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Abstract
Background and purpose: Evidence on regional changes resulting from neurodegen-
erative processes underlying primary progressive multiple sclerosis (PPMS) is still 
limited. We assessed brain region volumes and their relationship with disability pro-
gression and cognitive function in PPMS patients.
Methods: This was an MRI analysis of 43 patients from the prospective Understanding 
Primary Progressive Multiple Sclerosis (UPPMS) cohort study. MRI scans were per-
formed within 3 months before enrollment and at month 12.
Results: Gray matter volume of declive and white matter volumes adjacent to left 
straight gyrus, right calcarine sulcus, and right inferior occipital gyrus significantly 
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1  | INTRODUC TION

Neurological processes underlying primary progressive multiple 
sclerosis (PPMS) entail central nervous system changes that may be 
evident in magnetic resonance imaging (MRI). Although PPMS pa-
tients usually have fewer brain T2 lesions and gadolinium-enhanced 
T1 lesions than those with relapsing–remitting disease, they also 
exhibit more brain/spinal cord atrophy and T2 lesions in the spinal 
cord (Antel et al., 2012; Hawker, 2011). The neurodegenerative pro-
cess that occurs in PPMS appears to spread across connected struc-
tures in the brain while proceeding independently in the spinal cord 
(Rovaris et  al.,  2008; Ruggieri et  al.,  2015). However, evidence of 
gadolinium-enhanced lesions in PPMS patients also suggested the 
existence of active inflammation (Ziemssen et al., 2015).

As demyelination and axonal loss translate into the accumula-
tion of neurological disability, certain MRI findings may play a role 
as disease progression markers. Changes in lesion number or brain 
and spinal cord volumes seem to correlate with the degree of dis-
ability in PPMS patients (Popescu et al., 2013; Rovaris et al., 2008; 
Stevenson et al., 2004; Ukkonen et al., 2003). They also exhibit ab-
normalities in white and gray matter, though more pronounced gray 
matter changes were suggested (Rovaris et al., 2008; Sastre-Garriga 
et al., 2005). In addition, gray matter atrophy seems to be a regional 
phenomenon that occurs at different rates across the brain (Eshaghi 
et  al.,  2014; Sepulcre et  al.,  2006). Regions with an active metab-
olism, more interconnections with other brain areas or potentially 
affected by meningeal inflammation may be more prone to atrophy 
and their volume loss associated with disability worsening (Eshaghi 
et al., 2014). However, scant information is still available on the ef-
fect of specific brain region volumes in this patient population.

Progressive neurological degeneration of PPMS may also affect 
cognitive functioning, leading to a more frequent and severe im-
pairment than the relapsing–remitting course (Jonkman et al., 2015; 
Planche et al., 2016). Cognitive performance in PPMS patients seems 
to be associated with brain volumes, white/gray matter volumes, dis-
ease lesions, and certain brain structures (Jonkman et al., 2015; Tur, 
Penny, et al., 2011). Accumulation of T2 lesions and the consequent 
exhaustion of frontal lobe plasticity might also contribute to cogni-
tive impairment in these patients (Rocca et al., 2010). Although some 
brain areas could be particularly involved in neuropsychological test 
performance, no specific region was clearly identified as a cognitive 
impairment predictor.

In light of the above, we further assessed brain volumes of spe-
cific regions of PPMS patients and their relationship with disability 
progression and cognitive function over one year.

