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a b s t r a c t

In this paper, a fractional-order SIRD mathematical model is presented with Caputo derivative for the
transmission of COVID-19 between humans. We calculate the steady-states of the system and discuss
their stability. We also discuss the existence and uniqueness of a non-negative solution for the system
under study. Additionally, we obtain an approximate response by implementing the fractional Euler
method. Next, we investigate the first and the second waves of the disease in Iran and Japan; then we
give a prediction concerning the second wave of the disease. We display the numerical simulations
for different derivative orders in order to evaluate the efficacy of the fractional concept on the system
behaviors. We also calculate the optimal control of the system and display its numerical simulations.

© 2021 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Coronaviruses, viruses that have a crown, have caused a va-
iety of severe illnesses like Severe Acute Respiratory Syndrome
SARS) and Middle East Respiratory Syndrome (MERS). The dis-
ase COVID-19, which was caused by the virus SARS COV-2,
as first identified in Wuhan City of China on December 2019.
he COVID-19 disease appears in different people with different
ymptoms. In most people, fever, cough, and the shortness of
reath have been the early symptoms; in some others, gastroin-
estinal symptoms such as anorexia, diarrhoea, and vomiting have
een appeared. Additionally, other symptoms such as body aches,
he loss of smell and taste senses, and some skin symptoms
ave been reported. The incidence of COVID-19 in children is
ower than adults, and for people with some diseases such as
iabetes, high blood pressure, asthma, and autoimmune diseases,
t can lead to more serious conditions and sometimes death.
ecause of the new outbreak of COVID-19, there is no complete
nformation on how it is transmitted, but according to the World
ealth Organization (WHO), coronavirus is spread through the
neezing and coughing of infected people, and it stays in the air

∗ Corresponding author at: Department of Mathematics, Azarbaijan Shahid
adani University, Tabriz, Iran.

E-mail addresses: rezapourshahram@yahoo.ca, sh.rezapour@azaruniv.ac.ir
S. Rezapour).
ttps://doi.org/10.1016/j.isatra.2021.04.012
019-0578/© 2021 ISA. Published by Elsevier Ltd. All rights reserved.
for several hours and enters the body by breathing the polluted
air. Also, it sits on the surface and is transmitted to a body
by touching the infected environment and then the nose, eyes,
or mouth. Due to these transmission kinds of this virus, the
suggested ways of preventing the transmission include washing
hands with soap, using masks outside the home, not presenting
in the polluted environments, and reducing unnecessary presence
in the community.

Many mathematicians and biologists have studied the dynam-
ics of realistic systems by using the concept of mathematical
modeling (see, for example, [1,2]). By extending the integer-
order derivatives to the fractional-order ones, many researchers
have studied the mathematical models of natural phenomena
with fractional-order models [3,4]. Recently, the utilization of
fractional operators has been expanded to model real-world sys-
tems, an efficient approach which investigates the transmission
of diseases as well as their control [5,6]. With the expansion of
COVID-19, researchers have also used mathematical models to
simulate the spread of this disease in different environments (see,
for example, [7–10]).

In this research, we study the transmission of COVID-19 by
introducing a fractional SIRD model in which the Caputo deriva-
tive is used for the system formulation. With the onset of this
disease, most countries made a series of measures to control its
transmission, which led to a decline in the spread of the disease
after the first peak. Iran was the first country that experienced

https://doi.org/10.1016/j.isatra.2021.04.012
http://www.elsevier.com/locate/isatrans
http://www.elsevier.com/locate/isatrans
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isatra.2021.04.012&domain=pdf
mailto:rezapourshahram@yahoo.ca
mailto:sh.rezapour@azaruniv.ac.ir
https://doi.org/10.1016/j.isatra.2021.04.012
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he second peak of COVID-19. We provide a comparative study
or the first and the second waves in Iran and the prediction of
he disease transmission in the future. Japan was another country
hat experienced the second wave, while the mortality rate with
OVID was low in that country. Thus, we examine the second
ave of the disease in Japan and provide a forecast for it.
In the following, Section 2 provides some basic definitions

ith regard to the fractional calculus. The system of equations
or the COVID-19 spread as well as the existence and uniqueness
f the solution are presented in Section 3. The equilibrium points
nd the optimal control of the system are presented in Sections 4
nd 5 , respectively. Numerical results and the simulations of the
irst and the second waves as well as the prediction of the second
ave in Iran and Japan are discussed in Section 6. Finally, the
aper is closed by some conclusions in Section 7.

. Fractional calculus

In this section, we first recall some definitions of fractional
perators; then we examine the important feature of fractional
alculus called memory effect.

.1. Basic definitions

efinition 2.1 ([11]). For w : [0, T ] → R, υ ∈ (m − 1,m], and
∈ N , the Caputo fractional derivative is described by

0D
υ
t w(t) =

1
Γ (m − υ)

∫ t

0
(t − σ )m−υ−1w(m)(σ ) dσ ,

n which υ in the fractional order. Also, for υ with Re(υ) > 0, the
fractional integral of order υ is defined as

C
0I

υ
t w(t) =

1
Γ (υ)

∫ t

0
(t − σ )υ−1w(σ )dσ .

efinition 2.2 ([11]). For the fractional-order Caputo operator of
rder υ , the Laplace transform is

[
C
0D

υ
t w(t)] = sυL[w(t)]−

k−1∑
j=0

sυ−j−1w(j)(0), k−1 < υ ≤ k, k ∈ N,

which can be written more simply as

L[C0D
υ
t w(t)]

=
skL[w(t)] − sk−1w(0) − sk−2w′(0) − · · · − w(k−1)(0)

sk−υ
.

