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Abstract

Mechanisms regulating gene expression in the airway epithelium underlie its response to the 

environment. A network of transcription factors (TFs) and architectural proteins, modulate 

chromatin accessibility and recruit activating or repressive signals. Bromodomain-containing 

proteins function as TFs or by engaging methyltransferase or acetyltransferase activity to induce 

chromatin modifications. Here we investigate the role of Bromodomain Containing 8 (BRD8) in 

coordinating lung epithelial function. Sites of BRD8 occupancy genome-wide were mapped in 

human lung epithelial cell lines (Calu-3 and 16HBE14o-). CCCTC-Binding Factor (CTCF) was 

identified as a predicted co-factor of BRD8, based upon motif over-representation under BRD8 

ChIP-seq peaks. Following siRNA-mediated depletion of BRD8, differentially expressed genes 

with nearby peaks of BRD8 occupancy were subject to gene ontology process enrichment 

analysis. BRD8 targets are enriched for genes involved in the innate immune response and the cell 

cycle. Depletion of BRD8 increased the secretion of the antimicrobial peptide beta-defensin 1 and 

multiple chemokines, and reduced cell proliferation.
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Introduction

The airway epithelium provides a barrier to inhaled challenges and participates in the 

regulation of innate immune responses to these insults. Disruption of epithelial integrity 

underlies several chronic lung diseases, including cystic fibrosis (CF), idiopathic pulmonary 

fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Mechanisms that regulate 

gene expression in the airway epithelium coordinate its response to the environment, both in 

normal and disease states. The transcriptional network in the airway epithelium has been 

well-studied during development, primarily in rodents (reviewed in Herriges and Morrisey 

(2014), and these data provide a valuate framework for understanding the role of specific 

transcription factors (TFs) in the human lung epithelium. The pivotal role of the pioneer TF 

Forkhead box A1 (FOXA1) (Paranjapye, Mutolo, Ebron et al., 2020) and of Ets homologous 

factor (EHF) (Fossum, Mutolo, Yang et al., 2014), in coordinating processes that maintain 

the integrity of the airway epithelial barrier and its response to injury were reported recently. 

Moreover, FOXA1 was shown to directly activate SAM pointed domain-containing ETS 

transcription factor (SPDEF) gene expression and repress HOP homeobox (HOPX1) and 

E74-like ETS transcription 5 (ELF5) genes in primary human bronchial epithelial cells 

(Kerschner, Paranjapye, Yin et al., 2020). EHF also directly represses HOPX1, Krüppel-like 

factor 5 (KLF5) and retinoic acid receptor beta (RARB) expression in these cells. FOXA1 

and EHF also regulate each other (Fossum, Mutolo, Tugores et al., 2017), illustrating the 

complexity of the individual transcriptional networks.

These networks are also coordinated by proteins other than classical transcription factors, for 

example the Bromodomain-containing proteins (BCPs), which have multiple roles in 

regulating gene expression both alone or within larger protein complexes. The underlying 

mechanisms may involve direct regulation of transcription, but more commonly act through 

histone recognition and modification, and chromatin remodeling (reviewed in (Fujisawa and 

Filippakopoulos, 2017)). Many BCPs are extremely well-characterized epigenetic readers, 

which bind to acetylated lysines in histone tails, and provide targets for cancer therapeutics 

(reviewed in (Perez-Salvia and Esteller, 2017)).

Bromodomain containing 8 (BRD8) is thought to be a nuclear receptor co-activator as it 

interacts with the thyroid hormone receptor (THR) and augments thyroid hormone-

dependent activation of gene expression from thyroid response elements (TREs) in a ligand-

dependent manner (Monden, Wondisford and Hollenberg, 1997). However, BRD8 is not 

well studied in the context of the airway epithelium. Our previous work identified (BRD8) 

as a potential repressor of the cystic fibrosis transmembrane conductance regulator (CFTR) 

gene (Mutolo, Leir, Fossum et al., 2018), which is mutated in cystic fibrosis. In order to 

better understand the mechanisms underlying this repression, our goal was to determine the 

BRD8 transcriptional network in the airway epithelium, since this could reveal a direct or 

indirect effect on the CFTR locus. BRD8 was first characterized as “Skeletal muscle 

abundant protein” (SMAP) (Nielsen, Petersen, Gliemann et al., 1996). In addition to its role 

at TREs (Monden et al., 1997), BRD8 is a co-activator of the androgen receptor (AR) 

(Monden et al., 1997,Hosoya, Monden, Fukabori et al., 2008,Jiang, Ruan, Wang et al., 2016) 

and the 9-cis-retinoic acid receptor (RXR) in peroxisome proliferator-activated receptor-

gamma (PPARγ)/RXR heterodimers (Monden, Kishi, Hosoya et al., 1999), and regulates 
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PPARγ-target genes during adipogenesis (Couture, Nolet, Beaulieu et al., 2012). BRD8 is 

also an accessory subunit of the NuA4 histone acetyltransferase (TRRAP/TIP60) complex 

(Doyon, Selleck, Lane et al., 2004), a complex responsible for acetylation of the N-terminal 

tails of histone H4 and H2A in yeast. An expanding literature describes a cancer-associated 

role for BRD8 (reviewed in (Fujisawa and Filippakopoulos, 2017))(Jiang et al., 2016,Yu, 

Chen, Mo et al., 2020) and a function in the maintenance of genome stability (Lashgari, 

Fauteux, Marechal et al., 2018). Here, we investigate the role of BRD8 in coordinating gene 

expression and key biological processes in the normal human lung epithelium. Our studies 

suggest that BRD8 regulates genes and pathways involved in the innate immune response of 

lung epithelial cells.

