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Abstract

Brain shift is a non-rigid deformation of brain tissue that is affected by loss of cerebrospinal fluid, 

tissue manipulation and gravity among other phenomena. This deformation can negatively 

influence the outcome of a surgical procedure since surgical planning based on pre-operative 

image becomes less valid. We present a novel method to compensate for brain shift that maps 

preoperative image data to the deformed brain during intra-operative neurosurgical procedures and 

thus increases the likelihood of achieving a gross total resection while decreasing the risk to 

healthy tissue surrounding the tumor. Through a 3D/2D non-rigid registration process, a 3D 

articulated model derived from pre-operative imaging is aligned onto 2D images of the vessels 

viewed through the surgical miscroscopic intra-operatively. The articulated 3D vessels constrain a 

volumetric biomechanical model of the brain to propagate cortical vessel deformation to the 

parenchyma and in turn to the tumor. The 3D/2D non-rigid registration is performed using an 

energy minimization approach that satisfies both projective and physical constraints. Our method 

is evaluated on real and synthetic data of human brain showing both quantitative and qualitative 

results and exhibiting its particular suitability for real-time surgical guidance.
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1. INTRODUCTION

Intra-operative brain shift is a well-known phenomenon that describes movement and 

deformation of the brain in terms of its anatomical and physiological position in the skull 

during neurosurgery.1,2 Several methods have been proposed in the literature to estimate 

brain shift using pre-operative and intra-operative image data using various types of imaging 

techniques such as Cone-Beam Computed Tomography,3 B-mode ultra-sound4,5 Doppler 

ultra-sound,6 Laser range scanner7 or intra-operative MRI.8 Most of these methods are 
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solely based on image processing since they do not involve additional pre-operative 

preparation. In Filipe et al.,9 a non-rigid deformation pipeline using superficial vessel 

centerlines have been proposed. The method uses Thin Plate Spline (TPS) to compute the 

deformation and Coherent Point Drift (CPD) for centerline registration. More advanced 

methods than CPD have been evaluated for the non-rigid registration stage. In Bayer et al.,10 

a Hybrid Mixture Model is used and outperforms the classic CPD approach. This method is 

combined with TPS-like interpolation to generate a dense deformation field. In Machado et 
al.,11 a feature-based active registration method is proposed. 3D SIFT-Rank is used to find 

correspondences and estimate dense mappings throughout the image. This method was 

shown to be robust in clinical routines and can benefits from additional landmarks selected 

by surgeons thanks to an active framework.12 Instead of using geometric models such as 

TPS to compute deformation, several approaches proposed to use biomechanical models.
7,13–17 Recently, Morin et al.14 measured brain shift at the brain surface and sub-surface 

vessels using intraoperative doppler-based ultrasound and then used physics-based models to 

propagate the deformation to regions of the brain where arteries are not present. In Sun et al.
7 pre-computed atlases of the brain are used to simulate brain shift following a sparse set if 

image-points extracted from the cortical brain surface using an optically tracked portable 

laser range scanner. In Luo et al.18 an optically tracked stylus is used to identify cortical 

surface vessel features; these features are integrated in a model-based workflow to estimate 

brain shift correction after craniotomy and dural opening. Stereovision has been used as a 

means to capture the shape of the exposed brain and infer the deformation caused by brain 

shift. The method proposed by Mohammadi et al.17 used a projection-based stereovision 

process to map brain surface with a pre-operative finite element model. The projection of a 

pre-defined pattern permits to recover the 3D shape of the brain that is coupled with 

ultrasound imaging to perform a non-rigid registration. Ji et al.19 proposed to combine 

optical flow and stereovision constraints to reconstruct a 3D dense brain surface at two 

different surgical stages leading to obtain an undeformed and deformed surface. A non-rigid 

registration between the underformed and deformed surface is used to determine the 

deformation of the exposed brain surface during surgery.

In this paper we propose a vessel-based method to register pre-operative scans onto intra-

operative images captured through the surgical microscope. Our method uses cortical vessels 

at the surface since images of the brain surface from the craniotomy are available in real-

time through the oculars of the microscope (or possibly a ceiling mounted camera) while 

intra-operative ultra sound and intra-operative MRI both require significant cost and time. In 

comparison to previous methods, we rely solely on a single image acquired from the surgical 

microscope, to avoid tedious calibration of the stereo camera, laser range finder or optical 

stylus, which makes previous approaches impractical in most hospital settings. This narrows 

down our problem to a 3D/2D non-rigid registration between undeformed 3D centerlines 

and deformed 2D centerlines that can be solved by satisfying a combination of physical and 

projective constraints. The surface deformation estimated by this method is then propagated 

to the rest of the brain using a biomechanical model, built from pre-operative MRI scans, 

that has proven to be fast and reliable to model the brain tissue and its inner structures.20,21
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2. METHODS

