-182, 

miR-193a-3p, miR-193b, miR-200a, miR-200b, miR-200c, miR-425, miR-486-3p, miR-708, 

and miR-874) were significantly upregulated in PanIN-II & III lesions compared to PanIN

I lesions and normal pancreatic tissues. More specifically, miR-196b was significantly 

upregulated in PanIN-III compared to normal pancreatic tissues [86]. In a subsequent effort, 

Slater et al. studied miRNA expression profiles in serum specimens from patients with 

PDAC and PanINs, as well as healthy controls [66, 87]. Among the five miRNAs evaluated 

(miR-21, miR-155, miR-196a, miR-196b, and miR-210), only miR-196a and miR-196b 

showed significantly increased expression in patients with PDAC or PanIN-II & III lesions 

compared to those with PanIN-I lesions or healthy controls. Of note, a combination of 

miR-196a and miR-196b expression levels demonstrated a perfect sensitivity and specificity 

of 100% for discriminating between patients with PanIN-II & III lesions and healthy 

controls [66, 87]. Ryu et al. compared the relative expression of three candidate miRNAs 

(miR-21, miR-155, and miR-221, all reported to be overexpressed in PDAC) between 

PanIN lesions of various histological grades and non-neoplastic pancreatic ductal epithelium 

[88]. These researcher found that miR-21 was marginally upregulated in PanIN-III, while 

miR-155 was significantly overexpressed in PanIN-II & III cases compared to PanIN-I or 

healthy controls; highlighting that miR-155 overexpression is likely an early event in the 
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multi-step progression model of PDAC [88]. Several follow-up studies have since then 

corroborated the upregulated expression of miR-21 and miR-155 in PanIN lesions [89, 

90]. Increased expression of other miRNAs (miR-10b, miR-200, miR-205, miR-221, and 

miR-222) has also been reported during the progression from PanIN to PDAC [89, 90].

In a detailed functional study, miR-145 expression was shown to decrease with increasing 

stages of PanINs [91]. While investigating the biological mechanism underlying this 

phenomenon, it was reported that miR-145 regulated the expression of MUC13 and acted 

as a tumor suppressor. Ectopic expression of miR-145 in cultured cells and animal models 

resulted in decreased cellular invasion and reduced tumor growth, respectively, highlighting 

the role of miR-145 in the development and progression of pancreatic cancer [91]. Likewise, 

expression of miR-148 was also found to inversely correlate with disease progression, with 

higher expression in normal tissue compared to PanINs and PDAC [89] – all of which 

support the role of distinct miRNAs involved in neoplastic disease progression and their 

biomarker potential.

4.1.3. Diagnostic potential in IPMNs—The first study of miRNA expression profiles 

in IPMNs was conducted in 2009 [92]. In a small cohort of 15 IPMN tissues, the expression 

of a panel of 12 miRNAs was measured, which led to the identification that 10 of the 

12 miRNAs were significantly overexpressed in IPMNs compared to normal pancreatic 

tissues. The most promising of these miRNAs were miR-21 and miR-155 – and the 

elevated expression of these two miRNAs also correlated with greater cellular atypia in 

the IPMNs [92]. As described earlier, miR-21 has been implicated in repressing the activity 

of the tumor suppressor genes PTEN and programmed cell death 4 (PDCD4), resulting 

in the activation of the AKT signaling pathway and increased cellular transformation and 

metastases, respectively. Similarly, miR-155 was reported to repress a pro-apoptotic gene, 

tumor protein 53-induced nuclear protein 1 (TP53INP1), and increased tumorigenicity in an 

animal model [93].