2  | METHODS

2.1 | Study design and participants

This was an analysis of MRI scans from the prospective 
Understanding Primary Progressive Multiple Sclerosis (UPPMS) co-
hort study, which was conducted in the Neurology departments of 
11 Spanish hospitals. The study was performed according to Good 
Pharmacoepidemiology Practices, the World Medical Association 
Declaration of Helsinki, all its amendments, and national regulations. 
It was approved by the ethics committee of Hospital Universitario 
12 de Octubre (Madrid, Spain), and all patients gave their written 
informed consent.

decreased from baseline to month 12. Baseline white matter volumes adjacent to right 
amygdala and left cuneus significantly differed between patients with and without 
disability progression, as well as baseline gray matter volumes of left cuneus, right par-
ahippocampal gyrus, right insula, left superior frontal gyrus, declive, right inferior tem-
poral gyrus, right superior temporal gyrus (pole), and right calcarine sulcus. Baseline 
gray matter volumes of right cuneus and right superior temporal gyrus positively cor-
related with 12-month Selective Reminding Test and Word List Generation perfor-
mance, respectively. Gray matter changes in right superior semilunar lobe and white 
matter adjacent to left declive and right cerebellar tonsil also positively correlated with 
Word List Generation scores, while white matter change in left inferior semilunar lobe 
positively correlated with Symbol Digit Modalities Test performance after 12 months.
Conclusions: White and gray matter volumes of specific brain regions could predict 
disability progression and cognitive performance of PPMS patients after one year.

K E Y W O R D S

brain volume, cognitive function, disability progression, magnetic resonance imaging, primary 
progressive multiple sclerosis
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The study population included 43 patients aged ≥ 18 years, di-
agnosed with PPMS according to 2010 McDonald criteria, (Polman 
et al., 2011) and within ten years from its neurologic symptom onset. 
Patients must have had an MRI scan within the three months previ-
ous to their inclusion into the study and no disease-modifying treat-
ment within the past six months. Participation in any clinical trial and 
any medical condition that prevented adequate diagnostic evalua-
tion were exclusion criteria.

2.2 | Assessments

Clinical and MRI data were collected at patient enrollment (baseline) 
and after 12 months. These data included demographics, medical 
history of multiple sclerosis, MRI findings, neurological disability as-
sessments, and cognitive function evaluations.

The baseline MRI scan was performed within the three months 
previous to enrollment as per inclusion criteria. When the investi-
gator did not plan to conduct a 12-month MRI scan due to clinical 
reasons, it could be conducted for study purpose following clini-
cal practice procedures and provided that the patient agreed. The 
following acquisition parameters were recommended: 1.5-3T, slice 
thickness < 2 mm, repetition time 9.7 ms, Echo time 4 ms, inversion 
time 20 ms, and acquisition T2-FLAIR. A copy of MRI scans was ano-
nymized and sent to Brain Dynamics S.L. (Málaga, Spain) for central 
volume assessment through an online platform (BD-Neuroimaging 
Platform), which was designed to use images acquired from a wide 
range of machines and used a model for tissue classification achiev-
ing an accuracy of 93% (Feng et  al.,  2014). Every image was as-
sessed under an individualized quality control system, based on the 
NiftyReg Library applied to the International Consortium for Brain 
Mapping (ICBM) atlas in the space MNI152. The system converted 
from DICOM to a more processable format and then applied inhomo-
geneity correction and intensity normalization techniques to reach 
the best 3D reconstruction, segmentation, and data extraction. 
Normalization of T1 images in MNI space and bias field correction 
were done according to (Tustison et al., 2010), tissue segmentation 
(white and gray matter) as per (Avants et al., 2011), and multi-atlas 
anatomical brain parcellation and labeling for data extraction as per 
(Wang et al., 2013). T1-weighted images were used to measure brain 
volume changes, including the computation of 252 anatomic brain 
region volumes, and fluid-attenuated inversion recovery (FLAIR) im-
ages were used to locate and quantify brain lesions, thus avoiding 
the incorrect classification of lesion volumes as gray matter volumes 
(Chard et al., 2010). Hyperintense regions in T2-FLAIR images were 
assessed as lesion burden estimation according to parameters es-
tablished in the literature (Ong et al., 2012). T1, FLAIR, and proton 
density sequences were needed to assess black holes. Brain volume 
changes were measured considering the whole brain, gray and white 
matter, and each anatomic brain region. Copies of MRI scans were 
also sent to Hospital Universitari I Politècnic La Fe (Valencia, Spain), 
where an experienced neuroradiologist (JCP) quantified the number 
of new or enlarged T2 lesions.