2.1 Method overview

Our approach updates the pre-operative neurosurgical plan (particularly the tumor position) 

by taking into account the intra-operative brain shift. As shown in the pipeline of figure 1, at 

any time t, inputs to our registration system include a single monocular image, ℐ, acquired 

intra-operatively via the surgical microscope and a 3D model of the cortical vessels, V, 

derived from the pre-operative MRI. A 3D/2D non-rigid registration method is applied to 

align the vessels to the image. This registration deforms the vessels while preserving its 

physical consistency. This deformation estimates a shift of the whole brain (global) from a 

sub-part of the brain surface (local). The local deformation is converted to a global 

deformation using a biomechanical model that propagates the location deformation of 

cortical veins to deep structures including vessels and the tumor.

2.2 Data processing and problem formulation

The first stage of our pipeline is processing the input intra-operative image ℐ and pre-

operative vessels V. We chose to rely on vascular network graphs (or centerlines) to perform 

our non-rigid registration (see figure 2). Indeed, centerlines represent an effective shape 

abstraction over using the complete vascular network and can be manipulated more easily.

For this preliminary study, extracting centerlines from ℐ is done manually, by interactively 

selecting a set of points representing the starting and ending points of vessel segments. More 

advanced methods exist, either supervised or unsupervised22,23 and could be easily plugged 

in our pipeline. We denote U = uj ∈ ℝ2 , the set of 2D points corresponding to the intra-

operative centerlines. Extracting the centerlines from V is done by first segementing the 

MRI scans and building a triangulated surface mesh of the vessels. This mesh is then 

iteratively thinned using mean curvature skeletonization24 to obtain the final centerlines that 

we denote V = vi ∈ ℝ3 .

Our goal is to find the transformation function Φ so that U = Φ(П,R,t,δu)(V) where П is the 

camera matrix that transforms camera coordinates to world coordinates, R and t are 

respectively the rotation and translation matrices representing rigid transformation 

components and δu is the non-rigid transformation component.

2.3 Modelling the vessels and its surrounding tissues

Let S be a 3D triangulated surface mesh of the brain generated from pre-operative MRI 

scans that includes the parenchyma, internal structures such as vessels or tumors, and 

constraints from surrounding anatomical information such as the skull.21 The mesh S allows 

us to build a physical model incorporating tissue properties and biomechanical behavior (see 

Figure 3). This physical model is characterized by a geometry S and a stiffness matrix K that 

describe physical properties such as tissue elasticity, damping or viscosity. In order to 

account for tissue heterogeneity, the stiffness matrix of the whole brain is a mechanical 

composition of paranchyma and vessel stiffness properties. This mechanical coupling 

permits the propagation of vessel deformation to the paranchyma and the tumor. In practice, 
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the global stiffness matrix is built so that each element of the parenchyma model that 

intersects a vessel centerline has a higher stiffness.

The deformation is specified by its stress-strain relationship. The brain deformation is 

computed using a non-linear geometric finite element method, with a linear constitutive law,
25 where the finite element model is meshed with linear hexahedrons. This allows for 

rotation in the model, while relying on a linear expression of the stress-strain relationship. 

The equation relating the external forces f to the nodal displacements x can be written as f = 

K(x)δx.

2.4 Energy-based Non-rigid Registration

As most of the registration algorithms, our non-registration has an intialization phase. This 

consists of a rigid alignment, done manually, that permits to initialize the rotation matrix R 
and translation vector t. With R and t set, a correspondences vector C = ci ∈ ℕ  can be 

built. This vector is built so that if a source point vi corresponds to a target point uj then ci = 

j for each point of the source set. Having the biomechanical model on one hand and the set 

of correspondences C on the other hand, we can update the pre-operative 3D mesh S by 

registering the pre-operative centerlines V with the intra-operative centerlines U that 

minimizes the physical energy of the biomechanical model. This leads to the following 

energy minimization expression:

min
δu

1
2 δu⊤Kδu

Physical consistency 

+ ∑
i ∈ nC

1
2κ vi − Πuci

2
Image fitting 

(1)

where κ is the stiffness coefficient that ties the source and target centerlines to compute the 

bending energy. Note the subscript ci that denotes the correspondence indices between the 

two point sets. The image fitting term can be considered as sightlines coming from the 

camera position to the 2D centerlines that enforces the physical model to fit the image.