In a larger cohort study comprising of 65 invasive IPMNs, 16 non-invasive IPMNs and 

5 normal pancreatic ductal tissues, miR-21 and miR-155 were yet again confirmed to be 

overexpressed in surgically resected IPMN specimens [63]. Furthermore, the overexpression 

of these miRNAs was more prominent in invasive vs. non-invasive IPMNs. The same 

study also reported downregulation of miR-101 in invasive IPMNs [63]. Subsequently, 

Nakahara et al. confirmed these results and demonstrated that from a mechanistic viewpoint, 

miR-101 targets oncogenic enhancer of zeste 2 homolog (EZH2). The authors proposed that 

downregulation of miR-101 leads to the overexpression of EZH2, which could promote the 

transformation of premalignant IPMNs into PDAC [94].

A subsequent study analyzed pancreatic juice specimens and FFPE tissues for the alterations 

in expression of miR-196a in specific subtypes (intestinal vs. non-intestinal) of IPMNs. 

This study reported that miR-196a was specifically upregulated in intestinal-type IPMNs 

and showed a diagnostic performance, with an area under the curve (AUC) value of 0.85 

for the receiver operating characteristic (ROC) curve analysis [95]. The expression of 

circulating miR-483-3p has also been shown to differentiate IPMNs from PDAC and healthy 

controls [96]. Combining the expression of miR-483-3p with miR-21 further increased the 
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diagnostic potential for discriminating patients with IPMNs from those with PDAC and 

healthy controls, and was comparable to the traditional markers CA19-9 and CEA [96]. The 

miR-483-3p is located within intron 2 of the IGF2 locus and its overexpression has been 

reported to suppress the expression of the transcription factor DPC4/Smad4 in PDAC tissues 

[97]. DPC4/Smad4 act as mediators of the TGF-β signaling pathway and are involved in 

TGF-β-induced epithelial-mesenchymal transition (EMT) [97].

In a genome-wide miRNA expression profiling effort, miR-99a, miR-99b, miR-100, 

miR-126, miR-130a, and miR-342-3p were found to be under expressed in high-risk vs. 

low-risk IPMNs [98]. In addition, low levels of miR-99b in cystic fluid from patients with 

IPMNs were associated with main duct involvement and hence associated with an increased 

risk for developing into malignant neoplasms. The authors also evaluated expression of the 

downstream target mRNAs of these downregulated miRNAs and found that some of them, 

such as IRS-1 (miR-126 target), ATG2B and MEOX2 (miR-130a targets), and DNMT1 
(miR-342-3p target), were upregulated in high-risk vs. low-risk IPMNs [98]. More recently, 

miRNA expression profiles were shown to differentiate pancreatic cystic neoplasms, 

wherein miR-31-5p, miR-99a-5p, miR-375, and miR-4830-5p were characteristic of serous 

cyst adenomas (SCAs) and distinguished SCAs from MD- and BD-IPMNs [99].

Taken together, these studies underscore the importance of miRNAs for their clinical 

significance as diagnostic biomarkers for differentiating patients with IPMNs from healthy 

controls, as well for discriminating between various subtypes of pancreatic lesions – thereby 

potentially improving the diagnosis and management of these patients.

4.2. Prognostic significance of miRNAs in PDAC

In addition to early detection, identifying prognostic biomarkers that offer improved 

prediction of patient survival are also of critical importance. Several studies have found 

associations between miRNA expression and patient outcomes in PDAC [100]. Not only 

higher expression of miR-21 was observed in PDAC compared to healthy tissues, it was 

also a superior predictor of poorer outcomes in patients with PDAC [76, 101]. High 

expression of miR-21 also led to reduced gemcitabine sensitivity and apoptosis in PDAC 

cells [77]. Further downstream analysis revealed that overexpression of miR-21 potentially 

downregulated expression of PTEN and activated the PI3K/AKT signaling pathway.