Disability progression was assessed according to the Expanded 
Disability Status Scale (EDSS; ≥1-point increase in patients with 
a baseline score  ≤  5.0 or  ≥  0.5 points in those with a baseline 
score ≥ 5.5 and confirmed ≥ 3 months later), 9-Hole Peg Test (9-HPT; 
≥20% increase from baseline and confirmed ≥ 3 months later), and/
or Timed 25-Foot Walk (T25-FW; ≥20% increase from baseline and 
confirmed ≥ 3 months later; Lublin et al., 2016).

The Brief Repeatable Neuropsychological Battery (BRNB) was 
used to assess patient cognitive function (Boringa et  al.,  2001). It 
included the Selective Reminding Test (SRT), which provided infor-
mation on long-term storage (LTS), consistent long-term retrieval 
(CLTR), and selective reminding test-delayed recall (SRT-D), along 
with the Spatial Recall Test (SPART) and delayed recall (SPART-D), 
Symbol Digit Modalities Test (SDMT), Paced Auditory Serial Addition 
Test at a 3-s rate (PASAT3) and 2-s rate (PASAT2), and Word List 
Generation (WLG). Higher scores on these scales indicated a better 
cognition performance.

2.3 | Statistical analysis

The number of new/enlarged MRI lesions was described, and brain 
volume changes from baseline to month 12 were analyzed using 
Wilcoxon or t tests. The relationship of baseline and month-12 vol-
umes with disability progression was analyzed using R language to 
perform a Kruskal–Wallis hypothesis test, estimating the difference 
between patients with and without progression and the optimal 
cutoff. Mean values and 95% confidence intervals were calculated 
using the bootstrapping technique, supporting the robustness of 
the analysis. Furthermore, baseline volumes and changes after 
12 months were correlated with BRBN scores throughout the study 
using Spearman's rank correlations. Correction for multiple compari-
sons was performed when assessing relationships/correlations in 
this study.

Missing data were not considered in the analyses, and a signif-
icance level of 0.05 was used for statistical testing. The statistical 
analyses were performed using the Statistical Package for the Social 

TA B L E  1  Baseline patient characteristics (N = 43)

Patient characteristics Value

Age (years), mean ± SD 55.7 ± 9.5

Sex, n (%)

Male 28 (65.1)

Female 15 (34.9)

Time since multiple sclerosis diagnosis (years), 
mean ± SD

4.8 ± 5.4

EDSS score, mean ± SD 5.1 ± 1.6

Relapses in the previous year, n (%) 1 (2.3)a 

Note: Abbreviations: EDSS, Expanded Disability Status Scale; SD, 
standard deviation.
aThis patient experienced a relapse in the previous year with gait 
involvement. 



4 of 14  |     PÉREZ-MIRALLES et al.

Sciences version 17.0 (SPSS Inc,) and R version 3.5.1 (R Foundation 
for Statistical Computing).

3  | RESULTS

3.1 | Patient characteristics

Forty-three of the 55 patients enrolled in the UPPMS study be-
tween January and July 2017 had MRI scans available for brain 
volume assessment. Their mean age was 55.7  ±  9.5  years and 
65.1% were male (Table 1). The mean time since multiple sclerosis 

diagnosis and EDSS score were 4.8 ±  5.4  years and 5.1  ±  1.6, 
respectively.