Theorem 2.1 ([12]). Let w be a function such that w and C
0D

υ
t w(t)

are continuous for υ ∈ (0, 1]. Then for all t ∈ (0, T ], there exists
ome c ∈ (0, t) satisfying the condition

(t) = w(0) +
1

Γ (υ + 1)
C
0D

υ
t w(c)tυ .

2.2. Memory effect

Fractional calculus is one of the most powerful tools in the
modeling of real-world phenomena with memory effect. The
effect of memory in fractional derivatives has been studied by
many researchers (see, for example, [13–15]). In the mathemati-
cal models with classical differential operators, the responses do
not depend on the previous instance, so these models do not have
memory. However, the fractional mathematical models include
104
memory as their inherent property. Consider an integrable func-
tion w(t) in [0, T ] and time instances t1, t2 ∈ [0, T ] such that

< t1 < t2 < T . If υ ̸= 1, we have

P =
C
0I

υ
t w(t2) −

C
0I

υ
t w(t1)

=
1

Γ (υ)
[

∫ t2

0
(t2 − σ )υ−1w(σ )dσ −

∫ t1

0
(t1 − σ )υ−1w(σ )dσ ]

=
1

Γ (υ)
[

∫ t1

0
[(t2 − σ )υ−1

− (t1 − σ )υ−1
]w(σ )dσ

+

∫ t2

t1

(t2 − σ )υ−1w(σ )dσ ].

f υ = 1, then the first integral is canceled, and we obtain

=
1

Γ (υ)

∫ t2

t1

(t2 − σ )υ−1w(σ )dσ =

∫ t2

t1

w(σ )dσ .

he above equations show that in the classical case υ = 1, the
alue of P depends only on [t1, t2], but in the fractional case

̸= 1, the value of P depends on [t1, t2] and the previous
ange [0, t1]. Thus, the fractional integral in [t1, t2] depends on
hat happened before t1; this shows the effect of memory on
he fractional process, while the integral in the classical case has
othing with the range before t1.
The nature of coronavirus transmission shows that the patient

as no specific symptoms in the first few days of infection, but
e/she is the carrier of the disease. Therefore, the population of
nfected people now affect the number infected individuals in the
ext few days. Hence, the population of infected people at time t
s affected by the number of infected persons in the previous days,
nd the chain continues so that the number of infected people
t time t is influenced by the number of infected people from
he time 0 to t , indicating that the coronavirus transmission is a
ystem with memory; therefore, it is more appropriate to model
his phenomenon by fractional-order derivatives.

. Model formulation

In this section, we provide a Caputo-type fractional SIRD
odel for the transmission of COVID-19. Generally, the SIRD
odels consider the population to be constant, but here we take

nto account the natural birth and death rates. We also consider
hat the total N(t) includes four sub-categories: susceptible per-
ons S(t), infected people I(t), recovered individuals R(t), and died
eople with this disease D(t) so that N(t) = S(t)+I(t)+R(t)+D(t).
he diagram of the model is shown in Fig. 1. Also, the following
ompartmental model describes the spread of COVID-19⎧⎪⎪⎪⎨⎪⎪⎪⎩

dS
dt = Ω − mS(t) − βS(t)I(t),
dI
dt = −(γ + µ + m)I(t) + βS(t)I(t),
dR
dt = −mR(t) + γ I(t),
dD
dt = µI(t),

(1)

where (S(0), I(0), R(0),D(0)) = (S0, I0, R0,D0) is a nonnegative
initial state vector. The parameters of the model are also the per
capita birth rate Ω , the recovery rate γ , the transmission rate
β , the virus-induced average fatality rate µ, and the per capita
natural death rate m.

Fractional-order systems are related to nonlocal effects, his-
tory, and memory, the features which exist in different biological
systems. The integer-order system (1) suffers from the lack of
internal memory effects regarding the COVID-19 transmission,
so we are going to modify the aforesaid ordinary model to a
fractional-order one. To this end, we replace the ordinary deriva-
tives with the Caputo-type fractional operators. Also, an auxil-
iary parameter θ is used to solve the dimensional mismatching
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Fig. 1. Diagram of the COVID-19 transmission.

roblem [16]. Thus, the fractional-order model for the spread of
OVID-19 is given as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩

θυ−1 C
0D

υ
t S(t) = Ω − mS(t) − βS(t)I(t),

θυ−1 C
0D

υ
t I(t) = −(γ + µ + m)I(t) + βS(t)I(t),

θυ−1 C
0D

υ
t R(t) = −mR(t) + γ I(t),

θυ−1 C
0D

υ
t D(t) = µI(t),

(2)

where t ∈ [0, T ] and 0 < υ < 1.

3.1. Feasibility region

Suppose that B = {(S, I, R,D) ∈ (R+

0 )
4

: D ≤ S + I + R ≤
Ω
m };

hen we state that B is positively invariant by the next lemma.

emma 3.1. With respect to the system (2), the set B is positively
nvariant.

roof. To prove this lemma, first we show that the solutions are
on-negative by using the method presented in [17]. We have
υ−1 C

0D
υ
t S(t)|S(t)=0 = Ω ≥ 0, θυ−1 C

0D
υ
t I(t)|I(t)=0 = 0,

θυ−1 C
0D

υ
t R(t)|R(t)=0 = γ I ≥ 0, θυ−1 C

0D
υ
t D(t)|D(t)=0 = µI ≥ 0,

which are all nonnegative. Consider the auxiliary fractional dif-
ferential system⎧⎪⎪⎪⎨⎪⎪⎪⎩

C
0D

υ
t S(t) = θ1−υ

[Ω − mS(t) − βS(t)I(t)] +
1
e ,

C
0D

υ
t I(t) = θ1−υ

[−(γ + µ + m)I(t) + βS(t)I(t)] +
1
e ,

C
0D

υ
t R(t) = θ1−υ

[−mR(t) + γ I(t)] +
1
e ,

C
0D

υ
t D(t) = θ1−υ−1

[µI(t)] +
1
e ,

here e ∈ N , and (S(0), I(0), R(0),D(0)) = (S0, I0, R0,D0) is the
nitial state vector. We will show that for all t ≥ 0, the solutions
f the auxiliary system (S∗

e (t), I
∗
e (t), R

∗
e (t),D

∗
e (t)) are nonnegative.