It was reported that expression of a panel of six miRNAs (miR-30a-3p, miR-105, miR-127, 

miR-187, miR-452, and miR-518a-2) was significantly associated with improved prognosis 

in patients with PDAC [57]. In a study of 225 PDAC patients, high expression of miR-212 

and miR-675 and low expression of miR-148a, miR-187, and let-7g were independent 

predictors of poor prognosis in PDAC [102]. Recently, Liang et al. conducted a TCGA 

database study to evaluate the predictive value of several miRNAs [103]. These researchers 

reported that a 5-miRNA signature consisting of miR-125a, miR-328, miR-376b, miR-376c, 

and miR-1301 had the highest prognostic potential, with a corresponding hazard ratio (HR) 

of 0.139 (95% CI, 0.043–0.443; P<0.001). To better understand the underlying molecular 

mechanisms of these five miRNAs, the authors performed gene set enrichment and gene 

ontology analyses. They discovered that the target genes of the candidate miRNAs were 

involved in a variety of critical biological processes including developmental process, cell 
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differentiation and anatomical structure morphogenesis [103]. Finally, miR-15a miR-155, 

miR-200c, miR-203, miR-210, miR-222, miR-302, and miR-506 were also shown to 

correlate with the prognosis in patients with PDAC [104–107]; emphasizing the clinical 

significance of miRNAs as prognostic biomarkers in PDAC.

5. LNCRNAs AS BIOMARKERS IN PDAC

The lncRNAs are >200 nucleotides long and are transcribed by RNA polymerase II. 

The lncRNAs play important roles in an array of diverse biological, developmental, and 

pathological processes, as they are involved in RNA regulatory mechanisms and control 

the expression of their downstream target genes. As illustrated in Figure 4, in addition, 

they mediate a diverse array of cellular processes through chromatin reprogramming, cis 

or trans regulation at neighboring genes, and post-transcriptional regulation of mRNA 

processing [108–110]. Dysregulation of lncRNAs has been implicated in several human 

diseases including cancer [111–113]. As shown in Table 3, increasing evidence supports that 

aberrant expression of lncRNAs plays an oncogenic or tumor-suppressive role in various 

cancers including PDAC [114–120]. As a result, there is great degree of interest in the 

identification of lncRNAs that can be developed for their clinical application as cancer 

biomarkers. Additionally, the lncRNAs are highly tissue- and disease-specific, which makes 

them attractive candidates for development as disease biomarkers.

5.1. HOTAIR

The HOX antisense transcript intergenic RNA (HOTAIR) is a well-characterized lncRNA 

whose aberrant expression has been documented in several cancer types. It is transcribed 

from the homeobox C (HOXC) locus located on chromosome 12 [121, 122]. In PDAC, 

HOTAIR promotes cellular proliferation and metastasis [123]. HOTAIR interacts with 

human EZH2, a component of the polycomb repressive complex 2 (PRC2) and binds 

to the promoter region of miR-34. This binding leads to histone 3 lysine 27 (H3K27) 

trimethylation and eventually to the transcriptional repression of miR-34, an increase 

in cellular proliferation, and a decrease in apoptosis [123]. Kim et al. reported that 

HOTAIR targeted and bound the tumor suppressor gene GDF15, repressing its expression, 

which led to increased proliferation of pancreatic cancer cells [124]. These researchers 

also used a publicly-available database to illustrate that HOTAIR was overexpressed in 

PDAC specimens compared to normal pancreatic tissues, and in more aggressive tumors 

characterized by higher tumor and lymph node staging [124].

In a large study involving 900 PDAC and equal number of control specimens, a functional 

single nucleotide polymorphism (SNP) located within the 3’ UTR region of the HOTAIR 

gene was associated with a significantly higher risk for developing pancreatic cancer and 

higher HOTAIR expression [125]. Xie and colleagues noted that expression of HOTAIR 

was significantly higher in pancreatic tumor tissues [126], subsequently they validated their 

findings in salivary samples and noted that HOTAIR expression was also significantly higher 

in saliva from patients with PDAC vs. patients with benign tumors [126]. In another study, 

HOTAIR expression exhibited impressive diagnostic potential which was superior than the 

conventional CA19-9 marker for discriminating PDAC from benign pancreatic lesions and 
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healthy controls. Increased levels of HOTAIR in serum also correlated with advanced PDAC 

stages [127]. HOTAIR was also shown to regulate the expression of the death receptor 5 

(DR5) gene through epigenetic modulation and to contribute to tumor necrosis factor-related 

apoptosis-inducing ligand (TRAIL) resistance – suggesting it to serve as a potential target 

for sensitization of pancreatic cancer cells resistant to TRAIL therapy [128].