Materials and Methods

Cell culture and RNAi-mediated knockdown of BRD8

Calu-3 (Shen, Finkbeiner, Wine et al., 1994) and 16HBE14o- (Cozens, Yezzi, Kunzelmann 

et al., 1994) cells were cultured in Dulbecco’s Modified Eagle’s Medium with 10% fetal 

bovine serum. Both Dharmacon and Ambion siRNAs (Suppl. Table S-I) were used. Reverse 

transfections of cells (25,000, 125,000 or 250,000) with siRNA (6, 30 or 60 pmol) were 

performed in multi-well plates (96, 24 or 12-well plates, respectively) using Lipofectamine 

RNAiMax (ThermoFisher). Seventy-two hours after transfection, cells were washed in PBS 

and lysed in TRIzol® (LT) for RNA extraction or in NET Buffer for whole cell lysate (Leir 

and Harris, 2011).

RNA-seq

The quality of RNA from three replicates of control- and BRD8-siRNA transfected cells was 

confirmed by Nanodrop measurement of OD 260/280 and 260/230 ratios and by Tapestation. 

RNA-seq libraries were prepared from 1 μg of total RNA using the TruSeq RNA Sample 

Preparation Kit v2 per the manufacturer’s Low-Throughput protocol (Illumina). Libraries 

were sequenced on an Illumina HiSeq4000 machines. Raw reads were aligned with STAR 

2.6 (Dobin, Davis, Schlesinger et al., 2013) (https://github.com/alexdobin/star). Aligned 

reads were then assigned to genomic features using featureCounts version 1.6.3 in the 

Subread package (https://subread.sourceforge.net) (Liao, Smyth and Shi, 2014) and 

differential gene expression was analyzed using DESeq version 1.22.1 (https://

www.bioconductor.org/packages/release/bioc/html/DESeq2.html) (Love, Huber and Anders, 

2014). All data are deposited at GEO: GSE 158688

Chromatin immunoprecipitation (ChIP)-seq

Chromatin was prepared from Calu-3 and 16HBE4o- cells as described previously (Browne, 

Harris and Leir, 2014) and snap frozen in liquid nitrogen. Chromatin immunoprecipitation 

(ChIP)-seq was performed in 2 biological replicates with an antibody specific for BRD8 

(Active Motif 61007) and CTCF (Millipore 07–729). Libraries were generated by standard 

protocols as described previously (Fossum et al., 2014) and sequenced on an Illumina 

HiSeq4000 machine. Initial raw reads for the Calu-3 BRD8 were processed using the 

AQUAS Transcription Factor and Histone ChIP-Seq processing pipeline (https://github.com/

kundajelab/chipseq_pipeline) according to the ENCODE (phase-3) guidelines on the hg19 
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reference genome. This includes mapping using Bowtie2 and peak calling with MACS2. All 

subsequent dataset processing was done using the WDL-based ENCODE Transcription 

Factor and Histone ChIP-Seq processing pipeline (https://github.com/ENCODE-DCC/chip-

seq-pipeline2). All steps of this pipeline are identical to the previous analysis with the 

exception of BWA as the mapping software. IDR (Irreproducible Discovery Rate) analysis 

was applied to the data in order to identify peaks of high confidence. The ChIP-seq data sets 

are available on GEO (GEO: GSE 158688). Identification of transcription factor motifs in 

the data set and peak annotation based on the nearest gene were also performed using 

HOMER (4.7.2q) (http://homer.ucsd.edu/homer/index.html). Gene Ontology (GO) terms 

enriched among the nearest genes in the ChIP-seq data were determined using the Database 

for Annotation, Visualization, and Integrated Discovery (DAVID) (Huang da, Sherman and 

Lempicki, 2009,Huang da, Sherman and Lempicki, 2009).

Real-time quantitative PCR (RT-qPCR)

The TaqMan® reverse transcription kit (LT) was used to make cDNA from total RNA and 

RT-qPCR then used to measure gene expression levels (primers listed in Suppl. Table S-II).

Western Blotting

Cells were lysed in buffer containing 1% (vol/vol) protease inhibitor cocktail (Sigma P2714) 

and western blots performed as described previously (Leir and Harris, 2011) using BRD8 

(Active Motif 61007) and β-tubulin (Sigma T4026) antibodies.

Cell proliferation assays

For cell proliferation assays, 10,000 Calu-3 cells were reverse transfected with 5 pmol of 

Ambion Silencer Select negative control 2 (#4390846) or BRD8 (#4392420) siRNAs in 96 

well plates, in triplicate. Cells were fixed using methanol: acetic acid (3:1) every 24 hours 

and the number of cells in each well was counted after DAPI staining, using the BioTek 

Lionheart FX automated imager and Gen5 image+ analysis software (BioTek). Three 

independent biological replicates were performed and the data pooled.