If not, there exists a time instance t at which the solutions are
negative. Consider

tk = inf{t > 0|(S∗

e (t), I
∗

e (t), R
∗

e (t),D
∗

e (t)) /∈ (R+

0 )
4
}.

Then (S∗
e (tk), I

∗
e (tk), R

∗
e (tk),D

∗
e (tk)) ∈ (R+

0 )
4, and one of the compo-

nents is zero. Let S∗
e (tk) = 0. Since

C
0D

υ
t S

∗

e (tk) = θ1−υ
[Ω − mS∗

e (tk) − βS∗

e (tk)I
∗

e (tk)] +
1
e

> 0,

nd C
0D

υ
t S

∗
e is continuous, it implies that C

0D
υ
t S

∗
e ([tk, tk + ϵ)) ⊆ R+

or some ϵ > 0. Using Theorem 2.1, we obtain S∗
e ([tk, tk+ϵ)) ⊆ R+

0 ,
hich shows that S∗

e is nonnegative. Similarly, it can be shown
hat other components I∗e , R

∗
e ,D

∗
e are also nonnegative, which is

contradiction. Therefore, we obtain that (S∗, I∗, R∗,D∗) ∈ (R+

0 )
4

or all t ≥ 0 as e → ∞; thus, the solutions are nonnegative. In
he following, we first add the first three equations of the system
2). So
υ−1 C υ
Dt (S + R + I) = Ω − m(S + R + I) − µI

105
Ω − m(S + I + R).
pplying the Laplace transform results in

(S + I + R)(t) = (S + I + R)(0)Eυ (−mθ1−υ tυ )

+

∫ t

0
Ωθ1−υηυ−1Eυ,υ (−mθ1−υηυ )dη,

here S(0), I(0), R(0) are the initial size of susceptible, infected
nd recovered population, respectively. With some calculations,
e get

(S + I + R)(t) = (S + I + R)(0)Eυ (−mθ1−υ tυ )

+

∫ t

0
Ωθ1−υηυ−1

∞∑
i=0

(−1)imiθ i(1−υ)ηiυ

Γ (iυ + υ)
dη

=
Ωθ1−υ

mθ1−υ
+ Eυ (−mθ1−υ tυ )((S + I + R)(0) −

Ωθ1−υ

mθ1−υ
),

=
Ω

m
+ Eυ (−mθ1−υ tυ )((S + I + R)(0) −

Ω

m
).

Thus, if (S + I + R)(0) ≤
Ω
m , then (S + I + R)(t) ≤

Ω
m for t > 0. If

(0) ∈ B, since D(t) ≤ S(t) + I(t) + R(t) ≤
Ω
m for all t ≥ 0, then

D(t) ≤
Ω
m . Consequently, with respect to the system (2), the set B

is positively invariant. □

3.2. Existence and uniqueness

To prove that the existence of a unique solution for the system
(2), we first consider (2) in the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

θυ−1 C
0D

υ
t S(t) = N1(t, S(t)),

θυ−1 C
0D

υ
t I(t) = N2(t, I(t)),

θυ−1 C
0D

υ
t R(t) = N3(t, R(t)),

θυ−1 C
0D

υ
t D(t) = N4(t,D(t)).

The integral operator is applied to the both sides, which results⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t) − S(0) =
θ1−υ

Γ (υ)

∫ t

0
N1(ξ, S(ξ ))(t − ξ )υ−1dξ,

I(t) − I(0) =
θ1−υ

Γ (υ)

∫ t

0
N2(ξ, I(ξ ))(t − ξ )υ−1dξ,

R(t) − R(0) =
θ1−υ

Γ (υ)

∫ t

0
N3(ξ, R(ξ ))(t − ξ )υ−1dξ,

D(t) − D(0) =
θ1−υ

Γ (υ)

∫ t

0
N4(ξ,D(ξ ))(t − ξ )υ−1dξ .

(3)

n the next theorem, we prove the Lipschitz and the contraction
onditions for the kernels N1–N4.

heorem 3.1. The Lipschitz condition and the contraction are estab-
ished for N1 if the following relation holds

≤ βk2 + m < 1.

roof. According to the values of N1 at S(t) and S1(t), one can
rite

∥N1(t, S(t)) − N1(t, S1(t))∥
= ∥ − βI(t)(S(t) − S1(t)) − m(S(t) − S1(t))∥,

(β∥I(t)∥ + m)∥S(t) − S1(t)∥,

(βk2 + m)∥S(t) − S1(t)∥.
y considering M1 = βk2 + m, where ∥I(t)∥ ≤ k2 is a bounded
unction, we obtain

N (t, S(t)) − N (t, S (t))∥ ≤ M ∥S(t) − S (t)∥. (4)
1 1 1 1 1
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T

∥

≤

≤

T
→

herefore, the Lipschitz condition holds for N1, and if 0 ≤ βk2 +

m < 1, then N1 is a contraction. □

Similarly, we can show that N2,N3,N4 satisfy the Lipschitz
condition, i.e.⎧⎨⎩

∥N2(t, I(t)) − N2(t, I1(t))∥ ≤ M2∥I(t) − I1(t)∥,
∥N3(t, R(t)) − N3(t, R1(t))∥ ≤ M3∥R(t) − R1(t)∥,
∥N4(t,D(t)) − N4(t,D1(t))∥ ≤ M4∥D(t) − D1(t)∥,

where ∥S(t)∥ ≤ k1, M2 = βk1 − (m + µ + γ ), M3 = m, and
M4 = µ are bounded. The kernels N2,N3,N4 are also contraction
if we have 0 ≤ Mi < 1 for i = 2, 3, 4. It should be noted that
if the system (2) has an equilibrium point at the origin, then one
can use the method proposed in [18] to prove the existence and
uniqueness analysis.