5.2. lncRNA ENST00000480739

The lncRNA ENST00000480739 functions as a tumor suppressor. In a study comprising of 

35 patients with PDAC, expression of ENST00000480739 was lower in PDAC specimens 

compared to the adjacent normal tissues [129]. In addition, its expression negatively 

correlated with tumor stage and lymph node metastasis status. The authors demonstrated that 

in cultured cells, ENST00000480739 directly increased the expression of the osteosarcoma 

amplified 9 (OS-9) gene, both at the mRNA and protein level by activating its promoter 

region. Further knockdown experiments demonstrated that lncRNA ENST00000480739 

negatively regulated HIF-1α by upregulating OS-9, thereby leading to a reduction in PDAC 

cell invasion [129].

5.3. PVT1

The lncRNA plasmacytoma variant translocation 1 (PVT1) is located at the 8q24.21 locus, 

and has been shown to interact with MYC gene promoter [130]. Several functions of 

PVT1 have been reported in pancreatic cancer cells, including promotion of EMT via the 

TGF- β/Smad pathway [131], acting as a miR-448 sponge to promote proliferation and 

migration [132], and modulating cytoprotective autophagy to promote PDAC development 

[133]. Xie et al. reported that PVT1 expression was higher in PDAC tissue and serum 

specimens compared to healthy specimens, and could serve as a diagnostic biomarker 

in this malignancy [126]. In comparison to the tumor marker CA19-9, PVT1 expression 

demonstrated higher sensitivity and specificity. In addition, the progression-free survival 

of patients with locally advanced or advanced PDAC treated with gemcitabine as first-line 

treatment was significantly higher in patients with low expression of PVT1; highlighting 

its potential as a prognostic biomarker in patients with PDAC treated with first-line 

gemcitabine-based treatment [134].

5.4. MALAT-1

The metastasis-associated lung adenocarcinoma transcript-1 (MALAT-1) is another lncRNA 

that is frequently overexpressed in PDAC. Expression of MALAT-1 also positively 

correlates with tumor size, clinical stage, lymph node metastasis, distant metastasis, and 

prognosis [135]. A negative correlation was observed in PDAC patients with higher 

MALAT-1 expression levels and disease-free survival [136]. Various transcriptional targets 

of MALAT-1 have been identified, including the promoter of E-cadherin [137], N-myc 

downregulated gene-1 (NDRG-1) [138], cyclin D1 (CCND1), RAF-mitogen-activated 

kinase 8 (MAPK8), and vascular endothelial growth factor A (VEGFA) [139]. Through 

RNA immunoprecipitation assays, MALAT1 was demonstrated to physically bind to EZH2 

and negatively correlate with E-cadherin expression. Further investigations revealed that 

silencing of EZH2 increased E-cadherin expression in pancreatic cancer cells suggesting that 

MALAT1 potentially promotes pancreatic cancer cell migration and invasion through the 
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repression of tumor suppressor gene E-cadherin [137]. Altogether, the findings suggest that 

MALAT1 plays an important role in PDAC pathogenesis, warranting further investigation.

5.5. HOTTIP

The HOXA distal transcript antisense RNA (HOTTIP) lncRNA is a HOX-related lncRNA. 