3.2 | MRI assessment

Ten patients showed a mean of 1.8 ±  1.3 new/enlarged MRI le-
sions at month 12. Whole brain, gray matter, and white matter vol-
umes did not change significantly, with mean absolute changes of 
−2596.8 ± 54,612.5, −795.4 ± 35,930.0, and −1801.3 ± 21,810.4 mm3, 
respectively. However, significant decreases from baseline to month 
12 were shown in volumes of white matter adjacent to left straight 

Volume (mm3) Baseline Mean (95% CI)
Month 12 Mean (95% 
CI) p

WM adjacent to left straight 
gyrus

1,032.6 (959–1120) 934.0 (868–1040) .006

GM declive (V7) 1,192.0 (1130–1310) 1,106.3 (1020–1240) .016

WM adjacent to right 
calcarine sulcus

20,399.9 (18239–22560) 17,157.5 (15347–18943) .018

WM adjacent to right inferior 
occipital gyrus

2,290.3 (2050–2630) 2042.7 (1860–2330) .049

GM left transversal temporal 
gyrus

786.8 (719–872) 839.4 (771–918) .031

WM adjacent to left middle 
temporal gyrus (pole)

288.0 (252–315) 321.6 (280–350) .045

GM right precentral gyrus 9,756.1 (9460–10200) 10,032.2 (9810–10600) .046

WM right inferior fronto-
occipital fasciculus

3,944.3 (3770–4420) 4,023.2 (3750–4390) .047

Note: Abbreviations: CI, confidence interval; GM, gray matter; WM, white matter.

TA B L E  2  Significant changes in MRI 
scans from baseline to month 12

F I G U R E  1  Location of main volumetric differences from baseline to month 12. A, anterior; I, inferior; L, left; P, posterior; R, right; S, 
superior
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F I G U R E  2  Violin plots showing significant differences in baseline brain region volumes between patients with and without disability 
progression
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gyrus, gray matter declive, white matter adjacent to right calcarine 
sulcus, and white matter adjacent to right inferior occipital gyrus, 
with mean absolute changes of −94.8  ±  251.2, −80.6  ±  298.3, 
−3197.7 ± 56,162.6, and −248.6 ± 944.4 mm3, respectively (Table 2). 
Significant increases were also found in volumes of gray matter of 
left transversal temporal gyrus, white matter adjacent to left mid-
dle temporal gyrus (pole), gray matter of right precentral gyrus, and 
white matter of right inferior fronto-occipital fasciculus, with mean 
absolute changes of 53.6 ± 152.3, 32.9 ± 99.9, 226.4 ± 739.4, and 
71.9 ± 537.0 mm3, respectively (Table 2). Figure 1 depicts the loca-
tion of main volumetric differences.

3.3 | Disability progression

Fifteen (34.9%) patients showed disability progression over the 
1-year study follow-up. Baseline volumes of white matter adjacent 
to right amygdala and left cuneus significantly differed between 
patients with and without disability progression, as well as base-
line gray matter volumes of left cuneus, right parahippocampal 
gyrus, right insula, left superior frontal gyrus, declive, right in-
ferior temporal gyrus, right superior temporal gyrus (pole), and 
right calcarine sulcus (Table  3; Figure  2). Patients with baseline 
volumes below cutoffs described in Table 3 were at higher risk of 

F I G U R E  3  Violin plots showing 
significant differences in 12-month brain 
region volumes between patients with 
and without disability progression
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disability progression after one year, except for gray matter vol-
ume of left superior frontal gyrus which was higher in patients 
who progressed. Moreover, 12-month volumes of white matter 
of left superior longitudinal fasciculus (temporal part) and adja-
cent to right globus pallidus, left middle temporal gyrus, left cu-
neus, and left lingual gyrus also differed between patients with 
and without disability progression, as well as gray matter vol-
umes of left cuneus, left insula, and left cingulate gyrus (Table 3; 
Figure  3). Figure  4 depicts main volumetric differences at base-
line and month 12 between patients with and without disability 

progression. Normalized volumetric differences were secondarily 
analyzed and shown in Table 4.