Now suppose the following recursive formulas with respect to
the system (2)

Φ1,n(t)
= Sn(t) − Sn−1(t)

=
θ1−υ

Γ (υ)

∫ t

0
(N1(ξ, Sn−1(ξ )) − N1(ξ, Sn−2(ξ )))(t − ξ )υ−1dξ,

Φ2,n(t)
= In(t) − In−1(t)

=
θ1−υ

Γ (υ)

∫ t

0
(N2(ξ, In−1(ξ )) − N2(ξ, In−2(ξ )))(t − ξ )υ−1dξ,

Φ3,n(t)
= Rn(t) − Rn−1(t)

=
θ1−υ

Γ (υ)

∫ t

0
(N3(ξ, Rn−1(ξ )) − N3(ξ, Rn−2(ξ )))(t − ξ )υ−1dξ,

Φ4,n(t)
= Dn(t) − Dn−1(t)

=
θ1−υ

Γ (υ)

∫ t

0
(N4(ξ,Dn−1(ξ )) − N4(ξ,Dn−2(ξ )))(t − ξ )υ−1dξ,

with the initial state vector (S(0), I(0), R(0),D(0)) =

(S0, I0, R0,D0). We take the norm of Φ1,n as

∥Φ1,n(t)∥ = ∥Sn(t) − Sn−1(t)∥

= ∥
θ1−υ

Γ (υ)

∫ t

0
(N1(ξ, Sn−1(ξ )) − N1(ξ, Sn−2(ξ )))(t − ξ )υ−1dξ∥

≤
θ1−υ

Γ (υ)

∫ t

0
∥N1(ξ, Sn−1(ξ )) − N1(ξ, Sn−2(ξ ))(t − ξ )υ−1

∥dξ .

By the Lipschitz condition (4), we get

∥Φ1,n(t)∥ ≤
θ1−υ

Γ (υ)
M1

∫ t

0
∥Φ1,n−1(ξ )∥dξ . (5)

Similarly, we obtain

∥Φ2,n(t)∥ ≤
θ1−υ

Γ (υ)
M2

∫ t

0
∥Φ2,n−1(ξ )∥dξ,

∥Φ3,n(t)∥ ≤
θ1−υ

Γ (υ)
M3

∫ t

0
∥Φ3,n−1(ξ )∥dξ,

∥Φ4,n(t)∥ ≤
θ1−υ

M4

∫ t

∥Φ4,n−1(ξ )∥dξ . (6)

Γ (υ) 0

106
Then we can obtain

Sn(t) =

n∑
i=1

Φ1,i(t), In(t) =

n∑
i=1

Φ2,i(t), Rn(t)

=

n∑
i=1

Φ3,i(t),Dn(t) =

n∑
i=1

Φ4,i(t).

In the next theorem, we prove the existence of the solution for
the system (2).

Theorem 3.2. The fractional-order transmission model of COVID-19
(2) has a solution if there exists a time instant te > 0 such that

θ1−υ

Γ (υ)
teMi < 1.

Proof. By considering a recursive technique and using Eqs. (5) and
(7), we have

∥Φ1,n(t)∥ ≤ ∥Sn(0)∥[
θ1−υ

Γ (υ)
M1t]n,

∥Φ2,n(t)∥ ≤ ∥In(0)∥[
θ1−υ

Γ (υ)
M2t]n,

Φ3,n(t)∥ ≤ ∥Rn(0)∥[
θ1−υ

Γ (υ)
M3t]n,

∥Φ4,n(t)∥ ≤ ∥Dn(0)∥[
θ1−υ

Γ (υ)
M4t]n.

This shows that the system has a continuous solution. We claim
that a solution of the system (2) is constructed by the above
functions. For this purpose, consider

S(t) − S(0) = Sn(t) − B1,n(t),

I(t) − I(0) = In(t) − B2,n(t),

R(t) − R(0) = Rn(t) − B3,n(t),

D(t) − D(0) = Dn(t) − B4,n(t).
So

∥B1,n(t)∥ = ∥
θ1−υ

Γ (υ)

∫ t

0
(N1(ξ, S(ξ )) − N1(ξ, Sn−1(ξ )))dξ∥

θ1−υ

Γ (υ)

∫ t

0
∥N1(ξ, S(ξ )) − N1(ξ, Sn−1(ξ ))∥dξ

θ1−υ

Γ (υ)
M1∥S(t) − Sn−1(t)∥t.

We repeat the method; then

∥B1,n(t)∥ ≤ [
θ1−υ

Γ (υ)
t]n+1Mn+1

1 h.

At te, we get

∥B1,n(t)∥ ≤ [
θ1−υ

Γ (υ)
te]n+1Mn+1

1 h.

hen limn→∞ ∥B1,n(t)∥ → 0. Similarly, we have limn→∞ ∥Bj,n(t)∥
0, j = 2, 3, 4. □

In order to prove that the solution of the system (2) is unique,
assume that another solutions S1(t), I1(t), R1(t), and D1(t) exist for
the system (2). We can write

S(t) − S1(t) =
θ1−υ

∫ t

(N1(ξ, S(ξ )) − N1(ξ, S1(ξ )))dξ .