Similar to HOTAIR, the HOTTIP lncRNA is associated with chromatin-modification 

complexes and enhances H3K27 trimethylation to repress the expression of multiple HOXA 

genes [140]. In the context of PDAC, the HOTTIP lncRNA seems to regulate HOX genes 

i.e. HOXA9, HOXA10 and HOXA11. The HOXA9 gene has been shown to promote cancer 

stem cell proliferation through the Wnt/β-catenin signaling pathway [141, 142]. Likewise, 

the HOXA10 and HOXA11 genes regulate expression of matrix metalloproteinase 3 and 

2 genes which promote invasion in pancreatic cancer cells [142]. Increased expression of 

HOTTIP has been documented in various pancreatic cancer cell lines as well as tissue 

specimens [143]. The same study also demonstrated that downregulation of HOTTIP 

expression increased the anti-tumor effects of gemcitabine in cultured cells and animal 

models.

6. CIRCRNAs AS BIOMARKERS IN PDAC

CircRNAs are another class of ncRNAs that are currently a popular research topic. 

circRNAs are circular in shape and lack a 5’ cap or 3’ Poly-A tail terminal ends. These 

ncRNAs are more stable than other endogenous mRNAs due to their circular shape, 

which protects them from traditional RNA-mediated degradation [144]. circRNAs have been 

proposed to function as miRNA sponges that suppress the ability of miRNAs to bind to their 

target mRNAs [145,146]. The role of miRNAs in various cellular processes and diseases are 

well established. Considering that circRNAs interact with miRNAs, their association is also 

implicated in various diseases, including cancer [147–151]. The role of circRNAs in cancer 

and the regulation of key cellular processes by circRNAs are reviewed elsewhere [152].

A number of studies have reported aberrant expression of circRNAs in PDAC (Table 3). 

Li et al. performed one of the very first studies to investigate the expression of circRNAs 

in PDAC, using a microarray expression approach in six pairs of PDAC samples and 

matched adjacent normal tissues [153]. They identified a number of up- and downregulated 

circRNAs between PDAC and adjacent normal tissues, among which they further validated 

seven circRNAs using quantitative real-time PCR assays [153]. A subsequent study 

identified 115 upregulated and 141 downregulated circRNAs in PDAC compared to 

adjacent normal mucosa specimens, through the analysis of publicly-available microarray 

datasets [154]. These authors also considered potential circRNA:miRNA interactions and 

performed pathway analysis to discover that the B-Raf proto-oncogene, serine/threonine 

kinase (BRAF) and Dual specificity mitogen-activated protein kinase kinase 2 (MAP2K2) 

interacted with the most number of pathways, indicating the involvement of MAPK 

signaling pathway. Li et al. investigated circRNA expression in extracellular vesicles 

derived from the plasma of patients with PDAC and uncovered 453 circRNAs that were 

differentially expressed between patients and healthy controls [155]. As illustrated in Figure 
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4, several studies have also shown the aberrant expression of circRNAs in PDAC and their 

association with pancreatic cancer cell proliferation and metastasis [156, 157].

In view of their stable expression, circRNAs represent potentially viable biomarkers for 

PDAC. Yang et al. found circ-LDLRAD3 was upregulated in PDAC tissues, plasma, and 

PDAC cell lines. They also reported a positive correlation between the expression of circ

LDLRAD3 and clinicopathological factors, such as venous and lymphatic invasion, in the 

patient specimens [158]. Moreover, to investigate the suitability of circ-LDLRAD3 as a 

PDAC diagnostic biomarker, the authors also found that when combined with CA19-9, 

circ-LDLRAD3 exhibited superior diagnostic sensitivity and specificity vs. CA19-9 [158]. 

The circ-LDLRAD3 was shown to directly target miR-137-3p and to regulate proliferation, 

migration, and invasion in pancreatic cancer cells through the miR-137-3p/pleiotrophin 

(PTN) axis [156].