3.4 | Cognition performance

Cognitive performance over the study is summarized in Table  5. 
Baseline gray matter volumes of right cuneus and right superior tem-
poral gyrus (pole) positively correlated with SRT-D and WLG per-
formance after the 1-year follow-up, respectively (Figure 5). Volume 

F I G U R E  4  Location of main volumetric differences between patients with and without disability progression at baseline (a) and month 12 
(b). A, anterior; I, inferior; L, left; P, posterior; R, right; S, superior

(a)

(b)



     |  9 of 14PÉREZ-MIRALLES et al.

changes from baseline to month 12 in gray matter of right superior 
semilunar lobe, white matter adjacent to left declive, and white 
matter adjacent to right cerebellar tonsil (C10) were also positively 
correlated with WLG scores after one year (Figure  5). Moreover, 
the change in gray matter volume of left inferior semilunar lobe 

positively correlated with SDMT performance at study end 
(Figure 5). Other correlations with rho coefficient > 0.4 are shown in 
Figure 5. Figures 6 and 7 depict main region volumes correlated with 
cognitive function.

4  | DISCUSSION

This MRI analysis from the UPPMS cohort study showed decreas-
ing volumes of gray matter declive and white matter adjacent to 
left straight gyrus, right calcarine sulcus, and right inferior occipital 
gyrus over one year. Conversely, gray matter volumes of left trans-
versal temporal gyrus and right precentral gyrus increased, as well 
as white matter volumes of right inferior fronto-occipital fasciculus 
and adjacent to left middle temporal gyrus (pole). Although multiple 
sclerosis has been considered a predominantly white matter disease 
due to its demyelinating pathophysiology, gray matter involvement 
has also been recognized (Calabrese et al., 2015). Patterns of volume 
loss differ according to the clinical course of multiple sclerosis, with 
predominant atrophy around the cerebral ventricles in relapsing–re-
mitting patients and cortical/subcortical regions in those with pro-
gressive disease (Pagani et al., 2005). Evidence on PPMS supports 
a widespread supratentorial and infratentorial tissue loss, including 
the gray matter of deep (basal ganglia, thalamus, and claustrum) and 
cortical regions (insular cortex and superior/inferior frontal, pre-/-
central, posterior cingulated, parahippocampal, supramarginal, su-
perior temporal, middle occipital, and inferior occipital gyri; Tavazzi 

TA B L E  4  Significant normalized volumetric differences according to disability progression and optimal cutoffs

Variable

Disability 
progression 
Mean (95% CI)

No disability 
progression 
Mean (95% CI) P

Cutoff

Value Accuracy Sensitivity Specificity AUC

Baseline volume (mm3)

WM adjacent to right amygdala 0.1 (0.0–0.1) 0.1 (0.1–0.1) .001 0.1 0.738 0.727 0.742 0.824

WM adjacent to left cuneus 0.2 (0.2–0.3) 0.3 (0.3–0.3) .023 0.3 0.682 0.750 0.656 0.724

GM left cuneus 0.3 (0.3–0.4) 0.4 (0.4–0.4) .021 0.4 0.705 0.667 0.719 0.727

GM right parahippocampal gyrus 0.5 (0.4–0.5) 0.5 (0.5–0.5) .006 0.5 0.780 0.727 0.800 0.776

GM right insula 0.7 (0.6–0.7) 0.7 (0.7–0.8) .034 0.7 0.674 0.545 0.719 0.716

GM left superior frontal gyrus 1.0 (0.9–1.0) 0.9 (0.8–0.9) .020 0.9 0.651 0.727 0.625 0.736

GM right inferior temporal gyrus 1.0 (1.0–1.1) 1.1 (1.1–1.2) .049 1.1 0.568 0.500 0.594 0.695

GM right culmen (C4−5) 0.5 (0.4–0.5) 0.4 (0.4–0.4) .033 0.5 0.682 0.667 0.688 0.711

12-month volume (mm3)

WM left cingulum (cingulate 
gyrus)