Γ (υ) 0
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aking the norm, we get

S(t) − S1(t)∥ =
θ1−υ

Γ (υ)

∫ t

0
∥N1(ξ, S(ξ )) − N1(ξ, S1(ξ ))∥dξ .

y the Lipschitz condition (4), we obtain

S(t) − S1(t)∥ ≤
θ1−υ

Γ (υ)
M1t∥S(t) − S1(t)∥.

hen

S(t) − S1(t)∥(1 −
θ1−υ

Γ (υ)
M1t) ≤ 0. (7)

Theorem 3.3. If the following inequality holds, then the solution of
the spread of COVID-19 model (2) is unique

1 −
θ1−υ

Γ (υ)
M1t > 0.

roof. From the above condition, we obtain

S(t) − S1(t)∥(1 −
θ1−υ

Γ (υ)
M1t) > 0.

With this inequality and (7), we conclude that ∥S(t)− S1(t)∥ = 0,
o we obtain S(t) = S1(t). Following the same manner, we can
erive I(t) = I1(t), R(t) = R1(t), and D(t) = D1(t). □

4. Reproduction number and equilibrium points

The first equilibrium point showing a disease-free state is
the point in which I = 0, so it is obtained by simplifying the
equations as E0

= (Ω
m , 0, 0,N−

Ω
m ) where N = S+ I+R+D is the

total population. To find the other steady-states, since D(t) does
not appear in the first three equations of the system under study,
we remove the fourth equation and form the following algebraic
system
C
0D

υ
t S(t) =

C
0D

υ
t I(t) =

C
0D

υ
t R(t) = 0.

We solve the above equations and obtain the equilibrium point
E∗

= (S∗, I∗, R∗) such that

S∗
=

γ + µ + m
β

,

I∗ =
Ωβ − γm − m2

− mµ

β(γ + µ + m)
,

∗
=

γ (Ωβ − γm − m2
− mµ)

β(γ + µ + m)m
.

ere we use the next generation method to find the basic re-
roduction number R0 [19]. First, we consider the first three
quations of the system (2) in a compact form as follows

0D
υ
t ϕ = F (ϕ) − V (ϕ),

here

(ϕ) = θ1−υ

[
−βSI
βSI
0

]
,

nd

(ϕ) = θ1−υ

[ mS − Ω

(m + µ + γ )I

]
.

mR − γ I
107
The values of the Jacobin matrices of F and V at the equilibrium
point E0 are

JF (E0) = θ1−υ

⎡⎢⎣0 −βΩ

m 0

0 βΩ

m 0
0 0 0

⎤⎥⎦ ,

JV (E0) = θ1−υ

[m 0 0
0 m + µ + γ 0
0 −γ m

]
.

Then the basic reproduction number is computed from R0 =

ρ(FV−1) where FV−1 is the next generation matrix. By perform-
ing simple algebraic calculations, the value of R0 is obtained as
follows

R0 =
Ωβ

m(m + µ + γ )
.

he reproduction number is epidemiologically important and in-
icates the ability to transmit the infection and the continuation
f the disease.

.1. Stability analysis of equilibrium points

The Jacobian matrix of the fractional-order model (2) is com-
uted by

= θ1−υ

⎡⎢⎣−βI − m −βS 0 0
βI βS − (m + µ + γ ) 0 0
0 γ −m 0
0 µ 0 0

⎤⎥⎦ .

he Jacobian matrix J at the equilibrium point E0 is also obtained
s

(E0) = θ1−υ

⎡⎢⎣−m −β Ω
m 0 0

0 β Ω
m − (m + µ + γ ) 0 0

0 γ −m 0
0 µ 0 0

⎤⎥⎦ .

n the following, we first recall the definition of marginal stability.

efinition 4.1. A system is marginally stable if all the poles on
he imaginary axis are distinct, and all the remaining poles have
egative real parts.

We state the necessary conditions for marginal stability by the
ollowing theorem.

heorem 4.1. The condition R0 < 1 is sufficient for the marginal
tability of the equilibrium point E0.

roof. Following the relation det(ρI − J(E0)) = 0, we obtain the
haracteristic equation at the point E0

1−υρ(ρ + m)(ρ − [β
Ω

m
− (m + µ + γ )]) = 0,

whose roots (eigenvalues) are ρ1 = 0, ρ2 = −m, and ρ3 =

[β Ω
m − (m + µ + γ )]. If R0 < 1, then

Ωβ

m(m + µ + γ )
< 1 ⇒

βΩ

m
< m + µ + γ

⇒
βΩ

m
− (m + µ + γ ) < 0.

So ρ3 < 0. Since ρ1 = 0, ρ2 < 0, and ρ3 < 0, then the system (2)
is marginally stable at E0. □
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.2. Sensitivity analysis of R0

To investigate the sensitivity of R0, we use the method used by
afar et al. [3]. Since all parameters of the model (2) are positive,
e have

∂R0

∂Ω
=

β

m(m + µ + γ )
> 0,

∂R0

∂β
=

Ω

m(m + µ + γ )
> 0,

∂R0

∂m
=

−Ωβ(2m + µ + γ )
m2(m + µ + γ )2

< 0,

∂R0

∂µ
=

−Ωβm
m2(m + µ + γ )2

< 0,

∂R0

∂γ
=

−Ωβm
m2(m + µ + γ )2

< 0.

s can be seen, R0 is sensitive to changes in the model parameters
uch that R0 increases with Ω, β and decreases with m, µ, γ .