Likewise, the circ_0030235 is another circRNA overexpressed in PDAC tissues and cell 

lines [153, 159]. Functional studies revealed that overexpression of circ_0030235 associated 

with advanced tumor stage and positive lymph node metastasis in patients with PDAC, 

suggesting that it may function as an oncogene. Additionally, circ_0030235 is thought to act 

as a molecular sponge for miR-1253 and miR-1294, as the two miRNAs were found to be 

significantly downregulated in its presence [159]. These two miRNAs have been shown to 

act as tumor suppressors in several other cancers as well. The miR-1253 inhibits cell growth 

and invasion by targeting WNT5A [160] while miR-1294 has been shown to inhibit cell 

proliferation by targeting c-Myc [161]. In a similar fashion, circ_0007534 was found to be 

upregulated in PDAC tissues and correlated with aggressive phenotypes [162]. Furthermore, 

circ_0007534 was shown to promote the oncogenic potential of cells by enhancing cell 

proliferation, migration, and invasion in PDAC cell lines; and miR-625 and miR-892b were 

identified as the targets of circ_0007534 [162].

The stable nature of circRNAs in serum provides a rationale for investigating circulating 

circRNAs as cancer biomarkers [163, 164]. In this context, circ-PDE8A was identified in 

exosomes derived from the plasma of patients with PDAC, and it was shown that its high 

expression associated with disease progression and poor prognosis. Further mechanistic 

investigations revealed that circ-PDE8A could activate the MET tyrosine kinase receptor and 

act as a sponge for miR-338 [163]. The circ-IARS was also found to be highly expressed in 

the exosomes of patients with PDAC and positively correlated with tumor and lymph node 

metastasis status [164]. Functional assays revealed that circ-IARS increases the activity of 

RhoA by absorbing miR-122, resulting in an increased permeability of the cells promoting 

metastasis [164].

Another circRNA that is implicated in PDAC is ciRS-7. Previously, ciRS-7 was shown to act 

as a miR-7 sponge in colorectal and hepatocellular cancer [165, 166]. In pancreatic cancer, 

ciRS-7 was found to be upregulated in PDAC tissues as compared to normal tissues. Using 

pancreatic cancer cells, ciRS-7 was shown to act as a miR-7 sponge, and ciRS-7 knockdown 

led to a decrease in EGFR and STAT3 expression suppressing proliferation and reducing 

invasion of PDAC cells [157].
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Although only a limited number of studies have investigated the role of circRNAs in PDAC 

to date, these studies suggest that aberrantly expressed circRNAs might be involved in the 

regulation of PDAC and could potentially serve as diagnostic makers.

7. CONCLUSION AND FUTURE PERSPECTIVES

The only chance of a complete cure in PDAC is highly dependent on early disease diagnosis, 

upon which curative treatments can be implemented. Thus, there remains an unmet clinical 

need for the identification and development of highly sensitive and specific diagnostic 

biomarkers that can detect PDAC and its precursor lesions at their earliest stage. Given that 

the effective treatment options in PDAC patients are still limited, availability of improved 

prognostic and predictive biomarkers are also desirable in PDAC – which can help adequate 

risk-stratification and selection of patients for specific treatment regimens. Various studies 

have revealed that ncRNAs are important regulators of a multitude of cancer-associated 

mechanisms in PDAC, including cellular proliferation, invasion and apoptotic deregulation – 

making them attractive candidates for diagnostic, predictive, and prognostic biomarkers.

In spite of the substantial enthusiasm for miRNAs as robust biomarkers in PDAC, to date, 

not a single miRNA biomarker has made it to the clinic for the diagnosis of patients with 

PDAC. This can be attributed to various limitations of the existing studies, including lack of 

a systematic biomarker discovery and validation approach, analysis of well-defined clinical 

cohorts with adequate statistical considerations, and the use of inconsistent analytical and 

biomarker normalization approaches. In the case of cell-free miRNAs, their heterogenous 

origin is also a potential limiting factor. With regards to lncRNAs, while the data to date 

seems promising, further studies are needed to systematically dissect the full potential of 

lncRNAs as biomarkers in PDAC. Finally, circRNAs are an exciting and emerging concept; 

however, the research in this regard is still in its infancy. As it stands currently, more 

sophisticated bioinformatic approaches are needed to identify the entire compendium of 

circRNAs in PDAC, followed by their functional characterization – which eventually will 

provide the springboard for their development into diagnostic, prognostic, and predictive 

biomarkers in PDAC.