0.0 (0.0–0.1) 0.1 (0.1–0.1) .049 0.1 0.614 0.750 0.563 0.695

WM adjacent to right putamen 0.3 (0.2–0.3) 0.3 (0.3–0.3) .043 0.3 0.705 0.667 0.719 0.701

GM left cuneus 0.4 (0.3–0.4) 0.4 (0.4–0.4) .014 0.4 0.705 0.667 0.719 0.740

GM left posterior cingulate gyrus 0.2 (0.1–0.2) 0.1 (0.1–0.2) .041 0.2 0.738 0.545 0.806 0.710

GM triangular part of right 
inferior frontal gyrus

0.5 (0.4–0.5) 0.4 (0.4–0.5) .037 0.4 0.581 0.667 0.548 0.707

GM left hippocampus 0.4 (0.3–0.4) 0.4 (0.4–0.4) .009 0.4 0.791 0.636 0.844 0.764

GM right culmen (C4−5) 0.5 (0.4–0.5) 0.4 (0.4–0.5) .025 0.5 0.659 0.583 0.688 0.721

Note: Abbreviations: AUC, area under the curve; CI, confidence interval; GM, gray matter; WM, white matter.

TA B L E  5  Overview of cognitive performance (N = 43)

Neuropsychological battery 
scores, mean ± SD Baseline Month 12

LTS 39.4 ± 18.0 48.3 ± 14.6

CLTR 29.6 ± 17.2 40.2 ± 16.8

SRT-D 7.7 ± 2.6 9.3 ± 2.6

SPART 14.2 ± 5.3 16.7 ± 5.5

SPART-D 5.1 ± 2.4 5.6 ± 2.5

SDMT 29.2 ± 12.9 30.7 ± 12.4

PASAT3 33.9 ± 13.3a  38.2 ± 15.2c 

PASAT2 26.9 ± 10.5b  28.0 ± 12.1c 

WLG 20.4 ± 6.4 21.5 ± 6.2

Note: Abbreviations: CLTR, Consistent Long-Term Retrieval; LTS, Long-
Term Storage; PASAT2, Paced Auditory Serial Addition Test 2 Second 
Trial; PASAT3, Paced Auditory Serial Addition Test 3 Second Trial; SD, 
standard deviation; SDMT, Symbol Digit Modality Test; SPART, Spatial 
Recall Test; SPART-D, Spatial Recall Test-Delayed; SRT-D, Selective 
Reminding Test-Delayed Recall; WLG, Word List Generation.
aMissing data, n = 2. 
bMissing data, n = 5. 
cMissing data, n = 1. 
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et al., 2015). Decreasing volumes of several deep gray matter regions 
(putamen, caudate, and thalamus) and some cortical or infratentorial 
areas (limbic, occipital, frontal and parietal lobes, and cerebellum) 
may be evident after one year (Sepulcre et  al.,  2006). The rate of 
volume loss affects different structures at variable rates, with the 
fastest involvement of cingulate gyri, adjacent precuneus, cerebel-
lum, precentral gyri, thalami and insula in comparison with healthy 
controls over five years (Eshaghi et al., 2014). Several mechanisms 
have been proposed to underlie this neurodegeneration, such as 
immune-related, mitochondrial injury, or retrograde degeneration 
due to white matter damage (Calabrese et  al.,  2015). However, it 
is noteworthy that volume measurements can also be affected by 
other factors such as inflammation or edema (Cortese et al., 2019).