Enzyme-linked immunosorbent assay (ELISA)

Cell culture supernatant from siRNA-transfected cells was collected, cleared by 

centrifugation at 280 × g for 10 minutes to remove cell debris and the supernatant was stored 

at −80°C. ELISA kits were used to quantify protein levels of Beta-defensin 1 (PeproTech 

900-K202), C-C motif chemokine 5 (PeproTech 900-M33) and C-X-C motif chemokine 2 

(PeproTech 900-M120). Standard curves were established using serial dilutions of 1:2 

starting with 1000 pg/mL of each target. These assays were performed using the ELISA 

Buffer Kit (PeproTech 900-K00) according to the manufacturer’s protocol.

Results

Genome wide occupancy of BRD8 in airway epithelial cells.

As a first step to understanding the contribution of BRD8 to transcriptional networks in the 

airway, BRD8 ChIP-seq was performed in two biological replicates of chromatin extracted 
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from Calu-3 lung adenocarcinoma cells and 16HBE14o- immortalized bronchial epithelial 

cells. Data from the 2 biological replicates were subjected to irreproducible discovery rate 

(IDR) analysis to generate a single robust dataset for each cell line. Intersecting the BRD8 

ChIP-seq binding sites from both Calu-3 (10,165 sites with peak height >10 from a total of 

54,743 sites) and 16HBE14o- (9,504 sites, all called by the default parameters of the 

pipeline) cells, identified 5,173 sites common to both (Suppl. Fig. S-I). These sites of BRD8 

occupancy were then annotated with respect to the nearest gene (using ChIPseeker (Yu, 

Wang and He, 2015)), identifying 2,859 common genes predicted to be regulated by BRD8 

in both the airway epithelial cell lines (Suppl. Fig. S-II). In both Calu-3 and 16HBE14o- 

cells, the majority of BRD8 binding sites were intergenic or at promoters (< 1kb upstream of 

the transcription start site). A similar genomic distribution was observed for the 5,173 sites 

found in both airway epithelial cell lines.

Next, in order to determine what factors were in complex with BRD8 to recruit it to 

chromatin we used HOMER to predict overrepresented transcription factor binding sites in 

the area under the ChIP-seq peaks. In both Calu-3 (Fig. 1A) and 16HBE14o- (Suppl. Fig. S-

IIIA) cells, the most significant motifs were those for CCCTC-Binding Factor (CTCF) (Bell, 

West and Felsenfeld, 1999) and BORIS/CCCTC-Binding Factor Like (CTCFL)(Loukinov, 

Pugacheva, Vatolin et al., 2002). Also enriched at sites of BRD8 occupancy in both Calu-3 

and 16HBE14o- cells were motifs for two steroid hormone receptors of potential relevance 

to BRD8 functions. The motif for Thyroid Hormone Receptor Beta (THRB) is substantially 

overrepresented (9.56% and 11.67% of targets compared to 3.52% of background) under 

BRD8 ChIP-seq peaks in Calu-3 and 16HBE14o- cells, respectively. Of note, the thyroid 

hormone receptor is a known BRD8 target (Monden et al., 1997). In both Calu-3 and 

16HBE14o- cells the Estrogen Related Receptor Alpha (ERRA/ESRRA) motif is also 

enriched. ESRRA is most closely related to the estrogen receptor, and estrogen receptor 

alpha (ERA), is also a known BRD8 target (Monden et al., 1997,Gevry, Hardy, Jacques et 

al., 2009). Among other motifs that are over-represented under the BRD8 ChIP-seq peaks in 

both cell lines are binding sites for Zic family member 3 (ZIC3) (Ware, Peng, Zhu et al., 

2004) and the BAF chromatin remodeling complex subunit BCL11A.

The contribution of BRD8 to the transcriptome of Calu-3 cells: identification of direct and 
indirect targets.

To detect genes that are directly or indirectly regulated by BRD8 in Calu-3 cells, RNA-seq 

was performed following siRNA-mediated depletion of BRD8. Three replicas of Calu-3 

cells were transfected with BRD8 siRNA or non-targeting control (NC) siRNA. Efficacy of 

the siRNA-mediated reduction of BRD8 is shown by western blot in Fig. 2A. RNA-seq 

libraries were generated for each replicate and six libraries sequenced together on one lane 

of a HiSeq 4000, yielding ~ 4.5 × 107 reads per sample (Suppl. Table S-III). RNA-seq data 

were analyzed by DESeq2 to obtain estimates of the expression levels of transcripts. Of the 

six known BRD8 isoforms (Isoform-1, −2, −4 to −7)(Jiang et al., 2016), our RNA-seq 

analysis identified Isoform-1 and −4 (NM_006696 and NM_001164326) as the major 

isoforms in Calu-3 cells. Depletion of BRD8 in Calu-3 cells altered the expression of 3409 

transcripts (Fig. 2B); 1800 were activated and 1609 were repressed by at least 1.3-fold 