. Optimal control

Currently, there is no vaccine to control the transmission of
OVID-19, so the spread of the disease should be controlled by
ollowing health instructions and creating social distance. Mean-
hile, creating social distance plays an important role in con-
rolling the spread of COVID-19. We denote the social distance
y 1 − u where u represents the social gathering. If we have
ocial distance, then it is u = 0, and if there is not any social
istance, then it will be u = 1. The aim here is to decrease
he number of infected people by creating social distance while
educing the cost of implementing this control strategy. For this
nd, a fractional control system is considered as below⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C
0D

υ
t S(t) = θ1−υ

[Ω − mS(t) − βu(t)S(t)I(t)],
C
0D

υ
t I(t) = θ1−υ

[−(γ + µ + m)I(t) + βu(t)S(t)I(t)],
C
0D

υ
t R(t) = θ1−υ

[−mR(t) + γ I(t)],
C
0D

υ
t D(t) = θ1−υ

[µI(t)],
S(0), I(0), R(0),D(0) ≥ 0.

(8)

If we remove the social distance, then it becomes u = 1; thus,
he SIRD model (2) is recovered from the control system (8). In
ddition, 0 ≤ u(t) ≤ 1 represents the control space for t ∈ [0, T ].
For fractional-order systems, the optimal control theory is

ased on the Pontryagin’s maximum principle [20]. Thus, we
onsider the performance index for the control system (8) as
ollows

(u) =

∫ T

0
[b1I(t) +

b2
n
un(t)] dt, n = 2k, k ∈ N, (9)

where 0 < b1, b2 < ∞ are weighting coefficients corresponding
to the number of infected individuals and the cost of control, re-
spectively. We minimize the cost functional J(u) by the following
theorem.

Theorem 5.1. Let u(t) ∈ [0, 1] be a measurable control function for
all t ∈ [0, T ]; then the optimal control u∗ minimizing the functional
J(u) subject to the system (8) is obtained as follows

u∗(t) = max{min{|
(λ1(t) − λ2(t))βS(t)I(t)θ1−υ

b2
|

1
n−1

, 1}, 0}.
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roof. We consider the Hamiltonian function as follows

= [b1I(t) +
b2
n
un(t)]

+ λ1(t)θ1−υ
{Ω − mS(t) − βu(t)S(t)I(t)}

+ λ2(t)θ1−υ
{−(γ + µ + m)I(t) + βu(t)S(t)I(t)}

+ λ3(t)θ1−υ
{−mR(t) + γ I(t)}

+ λ4(t)θ1−υ
{µI(t)},

here λi(t), i = 1, 2, 3, 4, are the co-state variables with λi(T ) =

, and they satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
tD

υ
T λ1(t) =

∂H
∂S = θ1−υλ1(t)(−βu(t)I(t) − m)

+ θ1−υλ2(t)βu(t)I(t),
C
tD

υ
T λ2(t) =

∂H
∂ I = −θ1−υβλ1(t)u(t)S(t)

+ θ1−υλ2(t)(βu(t)S(t) − (γ + µ + m))
+ λ3(t)θ1−υγ + λ4θ

1−υµ + b1,
C
tD

υ
T λ3(t) =

∂H
∂R = −mλ3(t)θ1−υ ,

C
tD

υ
T λ4(t) =

∂H
∂D = 0,

(10)

which is a fractional system of right Caputo derivative equations.
By the Pontryagin principle, we obtain the following optimality
condition

∂H
∂u

= 0 ⇒ u∗(t) = |
(λ1(t) − λ2(t))βθ1−υS(t)I(t)

b2
|

1
n−1

.

hen according to the sign of ∂H
∂u , we consider the optimal control

as follows:
If ∂H

∂u < 0, then u∗(t) = 0.

If ∂H
∂u = 0, then u∗(t) = |

(λ1(t)−λ2(t))βθ1−υ S(t)I(t)
b2

|

1
n−1 .

If ∂H
∂u > 0, then u∗(t) = 1.

herefore, by solving the boundary value problem (8) and (10) us-
ng the presented method in [21], the optimal control is
erived. □

. Simulation and numerical findings

Hereinafter, we employ the fractional Euler method to obtain
he approximate solution of the transmission model (2) [22].

.1. Numerical method

Let the model (2) be considered in the compact form
υ−1 C

0D
υ
t y(t) = g(t, y(t)), y(0) = y0, t ∈ [0, T ], (11)

here y = (S, I, R,D) ∈ (R+

0 )
4, g(t, y(t)) ∈ R is a vector

unction which is continuous and satisfies the Lipschitz condition,
nd y0 = (S0, I0, R0,D0) is the initial condition. We apply the
ractional integral operator to Eq. (11); hence, we derive

(t) = θ1−υ
[y0 +

C
0I

υ
t g(t, y(t))], t ∈ [0, T ].

et q =
T−0
N and tn = nq where n = 0, 1, 2, . . . ,N and N is a

atural number. Denote the approximation of y(t) at t = tn by
yn; then the fractional Euler method [22] provides

yn+1 = θ1−υ
[y0 +

qυ

Γ (υ + 1)

n∑
j=0

zn+1,jg(tj, yj)],

j = 0, 1, 2, . . . ,N − 1,

(12)

where the coefficients are computed by the following equation

z = −(n − j)υ + (n + 1 − j)υ , j = 0, 1, 2, . . . , n.
n+1,j
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T
A

able 1
bsolute error (AE) and relative error (RE) for I(t) in Iran (the first wave).
Model υ AE RE

Integer 1 10.9786 0.043051
Fractional 0.994 10.2456 0.042314

Table 2
Absolute error (AE) and relative error (RE) for I(t) in Iran (the second wave).
Model υ AE RE

Integer 1 7.3249 0.03234
Fractional 0.9952 7.03468 0.03106

Table 3
Absolute error (AE) and relative error (RE) for I(t) in Japan (the second wave).
Model υ AE RE