Neurological changes of PPMS need to be monitored due to their 
impact on patient health and daily activities. Indeed, our MRI analy-
sis supports the relationship of brain region volumes with disability 
progression and cognitive performance over one year. Specifically, 
baseline volumes of white matter adjacent to right amygdala and left 
cuneus could predict disability progression, as well as baseline gray 
matter volumes of left cuneus, left superior frontal gyrus, right par-
ahippocampal gyrus, right insula, right inferior temporal gyrus, right 

superior temporal gyrus (pole), right calcarine sulcus, and declive. In 
addition, patients with and without disability progression differed 
in their 12-month white matter volumes of left superior longitudi-
nal fasciculus (temporal part) and adjacent to left middle temporal 
gyrus, left cuneus, left lingual gyrus, and right globus pallidus, as well 
as gray matter volumes of left cuneus, left insula, and left cingulate 
gyrus. Eshaghi et al. (2014) reported the association of volume loss 
in cingulate gyrus with 5-year clinical disability according to the 
Multiple Sclerosis Functional Composite in PPMS patients, without 
a significant association between the rate of gray matter volume loss 
and changes in EDSS scores or T2 lesion accrual per annum (Eshaghi 
et al., 2014). The contribution of cingulate region atrophy to this clin-
ical disability was then attributed to motor control via motor cortex 
and spinal cord connections (Eshaghi et al., 2014). Gray matter at-
rophy in the right sensory-motor cortex of PPMS patients was also 
associated with greater upper limb disability according to 9-HPT, 
despite lacking association between gray matter damage and EDSS 
scores (Bodini et al., 2009). Another study found, however, that at-
rophy in the right middle frontal gyrus, right lateral fissure, left an-
gular gyrus, and prepontine cistern correlated with changes in EDSS 
scores and T1 lesion volumes after 15 months (Pagani et al., 2005). 

F I G U R E  5  Correlation between MRI findings and cognitive function performance. Correlations with rho correlation coefficient > 0.4 are 
presented. *p < .05; **p < .01. CLTR, Consistent Long-Term Retrieval; LTS, Long-Term Storage; PASAT3, Paced Auditory Serial Addition Test 
3-Second Trial; SDMT, Symbol Digit Modalities Test; SPART, Spatial Recall Test; SPART-D, Spatial Recall Test-delayed recall; SRT-D, Selective 
Reminding Test-Delayed Recall; WLG, Word List Generation
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In addition, the disability resulting from PPMS may be affected by 
demyelination and axonal loss in normal-appearing white and gray 
matter, (Bodini et  al.,  2009; Ramio-Torrenta et  al.,  2006; Rovaris 

et al., 2008; Tur, Khaleeli, et al., 2011) leading to suggest the com-
bination of both white and gray matter damage to more accurately 
predict disability accrual (Tur, Khaleeli, et  al.,  2011). Furthermore, 

F I G U R E  6  Location of main baseline region volumes correlated with baseline scores on Long-Term Storage (a), Consistent Long-Term 
Retrieval (b), Selective Reminding Test-Delayed Recall (c), Spatial Recall Test (d), Spatial Recall Test-Delayed (e), Symbol Digit Modalities Test 
(f), Paced Auditory Serial Addition Test 3-Second Trial (g), Paced Auditory Serial Addition Test 2-Second Trial (h) and Word List Generation (i). 
A, anterior; I, inferior; L, left; P, posterior; R, right; S, superior

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

F I G U R E  7  Location of main baseline region volumes correlated with 12-month scores on Long-Term Storage (a), Consistent Long-Term 
Retrieval (b), Selective Reminding Test-Delayed Recall (c), Spatial Recall Test (d), Spatial Recall Test-Delayed (e), Symbol Digit Modalities Test 
(f), Paced Auditory Serial Addition Test 3-Second Trial (g), Paced Auditory Serial Addition Test 2-Second Trial (h) and Word List Generation (i). 
A, anterior; I, inferior; L, left; P, posterior; R, right; S, superior

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 
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brain and spinal cord atrophy can provide complementary informa-
tion, as microstructural changes, lower cross-sectional cord area, 
and volume loss also contribute to neurological disability (Cortese 
et  al.,  2020; Rovaris et  al.,  2008; Tsagkas et  al.,  2019). Although 
these studies offer insights into the implications of neurological 
changes in PPMS disability, comparisons cannot be performed due 
to methodological differences and further information is still needed 
to confirm the role of each specific region.