(Suppl. Table S-IV, 1.5 fold change shown). Confirming our earlier data, CFTR expression 
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was significantly enhanced (>1.5 fold change) upon BRD8 depletion. We intersected the 

Entrez Gene ID for genes with Calu-3 BRD8 ChIP-seq peaks near the locus with the list of 

genes that were up- or down- regulated following siRNA-mediated BRD8-depletion in 

Calu-3 cells (Fig. 2B) and performed a gene ontology process enrichment analysis using 

DAVID (Huang da et al., 2009,Huang da et al., 2009). Among processes predicted from the 

up-regulated genes were response to wounding, response to organic substance, immune 

response, inflammatory response and defense response (Fig. 2C). Processes associated with 

down-regulated genes were related to the cell cycle and cell division (Fig. 2D). The full list 

of genes for the 10 most significant processes associated with up- or down-regulated genes 

are shown in Suppl. Tables S-V and S-VI, respectively. To further validate the RNA-seq data 

we measured the expression of 5 genes that were up-regulated upon BRD8 depletion and 5 

that were down-regulated using RT-qPCR (Fig. 2E). Assays were performed on RNA 

extracted from independent samples of BRD8- or negative control- siRNA-treated Calu-3 

cells. Among genes up-regulated upon BRD8 depletion that are involved in the immune 

response of the airway, C-X-C Motif Chemokine Ligand-6 (CXCL6, P < 0.01), defensin 

beta 1 (DEFB1, P < 0.01) and C-C Motif Chemokine Ligand-5 (CCL5, P < 0.01) were also 

significantly up-regulated in RT-qPCR assays (Fig. 2E). In contrast, the increase in C-X-C 

Motif Chemokine Ligand-17 (CXCL17) after BRD8-depletion did not reach significance, in 

part due to large inter-sample variation. Similarly, the C-C Motif Chemokine Ligand-2 

(CCL2), which did not show altered abundance following BRD8-depletion in the RNA-seq 

data also showed no significant change by RT-qPCR analysis. Among genes down-regulated 

after BRD8-depletion, RT-qPCR assays confirmed a significant reduction in transcripts for 

Cell Division Cycle 25C (CDC25C, P < 0.01), Citron Rho-Interacting Serine/Threonine 

Kinase (CIT, P < 0.001), Centromere Protein F (CENPF, P < 0.05) and Cell Division Cycle 

Associated 2 (CDCA2, P < 0.01) (Fig. 2E). The decrease in expression of Abnormal Spindle 

Microtubule Assembly (ASPM) was not significant. We also confirmed the reduction in 

BRD8 expression (P<0.0001). These data suggest the RNA-seq data are robust and identify 

a role for BRD8 in regulating both the innate immune response and the cell cycle in airway 

epithelial cells. Further validation of these results in 16HBE14o- cells upon BRD8 depletion 

is shown in Figure S-V, where cell cycle genes are responsive to loss of BRD8. However, the 

observation that not all the immune response genes identified as BRD8 targets in Calu-3 

cells are significantly altered in 16HBE14o- cells is likely due to their very low transcript 

abundance in this cell line.

Effect of siRNA-mediated BRD8-depletion on chemokine secretion and cell proliferation

Since immune-response genes were up-regulated following BRD8-depletion, we next 

measured the secretion of beta-defensin 1 (DEFB1), C-C motif chemokine 5 (CCL5) and C-

X-C motif chemokine 2 (CXCL2) proteins from Calu-3 cells transfected with BRD8-siRNA 

or a non-targeting control sequence. BRD8-depleted Calu-3 cells secreted substantially more 

DEFB1 (P < 0.001), CCL5 (P < 0.0001) and CXCL2 (P < 0.01) protein into their growth 

media than control siRNA-transfected cells, as measured by ELISA (Fig. 3A). To determine 

whether the impact of BRD8 on these immune mediators was a direct effect, we examined 

the BRD8 ChIP-seq IDR data in Calu 3 cells. At the DEFB1 locus multiple sites of BRD8 

occupancy were evident, one at the promoter, one intronic, and both 5’ and 3’ (two) 

intergenic sites (all denoted by arrows, Fig. 3C), suggesting direct regulation of the gene. 
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Similarly, BRD8 occupancy was seen at the CXCL2 promoter (Fig.3D) consistent with a 

direct regulatory mechanism.

Next, to determine whether siRNA-mediated depletion of BRD8 impaired the growth rate of 

Calu-3 cells, as might be predicted from the repression of cell cycle-related genes, we 

performed cell proliferation assays in a BioTek Lionheart FX automated microscope. Ten 

thousand Calu-3 cells were reverse-transfected with 5 pmol of negative control or BRD8 

siRNAs and seeded into 96 well plates, in triplicate. Cells were fixed using methanol:acetic 

acid (3:1) every 24 hours post transfection to 120 hours and the cell number in each well was 

counted after DAPI staining. A reproducible inhibition of cell proliferation was evident by 

72 after BRD8 depletion compared to non-targeting control, which is statistically significant 

at 96 and 120 hours (Fig. 3B), consistent with the gene expression data.