Integer 1 4.9104 0.02201
Fractional 0.9961 4.5753 0.02135

Note that Theorem 3.1 in [22] proved the stability of the pre-
sented method. In addition, the solutions of the model (2) are
calculated from

Sn+1 = θ1−υ
[S0 +

qυ

Γ (υ + 1)

n∑
j=0

zn+1,jg1(tj, yj)],

In+1 = θ1−υ
[I0 +

qυ

Γ (υ + 1)

n∑
j=0

zn+1,jg2(tj, yj)],

Rn+1 = θ1−υ
[R0 +

qυ

Γ (υ + 1)

n∑
j=0

zn+1,jg3(tj, yj)],

Dn+1 = θ1−υ
[D0 +

qυ

Γ (υ + 1)

n∑
j=0

zn+1,jg4(tj, yj)],

where g1(t, y(t)) = Ω −mS(t)−βS(t)I(t), g2(t, y(t)) = −(m+µ+

γ )I(t) + βS(t)I(t), g3(t, y(t)) = −mR(t) + γ I(t), and g4(t, y(t)) =

µI(t).

6.2. Numerical simulation

6.2.1. Case I: Iran
Iran was the first country that experienced the second wave

among the others getting involved in the COVID-19 epidemic.
To simulate the first and the second waves in Iran, we used
the reported data for the infected cases from the world meter
website [23]. The model (2) describes an endemic model (with
vital dynamics) such that the births are added at the rate Ω

into the class S and deaths reduce the classes at the rate m. Life
expectancy in Iran is almost 73 years, so m−1

= 73 years and
Ω = mN (the balance of births and natural deaths). Also, the
average infectious period is γ −1

= 8 days, and the mortality
rate with this disease is µ = 0.014. Additionally, the initial
conditions for the first peak (started from February 22th) are
S(0) = 83000000, I(0) = 34, R(0) = 6, and D(0) = 2. The
auxiliary parameter is also considered as θ = 0.99 for all cases in
the sequel. According to the reported cases by WHO for the first
wave of infected people in Iran, we used the fmincon package
of minimization and obtained β = 2.1 × 10−9 for the model
(2) with υ = 0.994. Since we used the fractional-order model
for the fitting purpose, the obtained β cannot be the correct
value for the integer-order case. Hence, we fitted the integer-
order model separately and obtained β = 2.0973 × 10−9. In
Fig. 2, we plotted the results for the fractional transmission with
109
υ = 0.994 and the integer transmission (υ = 1) in addition to
the available real data. Also, Table 1 reported the errors related to
each model. The results indicate that the fractional-order model
has better performance and less errors. To show the influence of
the fractional order, we plotted the state variables for the optimal
order υ = 0.994 and the other orders υ = 0.98, 0.96, 0.94, 0.92
in Figs. 3 and 4. The figures indicate that the derivative order does
not influence the behavior of the functions, although the obtained
plots are different for various orders.

With the outbreak of COVID-19 in Iran, the government en-
forced quarantine rules until April 18th, so the number of infected
people declined rapidly as shown in Fig. 2. This figure also depicts
that with the continuation of this practice, the disease could be
controlled in 100 days. However, the quarantine rules were lifted
on April 18th; thus, by reopening of jobs, the second-wave of
COVID-19 began on May 5th. In the second wave, according to the
published information, the mortality rate was about µ = 0.034,
and with the fitting technique, the amounts of β = 9.8 × 10−9

and β = 9.702 × 10−9 for the fractional- and the integer-order
models were obtained, respectively. Fig. 5 shows the fractional-
order results with υ = 0.9952 and the classic integer responses
with υ = 1 along with the reported cases of infected people
from May 5th; Table 2 also indicates the errors for both cases.
The results indicate that the errors of the fractional-order re-
sponses are lower, a fact which confirms its superiority. Figs. 6
and 7 portray a forecasting, according to the second wave, for
the spread of COVID-19 in Iran. According to these figures, it
takes about eight months to pass the second wave, and about
70,000 people will die from this disease. To check the fractional
order effect on the dynamics the model (2), the state variables
were also plotted for the optimal order υ = 0.9952 and the
other orders υ = 0.98, 0.96, 0.94, 0.92 in Figs. 6 and 7. The
plots display that the derivative order does not influence the
general functions’ behavior, but the achieved values are different
for various fractional orders, and the differences increase over the
time.

6.2.2. Case II: Japan
We consider the second wave of COVID-19 transmission in

Japan from June 30th. According to the available data, the mortal-
ity rate with respect to the COVID-19 transmission for the second
wave in Japan was very low and about µ = 0.007. Life expectancy
in Japan is almost 85 years, so m−1

= 85 years. Also, the other
parameter is the average infectious period γ −1

= 8 days, and
the initial conditions are S(0) = 19211669, I(0) = 7287, R(0) =

20534, and D(0) = 1799. According to the reported cases by WHO
for the infected people in the second wave in Japan, we used the
fmincon package of minimization and obtained β = 1.6 × 10−9

for the fractional-order model with υ = 0.9961 and β = 1.573×

10−9 for the integer-order model with υ = 1. In Fig. 8, we plotted
the results for the fractional and the integer derivatives along
with the reported cases from June 30th to July 20th. As can be
seen, both the integer- and fractional-order models with υ = 1
and υ = 0.9961, respectively, follow the real data very well, but
Table 3 shows that the fractional-order model has less errors.
Fig. 8 also forecasts the second wave of COVID-19 transmission
in Japan, which will take about 5 months to subside. Figs. 9 and
10 show the results of the model in Japan, which indicates that
the treatment process is well progressed, and eventually, by the
end of the second wave, the number of deaths will have reached
to nearly 1150 persons. Also, Figs. 9 and 10 display the results
for different orders of fractional derivative; as can be seen, a
small change in the derivative order makes a big difference in
the resulting values, while the general functions’ behaviors are
the same.
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Fig. 2. The plots of fractional-order model (υ = 0.994) and integer-order model (υ = 1) for the infected people I(t) in Iran (the first wave).