Taken together, the expression profiles of various ncRNAs offer an exciting opportunity for 

development into biomarkers for PDAC. However, before we get to that point, substantial 

challenges must be overcome, including careful planning of large-scale prospective 

human studies to validate the clinical significance of most promising PDAC-associated 

ncRNA biomarkers. In addition, concurrent functional studies to unravel the functional 

underpinnings for their mechanistic role will lend further credence to their biomarker 

potential; which collectively will provide the much needed rationale and confidence for 

their translation into the clinic as we usher into the exciting era of precision oncology.
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Figure 1: 
The evolution and progression of PDAC: The PDAC develops gradually over a period 

of time in which a series of genomic, epigenomic and morphological alterations are 

initiated in the normal cells. Initial genetic and epigenomic changes occur slowly during the 

transformation of normal epithelium through premalignant lesions (PanIN I- III); where the 

changes are not visible at the organ level making detection of premalignant lesions difficult. 

The premalignant cells continue to grow leading to tumor formation which gradually invades 

nearby lymph nodes, ultimately enter the systemic circulation and metastasize to distant 

organ sites. Tumor cells that reach the blood circulation also release their cellular contents 

(e.g. DNA, RNA, proteins etc.), which are interrogated for the development of blood-based 

liquid biopsy assays for the early disease detection. PanIN – pancreatic intraepithelial 

neoplasia; PDAC – pancreatic ductal adenocarcinoma; lncRNA – long non-coding RNA; 

circRNA – circular RNA; miRNA – microRNA; RBC – Red blood cell, WBC – White blood 

cell
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Figure 2: 
Overview of the biogenesis and functions of key ncRNAs: The biogenesis of miRNAs (left 

panel) involves the transcription of primary miRNA (Pri-miRNA) by RNA polymerase (II 

or III) from the miRNA gene. The Pri-miRNAs are long, RNA stem-loop structures, which 

are eventually processed by the DROSHA–DiGeorge syndrome critical region 8 (DGCR8) 

complex resulting in the cleavage of the Pri-miRNA and production of a smaller product 

called, the precursor miRNA (Pre-miRNA), which is approximately 60 nucleotides in length. 

The Pre-miRNA is exported to the cytoplasm from the nucleus by Exportin-5 protein. The 

Pre-miRNA is processed further in the cytoplasm by the ribonuclease DICER protein in 

conjunction with the RNA-binding protein transactivation response element RNA-binding 

protein (TRBP). The DICER-TRBP complex cleaves the Pre-miRNA to form a miRNA/

miRNA duplex. One of the strands from this duplex is degraded while the other functional 

strand binds to the Argonaute 2 (AG02) protein and is incorporated into the RNA-induced 

silencing complex (RISC) involving DICER and TRBP. The miRNA strand guides the RISC 

complex to target mRNAs causing translational repression or degradation. The lncRNAs 
(middle panel) are transcribed by the RNA polymerase and are usually adenylated at the 

3’ end and capped at 5’ end. Their expression is cell type- and cell state-specific and they 

can undergo alternative splicing leading to different isoforms. lncRNAs can regulate genes 
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in many ways. For example, they can activate (enhancer RNAs) or inhibit the transcription 

of nearby genes by either directly interacting with the RNA polymerase or transcription 

factors. lncRNAs can also interact with DNA by virtue of their sequence complementarity to 

single stranded DNA mediating chromosomal looping. They can also induce changes in the 

chromatin structure and interact with nucleolar (paraspeckle) proteins forming paraspeckle 