The BRD8 transcriptional network in airway epithelial cells

Our earlier work on the role of key transcription factors (TFs) in coordinating the function of 

the airway epithelium illustrates a complex network of interacting factors (Paranjapye et al., 

2020,Fossum et al., 2014,Fossum et al., 2017). To determine how BRD8 integrates into this 

network, we first looked for TFs that might be its direct targets. To achieve this, the list of 

BRD8-regulated genes (DEGs upon BRD8-depletion) that have nearby BRD8 ChIP-seq 

peaks was intersected with ~ 1500 factors included in the Dharmacon siGENOME siRNA 

library for human TFs. Sixty five TFs (30 up-regulated and 35 down-regulated) with a 

greater than 1.5 fold change in expression after BRD8 depletion and nearby peaks of BRD8 

occupancy were identified (Table I). Among up-regulated TFs is Forkhead box A1 

(FOXA1), which we recently showed to have an important role in maintenance of airway 

epithelial barrier integrity (Paranjapye et al., 2020). As shown in Fig. 3E sites of BRD8 

occupancy are seen upstream of the promoter for the FOXA1 gene, in the first intron, and 

also in the second exon. Several immune response-related TFs were also identified in the up-

regulated gene list; NFKB inhibitor zeta (NFKBIZ) (Fig. 3F) (Totzke, Essmann, Pohlmann 

et al., 2006), Early growth response 2 (EGR2) (Singh, Miao, Symonds et al., 2017) CCAAT 

enhancer binding protein-alpha and -delta (CEBPA and CEBPD) (latter shown in Fig. 3G) 

(Balamurugan and Sterneck, 2013,Didon, Roos, Elmberger et al., 2010). Validation of the 

impact of BRD8-depletion on expression of these genes is shown in Supplementary Figure 

S-VI. In contrast, several genes encoding chromatin-remodeling factors were seen in the 

down-regulated upon BRD8-depletion list (Table 1). These include, SWI/SNF Related, 

Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A, Member 

1(SMARCA1) and Helicase Like Transcription Factor (HLTF) which encode two members 

of the SWI/SNF family that regulate gene transcription by altering local chromatin structure. 

Also in this list are Remodeling and spacing factor 1 (RSF1), which encodes a nuclear 

protein component of the RSF chromatin-remodeling complex (Loyola, Huang, LeRoy et 

al., 2003). These data illustrate how the impact of BRD8 on the airway cell gene regulatory 

network may be amplified by modulating the expression level of other critical TFs.

Bifunctional Role of BRD8 as a Transcriptional activator or Repressor

Our initial interest in the function of BRD8 was as a repressor of the CFTR gene. However, 

the genome-wide data presented above documented similar numbers of genes that were 
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activated (1800) or repressed (1609) by at least 1.3-fold upon BRD8-depletion. To learn 

more about the regulatory mechanism whereby BRD8 impairs or enhances gene expression 

genome-wide, we intersected sites of BRD8 occupancy with the genomic location of 

repressive or active histone marks. ChIP-seq data generated using antibodies specific for 

repressive (H3K9me2, H3K27me3) or active histone marks (H3K27ac) were generated in 

Calu-3 cells. Figure 4 shows the intersection of sites of BRD8 occupancy with H3K9me2 

(Fig. 4A), H3K27me3 (Fig.4B) and H3K27ac (Fig. 4C) using ChIPseeker (Yu et al., 2015). 

Though H3K9me2 and H3K27me3 were not substantially enriched at BRD8 sites, 

H3K27Ac was noticeably enhanced. Though we have not exhaustively examined other 

negative histone modifications in Calu-3 cells, these data suggest that the direct actions of 

BRD8, which coincide with sites of chromatin occupancy, are associated with activation of 

gene expression. The repressive activity of BRD8 observed on many loci may instead be an 

indirect effect coinciding with the activation of other repressive factors. This would appear 

to be the case for the repression of CFTR, as though BRD8 may be seen at the gene 

promoter in Calu-3 cell ChIP-seq data, this occupancy is inconstant.

Recruitment of CTCF at a subset of BRD8 binding sites.

In HOMER analysis of the BRD8 ChIP-seq data in Calu-3 cells (Fig 1A) and 16HBE14o- 

cells (Suppl. Fig S-III), the most over-represented motifs in both known and de novo 
predictions were CCCTC binding factor (CTCF) or BORIS/CTCFL. Since BRD8 is not 

predicted to bind directly to DNA, an association with CTCF/CTCFL could be an effective 

route to achieving chromatin proximity (Pena-Hernandez, Marques, Hilmi et al., 2015). To 

further explore the potential contribution of CTCF to the mechanism of action of BRD8, we 

performed ChIP-seq to map CTCF binding sites genome-wide in two biological replicates of 

Calu-3 cells. The efficacy of the ChIP-seq experiment is demonstrated by the HOMER 

analysis in Fig 1B, where more than 30% of target sequences contain a motif for CTCF or 

CTCFL. Next, peaks of occupancy from the BRD8 (9,768) and CTCF (16,412) ChIP-seq 

experiments in Calu-3 cells were intersected using ChIPseeker (Yu et al., 2015) and showed 

that ~70% of BRD8 sites overlapped a CTCF site (Fig. 1C), thus supporting the in silico 
predictions. Moreover, the genomic distribution of overlapping BRD8 and CTCF sites was 

similar to each factor independently (Fig. 1D-F). Inspection of the location of sites of BRD8 

occupancy relative to the center of CTCF ChIP-seq peaks showed a strong correlation, 

though with an asymmetric curve leaning towards the 5’ side (Suppl. Fig. S-IV).