With regard to cognition, our findings support that baseline 
volumes of certain regions such as gray matter of right cuneus and 
right superior temporal gyrus could predict 1-year cognitive perfor-
mance according to WLG and SRT-D scores, respectively. Similarly, 
volume changes in gray matter of right superior semilunar lobe 
and white matter adjacent to left declive and right cerebellar tonsil 
also correlated with WLG scores, and gray matter volume change 
in left inferior semilunar lobe correlated with SDMT performance 
after one year. Changes in human connectome might translate into 
brain volume changes that affect specific function performance 
(Charalambous et al., 2019). Cognitive impairment in multiple scle-
rosis results from a complex interplay of factors such as premorbid 
cognitive status, lesional/nonlesional tissue damage, and adapta-
tive/maladaptive functional reorganization (Jonkman et  al.,  2015). 
MRI measures of white and gray matter injury have been reported 
as contributors to cognitive status across different multiple sclero-
sis types, with a dominant role of subcortical gray matter injury in 
PPMS patients (Jonkman et al., 2015). Other studies also suggested 
that cognitive impairment in these patients went beyond white mat-
ter damage, pointing at gray matter loss as the primary contributor 
(Gouveia et al., 2017; Tur, Penny, et al., 2011). Both neocortical and 
subcortical gray matter were involved in cognitive performance, 
though subcortical gray matter played a major role in information 
processing speed and verbal/visuospatial learning and memory 
(Gouveia et al., 2017). Gray matter loss in the thalamus was reported 
as a correlate of this cognitive impairment, (Gouveia et al., 2017) as 
well as other areas such as right superior temporal gyrus or ante-
rior cingulate cortex (Riccitelli et  al.,  2011). In addition, functional 
MRI assessment showed higher activation of the cerebellum and 
cortical regions such as the insula or sensory-motor cortex in cog-
nitively impaired PPMS patients, compensating the lower activation 
of other areas involved in working memory in a variable network 
recruitment process over time (Rocca et  al.,  2010). Furthermore, 
lesion burden seems to be involved in verbal memory (Tur, Penny, 
et al., 2011) and attention/speed of information processing (Penny 
et al., 2010) and might contribute to exhaustion of frontal lobe plas-
ticity, (Rocca et al., 2010) and normal-appearing white or gray matter 
volume was associated with attention/speed of visual information 
(Penny et al., 2010; Tur, Penny, et al., 2011) and executive function 
performance, (Penny et al., 2010; Ramio-Torrenta et al., 2006) which 
underscore the complexity of neurological damage in cognitive dis-
function of PPMS patients.

We acknowledge that the study has limitations that should be 
considered, including its uncontrolled design, relatively small sam-
ple size, short-term follow-up and absence of spinal cord evaluation, 

and uniform procedures when conducting the MRI scans. However, 
it provides longitudinal data on a large number of brain region vol-
umes and their relationship with neurological and cognitive function 
in PPMS patients. Moreover, its prospective multicentre nature and 
the fact that the MRI scans were performed according to routine 
procedures of 11 participating sites favors the generalizability of our 
findings.

In conclusion, our MRI analysis provides a detailed description of 
region volume changes exhibited by PPMS patients over one year, 
as well as proposing specific white/gray matter region volumes as 
potential predictors of disability progression and cognitive perfor-
mance. These include gray matter volume of right cuneus or right 
superior temporal gyrus as cognitive predictors, and white matter 
volume adjacent to right amygdala or left cuneus and gray matter 
volume of left cuneus, left superior frontal gyrus, right parahip-
pocampal gyrus, right insula, right inferior temporal gyrus, right 
superior temporal gyrus (pole), right calcarine sulcus, or declive 
as disability progression predictors. However, further studies are 
needed to confirm our findings and verify their usefulness in clinical 
practice.
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