Fig. 3. The dynamics of susceptible and infected groups in Iran for the optimal order υ = 0.994 and the other orders υ = 0.98, 0.96, 0.94, 0.92.

Fig. 4. The dynamics of recovered and died groups in Iran for the optimal order υ = 0.994 and the other orders υ = 0.98, 0.96, 0.94, 0.92.

110



H. Mohammadi, S. Rezapour and A. Jajarmi ISA Transactions 124 (2022) 103–114

Fig. 5. The plots of fractional-order model (υ = 0.9952) and integer-order model (υ = 1) for the infected people I(t) in Iran (the second wave).

Fig. 6. The prediction of susceptible and infected groups in Iran for the optimal order υ = 0.9952 and the other orders υ = 0.98, 0.96, 0.94, 0.92.

Fig. 7. The prediction of recovered and died people in Iran for the optimal order υ = 0.9952 and the other orders υ = 0.98, 0.96, 0.94, 0.92.
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Fig. 8. The prediction of infected people I(t) in Japan by fractional-order model (υ = 0.9961) and integer-order model (υ = 1) (the second wave).
Fig. 9. The plots of susceptible and infected people in Japan for the optimal order υ = 0.9961 and the other orders υ = 0.98, 0.96, 0.94, 0.92.
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.3. Optimal control

Here we use some numerical simulations to investigate the
ffect of the suggested control strategy, social distance, on the
utbreak of COVID-19. To investigate the effect of social distance
n the second wave in Iran and Japan, we used the parameters
resented in the previous section. Also, we consider n = 2,
he weighting constants b1 = 0.35, b2 = 10, and the final
ntervention times T = 1000 and T = 100 days for Iran and
apan, respectively. To find the optimal control, we combined our
uggested numerical method (Section 6.1) and an iterative algo-
ithm proposed in the study [24]. Indeed, we implemented the
roposed method in Section 6.1 forward and backward in time
or the state and co-state equations, respectively. Note that the
onvergence and the stability of this technique were developed
n [24]. In addition, the utilized scheme was employed in the
revious literature for some practical cases such as the solution of
eneral fractional optimal control problems [25], and the optimal
ontrol of a human respiratory syncytial virus infection [26].
ig. 11 shows the population of susceptible and infected people
 t

112
n Iran in the presence and the absence of the aforesaid control
trategy. It is apparent that the social distance reduces the num-
er of infected people. Fig. 12 plots the variation in the number of
usceptible and infected people in the presence and the absence
f the control strategy in Japan. Our goal was to reduce the
umber of infected people; the results confirm that the number
f infected people (peak of the disease) decreased, and since the
nitial number of infected people was small, this wave was ended
aster, and the spread of the disease was controlled by the social
istance strategy.

. Conclusion

This research presented a fractional SIRD model in the Caputo
ense for the spread of COVID-19 between humans. The equilib-
ium points, the basic reproduction number, and the feasibility
egion of the system (2) were determined. Also, we proved that
nonnegative solution exists for the model and checked the

tability of the disease-free steady-state. An optimal control for
he system under study was calculated considering the social
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Fig. 10. The plots of recovered and died people in Japan for the optimal order υ = 0.9961 and the other orders υ = 0.98, 0.96, 0.94, 0.92.
Fig. 11. The plots of susceptible and infected people in Iran in the presence and the absence of control.
distancing strategy. In the numerical part, the fractional Euler
method provided the approximate solutions of the system (2).
Some numerical simulations were presented to investigate the
first and the second waves of the disease in Iran and Japan. With
the application of quarantine laws and the closure of jobs in
Iran until April 18th, the first wave came to an end by May 2th.
However, by reopening the jobs on April 18th, the value of β was
ncreased from 2.1×10−9 to 9.8×10−9, and the second wave was
tarted after two weeks. The second wave was continued for 2
onths, and about 70,000 people were died at the end of the sec-
nd wave. Also, comparing the results between the integer-order
odel, the fractional-order case, and the reported data showed

hat the fractional-order one follows the real data better. By
lotting the results for different fractional orders, the effect of the
ractional order on the results was investigated, which differed
nly in the resulting values and did not have any special effect
n the general functions’ behavior. Next, the second wave of the
isease was simulated in Japan, but the amount of β produced
as less than that in Iran, so we predicted that the second wave

n Japan would take about 3 months. The number of infected cases
113
was increased to 12,000, and the number of deaths from this
disease was increased to 1200, which was much less than that
in the second wave in Iran. This can be due to two reasons: first,
because the value of β was low, the number of infected cases was
slowly increased giving more time to the treatment department;
second, the treatment system in Japan might be more successful.
Additionally, some numerical simulations for the optimal control
strategy in Iran and Japan were presented. The results showed
that by creating social distance and observing basic health issues,
the number of patients in Iran were decreased; also, if the desired
measures continued, the number of patients would reach zero.
In Japan, where the initial number of infected people was lower,
social distance reduced both the peak and the duration of the
disease, so the prevalence of the illness was controlled.

The fractional differential system preserves the historical
memory of the system, so in the second wave we should use
the data from the beginning of the outbreak, but β is different
in the two waves. Therefore, with the proposed model, we could
not use the primary data for the second wave. Therefore, young
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Fig. 12. The plots susceptible and infected people in Japan in the presence and the absence of control.
researchers can examine how and by which method they can
overcome this weakness.
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