In order to reveal more details of the TFs that may be involved at coincident sites of BRD8 

and CTCF occupancy a HOMER analysis was performed on this subset of BRD8 peaks 

(Suppl. Fig S-IIIB). As for the full set of BRD8 peaks in 16HBE14o- cells, THRB was 

among over-represented, known motifs in the coincident sites for BRD8 and CTCF 

occupancy in Calu-3 cells, as was ERRA, consistent with these hormone receptors being 

recruited to the regulatory complex.

Discussion

Mechanisms that regulate gene expression in the airway epithelium are central to how this 

tissue responds to the environment, both in normal and disease states. The role of 
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Bromodomain Containing 8 (BRD8) and its transcriptional network in the lung epithelium 

remains unexplored. Here, we reveal the BRD8 occupancy profile genome-wide in human 

lung epithelial cell lines and defined the contribution of BRD8 to their transcriptome. We 

show that BRD8 targets genes involved in the innate immune response. Consistent with this 

observation, siRNA-mediated depletion of BRD8 increased the secretion of antimicrobial 

peptide, Beta-defensin 1 and the chemotactic proteins; C-C Motif Chemokine 5 (CCL5) and 

C-X-C Motif Chemokine 2 (CXCL2) from Calu-3 cells. Inspection of over-represented 

motifs within BRD8 ChIP-seq peaks from two airway epithelial cell lines (Calu-3 and 

16HBE14o-) consistently identified CCCTC-Binding Factor (CTCF) at the top of the list, 

and hence as a potential co-factor of BRD8. CTCF has a major role as an architectural 

protein involved in chromatin organization (Bonev and Cavalli, 2016,Ghirlando and 

Felsenfeld, 2016,Ong and Corces, 2014)}, though it may also modulate gene expression 

directly, by binding to transcription start sites (Nora, Goloborodko, Valton et al., 2017). To 

determine whether BRD8 and CTCF proteins co-localize genome-wide, we performed 

CTCF ChIP-seq in Calu-3 cells and intersected these data with our BRD8 occupancy profile. 

Around 40% of sites of CTCF occupancy overlapped a BRD8 binding site, suggesting a 

functionally significant coincidence between these elements. This hypothesis is supported by 

work that identified BRD8 as a CTCF interactor by mass spectrometry following CTCF 

immunoprecipitation in MDA-MB-435 breast cancer cells (Pena-Hernandez et al., 2015). 

CTCF also cooperates with another Bromodomain-containing protein, BRD2, in mouse T 

lymphocytes and erythroid cells (Hsu, Gilgenast, Bartman et al., 2017,Cheung, Zhang, 

Jaganathan et al., 2017). We compared the motifs over-represented within the BRD8 peaks 

that overlapped (BRD8-CTCF coincident) or did not overlap (BRD8-selective) a CTCF site. 

Of note, CTCF and BORIS/CTCFL remained the most significantly overrepresented motifs 

within both groups. Although BORIS/CTCFL can bind and compete with CTCF at a subset 

of sites (Pugacheva, Rivero-Hinojosa, Espinoza et al., 2015,Sleutels, Soochit, Bartkuhn et 

al., 2012) it is of very low abundance in both Calu-3 and 16HBE14o- cells, so CTCF is 

likely the main protein occupying these motifs in this cellular context. However, since ~30% 

of BRD8 sites did not overlap with peaks of CTCF binding in the Calu-3 ChIP-seq data, 

BRD8 probably also forms complexes with other factors that are recruited to chromatin.

Based upon known motif predictions (Suppl. Fig. S-IIIB), these factors likely include the 

hormone receptors, THRB and ERRA/ESRRA, which are both abundant transcripts in 

Calu-3 and 16HBE14o- cells and, based on biochemical protocols, were previously reported 

to interact with BRD8 (Monden et al., 1997,Gevry et al., 2009). Also of interest are motifs 

for different C2H2-type zinc finger protein family members including, Zic Family Member 

3 (ZIC3), a known motif in BRD8-CTCF coincident sites (Suppl. Fig. S-IIIB) and ZIC1 and 

ZIC2 among de novo motifs in the BRD8-selective sites (Suppl. Fig. S-IIIC). Although 

ZIC1, −2 and −3 are important during development their role in the lung epithelium is 

unknown. ZIC1 and ZIC2 are robustly expressed in the two lung cell lines examined here, 

while ZIC3 is not.