assembly. Their other functions include acting as miRNA sponges, regulating mRNA 

stability, interaction with proteins or acting as a scaffold for proteins. The circRNAs (right 

panel) are also transcribed by the RNA polymerase similar to mRNAs however unlike 

mRNAs, circRNAs can be processed through alternative splicing of both, exons and introns 

of the pre-mRNA. The circular shape of circRNAs is the result of back-splicing which is 

described by lariat-driven circularization and intron-pairing-driven circularization. circRNAs 

can act as miRNA sponges due to the presence of multiple miRNA response elements in 

their sequence. Some circRNAs can also interact with proteins harboring RNA-binding sites. 

Additionally, they can also encode for and translate into various proteins.
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Figure 3: 
Mechanistic role of the miRNAs in PDAC: miRNAs can act both as tumor suppressors and 

oncogenes by regulating different key downstream gene targets that mediate cellular growth 

signaling pathways. For example, miR-217 which is often found downregulated in PDAC, 

acts as a tumor suppressor and targets KRAS oncogene which endows proliferation, survival 

and invasion properties onto cancer cells through the activation of several downstream 

effector pathways such as the PI3K/AKT and the RAF/ERK pathway. On the other hand, 

miR-21, which is usually found upregulated in PDAC, targets the tumor suppressor genes 

PTEN and PDCD4. miR-21 mediated inhibition of PTEN leads into activated downstream 

signaling of PI3K/AKT pathway. PDCD4, a tumor suppressor gene involved in apoptosis, 

invasion is inhibited by miR-21 and is potentially involved in PI3K/AKT signaling pathway. 

miRNAs can also induce transcriptional repression or activation by modulating chromatin 

structure through the targeting of epigenetic regulatory genes. For example, miR-342-3p 

can act as a tumor suppressor by inhibiting cancer cell proliferation and invasion through 

targeting DNMT1.
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Figure 4: 
Functional roles of lncRNAs and circRNAs in PDAC: The lncRNAs and circRNAs 

implicated in PDAC are shown. The left half of the circle shows the lncRNAs and their 

downstream targets, cellular phenotype and target genes or pathways affected. For example, 

HOTAIR interacts with EZH2 and binds to the promoter region of miR-34a. This binding 

leads to chromatin modification due to hypermethylation of miR-34a promoter repressing 

its expression. The lncRNA ENST00000480739 acts as an enhancer for OS9, increasing the 

expression of OS9. OS9 potentially binds to the ubiquitination complex comprised of prolyl 

hydroxylase (PHD) and other proteins which lead to the degradation of HIF-1α protein 

changing the hypoxic condition in the cells. The lncRNA PVT1 interacts with the SMAD2/3 

proteins of the TGF-β/SMAD pathway, activating the expression of vimentin and inducing 

EMT changes in pancreatic cancer cells. The lncRNA MALAT1 interacts with EZH2 which 

in turn leads to the hypermethylation of E-cadherin promoter inhibiting its expression and 

increasing invasive potential of pancreatic cancer cells. The lncRNA HOTTIP regulate the 

expression of HOXA9, activating the Wnt-β-catenin pathway and increasing cancer stem 

cell properties of the pancreatic cancer cells. CircRNAs and their target miRNAs are shown 
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in the right half of the circle. For example, circLDLRAD3 sequester miR-137-3p. In the 

absence of miR-137-3p, pleiotrophin (PTN) is expressed and leads to increased proliferation 

and invasion of pancreatic cancer cells. Circ0030235 inhibits the expression of miR-1253 

and miR-1294 and leads to increased cell progression. Circ0007534 acts as a sponge for 

miR-625 and miR-892b and affects apoptosis. Circ-PDE8A targets miR-338 activating the 

MET/AKT pathway and increase invasive potential of pancreatic cancer cells. Circ-IARS 

increases the expression of RhoA by inhibiting miR-122 increasing the permeability and 

invasive potential of pancreatic cancer cells.
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