Of relevance with respect to the dominant functions of BRD8 as an activating or repressive 

TF in airway epithelial cells, intersection of our ChIP-seq data for H3K27ac, H3K27me3 

and H3K9me2 suggests that the strongest correlation of sites of BRD8 occupancy is with 

active chromatin (H3K27Ac).
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BRD8 targets genes involved in the innate immune response

BRD8 directly repressed genes involved in the innate immune response. Of these, Beta-

defensin 1 (DEFB1) encodes an antimicrobial protein found in the airway epithelium (Zhao, 

Wang and Lehrer, 1996) that participates in the resistance of the lung epithelium to 

microbial colonization (Laube, Yim, Ryan et al., 2006). Neutrophils are essential effector 

cells of the innate immune response and express chemokine receptor CXC chemokine 

receptor 2 (CXCR2) that binds chemokines including C-X-C Motif Chemokine Ligand-2 

and −6 (CXCL2 and CXCL6) to facilitate neutrophil recruitment to the lung (Reutershan, 

Morris, Burcin et al., 2006,Nagarkar, Wang, Shim et al., 2009,Wareing, Shea, Inglis et al., 

2007). The expression of both CXCL2 and CXCL6 was inhibited by BRD8 in Calu-3 cells. 

CXCL6 (also known as Granulocyte chemotactic protein 2 (GCP-2) can also bind to the 

CXC chemokine receptor 1 (CXCR1) on neutrophils {(Proost, Wuyts, Conings et al., 1993);

(Wuyts, Van Osselaer, Haelens et al., 1997). BRD8 also repressed the expression of CCL5 

(also known as RANTES), which attracts T lymphocytes, eosinophils and basophils 

expressing the C-C chemokine receptor type 5 (CCR5) receptor (Kameyoshi, Dorschner, 

Mallet et al., 1992,Schall, Bacon, Toy et al., 1990,Kuna, Reddigari, Schall et al., 

1992,Mattoli, Ackerman, Vittori et al., 1995). Another chemokine inhibited by BRD8 was 

CXCL17, a potent chemoattractant for immature dendritic cells and blood monocytes to the 

lungs, which also exhibits strong antimicrobial activity (reviewed in (Choreno-Parra, 

Thirunavukkarasu, Zuniga et al., 2020)). The impact of BRD8 on the expression of innate 

immune response genes may also be amplified through its activation or repression of other 

transcription factors. Notably, we identified several genes encoding TFs that were direct 

targets of BRD8, including NFKB inhibitor zeta (NFKBIZ), Early growth response 2 

(EGR2), CCAAT enhancer binding protein-alpha and -delta (CEBPA and CEBPD). 

NFKBIZ encodes a regulator of inflammatory genes activated through TLR/IL-1 receptor 

signaling and is known to regulate NF-kB transcription factor complexes (Totzke et al., 

2006). EGR2 represses excessive immune activation in T lymphocytes (Singh et al., 2017). 

CEBPD encodes an important mediator of innate immunity (Balamurugan and Sterneck, 

2013) and binds to DNA as a homodimer or as a heterodimer with the related protein, 

CEBPA. Lung-specific inactivation of CEBPA impairs mouse lung development and 

epithelial differentiation, with animals developing a severe pathological state similar to 

chronic obstructive pulmonary disease (Didon et al., 2010).

Role of BRD8 and the cell cycle

Consistent with the observation that depletion of BRD8 down-regulated cell cycle-related 

genes in the Calu-3 airway epithelial cell line, loss of BRD8 also impaired the growth rate of 

Calu-3 cells. Similarly, depletion of BRD8 by RNAi reduced the proliferation of other cell 

lines including colon (HCT-116 cells) (Lashgari et al., 2018,Yamaguchi, Sakai, Shimokawa 

et al., 2010,Yamada and Rao, 2009) and prostate (LnCAP cells) cancer cells (Jiang et al., 

2016). In summary, our data show that BRD8 has both potent activating and repressive 

functions in coordinating a transcriptional network in airway epithelial cells. Most 

importantly, in terms of lung disease, BRD8 regulates both the innate immune response and 

cell proliferation in these cells. This is achieved by multiple mechanisms, some involving 

CTCF and others likely dependent upon the recruitment of other transcription factors and 

co-factors.
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Highlights

• Sites of Bromodomain Containing 8 (BRD8) occupancy genome-wide were 

mapped in human lung epithelial cell lines (Calu-3 and 16HBE14o-).

• CCCTC-Binding Factor (CTCF) and several hormone receptors were 

identified as predicted co-factors of BRD8.

• Following siRNA-mediated depletion of BRD8, differentially expressed genes 

with peaks of BRD8 occupancy nearby were subject to gene ontology process 

enrichment analysis.

• BRD8 targets are enriched for genes involved in the innate immune response 

and the cell cycle. Depletion of BRD8 increased the secretion of the 

antimicrobial peptide beta-defensin 1 and multiple chemokines, and 

decreased cell proliferation.
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Figure 1. ChIP-seq identifies sites of BRD8 and CTCF occupancy genome-wide.
A, B, The top 7 enriched motifs under BRD8 (A) or CTCF (B) ChIP-seq peaks in Calu-3 

cells. Motifs are ranked by their % incidence in target and background regions. C, Venn 

diagram showing the intersection of the BRD8- and CTCF- peaks in Calu-3 cells. D-F, 

Distribution of BRD8 peaks (D), CTCF peaks, (E) and overlapping BRD8 and CTCF peaks 

(F) in Calu-3 cells according to genomic features.
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Fig. 2. 
BRD8-depletion followed by RNA-sequencing reveals its role in regulating the 

transcriptome of Calu-3 cells. A, Efficacy of siRNA-mediated depletion of BRD8 in Calu-3 

cells shown by western blot of cell lysates probed with an antibody specific for BRD8. B, 

Venn diagram showing the numbers of differentially expressed genes (after BRD8-

depletion) with nearby BRD8 ChIP-seq peaks in Calu-3 cells. C, D, the top 15 statistically 

over-represented gene ontology processes of the genes with nearby BRD8 ChIP-seq peaks 

that were activated (C) or repressed (D) following BRD8-depletion in Calu-3 cells. (F) RT-
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qPCR validation of differentially expressed genes in BRD8-siRNA-depleted and non-

targeting (NC) siRNA-treated cells. Data are normalized to β−2 microglobulin (mean ± SD, 

n = 3) in comparison with NC siRNA (NC, black bars, BRD8 siRNA white bar). *P < 0.05, 

**P < 0.01 and ***P < 0.001 compared to NC siRNA-transfected cells.
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Figure 3. Effect of BRD8-depletion on airway epithelial function.
A, Secretion of beta-defensin 1 (DEFB1), C-C motif chemokine 5 (CCL5) and C-X-C motif 

chemokine 2 (CXCL2) into media conditioned by negative control (NC)- or BRD8-depleted 

Calu-3, quantified by colorimetric sandwich ELISA (n=3). **P < 0.01, ***P < 0.001 and 

****P < 0.0001 compared to NC siRNA-transfected cells. B. Effect of BRD8-depletion on 

Calu-3 cell proliferation shown by using relative cell counts from 24 to 120 hr post 

transfection with Ambion siRNA (targeting BRD8 or a non-targeting control), (n=3). Error 

bars represent SEM. Statistics performed using an unpaired t-test (*P < 0.05, **P < 0.01). C-
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G, Identification of sites of BRD8 occupancy at BRD8-regulated loci. Arrows denote the 

location of BRD8 ChIP-seq peaks in: (C) the DEFB1 locus, (D) the CXCL2 locus, (E) the 

FOXA1 locus, (F) the NFKBIZ locus, (G) the CEBPD locus.
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Figure 4. BRD8 occupancy coincides with active histone modification.
Intersection of BRD8 ChIP-seq peaks with ChIP-seq data for repressive (A, B) and active 

(C) histone marks. Heatmaps show the intersection of sites of BRD8 occupancy with (A) 

H3K9me2, (B) H3K27me3 and (C) H3K27ac using ChIPseeker with a window size of ± 3 

kb from the center of the BRD8 peak.
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Table 1.

Transcription Factor Genes that are up- (left side) or down- (right side) regulated following BRD8-depletion 

and have nearby BRD8 ChIP-seq binding sites

Gene base Mean Actual Fold Change (Up) Gene base Mean Actual Fold Change (Down)

1 CEBPA 27 4.3 1 RUNX3 147 4.1

2 NR1H4 471 3.5 2 BRD8 2050 2.5

3 KLF2 92 3.0 3 CBL 1420 2.0

4 POU2F3 174 3.0 4 FOXN3 266 1.9

5 EGR2 85 2.7 5 CAMK4 313 1.9

6 IRX3 21 2.6 6 IKZF3 285 1.8

7 RORC 272 2.5 7 ETS1 3857 1.8

8 MAF 28 2.4 8 ETV5 2311 1.7

9 EGR3 88 2.3 9 SHPRH 259 1.7

10 EGR1 2533 2.1 10 SCML1 618 1.7

11 IRX5 54 2.0 11 MED14 2544 1.7

12 FOS 938 1.9 12 SMARCA1 1410 1.7

13 CEBPD 652 1.9 13 PTTG1 2196 1.7

14 HES6 96 1.8 14 HMBOX1 260 1.6

15 SERTAD1 990 1.8 15 TRIP13 656 1.6

16 ANKRD1 237 1.8 16 HLTF 3899 1.6

17 NFE2 75 1.8 17 TFDP2 1234 1.6

18 FOXA3 1158 1.7 18 ANKRD26 545 1.6

19 MYB 133 1.7 19 FOSB 196 1.6

20 BCL3 615 1.6 20 TAF4B 345 1.5

21 FOXA1 757 1.6 21 RSF1 2045 1.5

22 BTG2 265 1.5 22 CLOCK 922 1.5

23 NOSTRIN 785 1.5 23 CIITA 147 1.5

24 TAX1BP3 195 1.5 24 HIVEP3 148 1.5

25 NFKBIZ 6424 1.5 25 ZNF496 382 1.5

26 MUC1 9793 1.5 26 ETV1 966 1.5

27 PAX8 864 1.5 27 HMGN5 792 1.5

28 ZFP36 1663 1.5 28 MYCN 228 1.5

29 MITF 1562 1.5 29 MEF2C 243 1.5

30 NMI 1403 1.5 30 PIR 318 1.5

31 NR1D2 1678 1.5

32 SHOX2 851 1.5

33 HMGB2 2819 1.5

34 SP4 1041 1.5

35 RFX3 1006 1.5
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