3. RESULTS

3.1 Simulated Data

We tested our method on synthetic data of a complete human brain. The vessel centerlines 

were extracted from the vessels and linearly down-sampled to permit a point-to-point vessel 

matching. The number of centerlines nodes after down-sampling is 102 nodes. The 

biomechanical brain model is derived from the triangular mesh using Delaunay volume 

triangulation. In our tests, both hemispheres are meshed with approximately 1000 

tetrahedrons. The stiffness matrix is built with a Young’s modulus E set to 3000 Pa and 

Poisson’s ratio to 0.45. We used the SOFA framework to build the biomechanical model.26

We quantitatively evaluated our method by measuring the registration error on tumors. We 

considered 3 tumors at different locations close to the surface (see figure 4-a). We simulated 

the brain shift under two different scenarios: the first one mimicked the brain sliding towards 

the back of the skull under gravity as illustrated in figure 4-b and the second simulates a 
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protrusion deformation that can occur due to brain swelling after the craniotomy as 

illustrated in figure 4-c. From the simulated data we extracted the 3D vessel centerlines to 

perform the matching where we added Gaussian noise with a standard deviation of 5 mm 

and a 5 clustering decimation on a subset of points composing the centerlines. We calculated 

the error as the Euclidean distance between the center of mass of the simulated tumors and 

the ones measured using our method. The results reported in figure 5 show the registration 

error for each tumor. Depending on the location of the tumors, we measured a distance error 

ranging from 0.63 mm to 2 mm with a vessel correspondence of 50% which corresponds to 

a 81% and 68% brain-shift correction respectively (The brain-shift correction is measured as 

the difference between the initial error and the corrected error divided by the initial error).

In addition to tumor locations, we measured the registration error on the brain surface using 

Hausdorff distance. As shown in Figure 6, the maximum measured Hausdorff distance was 

3.2 mm with a vessel correspondence of 50%. We can also observe that gravity-induced 

deformation generates less errors than deformations caused by brain swelling at the site of 

the craniotomy.

We furthermore downgraded the matching quality by decreasing the number of vessel 

correspondences, from 90% to 10% to demonstrate the capability of the model to interpolate 

deformation where no image information is available. As shown in figures 5 and 6 the 

registration error on the tumors and the brain surface decreases monotonically as the number 

of correspondences increases. In the worst case where only 10% of the correspondences are 

used, we measured a maximum Euclidean distance between tumors’ center of masses of 

3.61 mm for tumor 1, 2.20 mm for tumor 2 and 4.46 mm for tumor 3, and a maximum 

Hausdorff distance of 10.19 mm for the brain surface.

We tested our method on a subset of centerlines nodes to get closer to a craniotomy case 

where only a small part of the brain is visible. This subset is composed of 8 nodes regularly 

distributed over the centerlines. We plotted in Figure 7 the actual registration error between 

the estimated tumors’ positions and the ground truth positions for both type of deformation. 

The errors are more important compared to the global registration but are still acceptable 

with a minimal distance of 1.08 mm and a maximal distance of 2.61 mm. Tumor 2 located 

near the visible surface vessel subset exhibits the lowest distance errors while the tumor 3 

located deeper w.r.t the selected surface shows the highest distance errors.

3.2 Real Data

We tested our method on real data using images acquired from a Carl Zeiss surgical 

microscope. The scope is equipped with two cameras with a video frame rate of 

approximately 30 frames per second. We used only the left image. The pre-operative mesh is 

first aligned manually on the image to obtain the rigid transform, then, the non-rigid 

refinement is performed, which will drive the whole brain mesh. The Figure 8 shows the 

non-registration process and the resulting mesh-to-image overlay.
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4. CONCLUSION

We propose a method to update pre-operative neurosurgical planning by taking into account 

brain deformation induced by brain shift. Our method follows a 3D/2D non-rigid process 

between pre-operative and intra-operative cortical vessels centerlines using a single image 

instead of a stereo pair. Our method shows promising results in estimating brain tumor 

positions subject to two common types of brain shift, a gravity-induced deformation and a 

protrusion deformation. In addition, our results suggest that cortical vessels can be 

considered as strong features to estimate brain shift deformation. This approach can be used 

for neurosurgical navigation when vessels visible on the surface can be captured using a 

surgical microscope.

Future work will consist of extending the experiments on real data with surgical conditions 

and include an automated algorithm for vessels’ centerlines extraction from microscopic 

images.
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Figure 1: 
Overview of our pipeline: inputs of our system consist of a single intra-operative image 

acquired from the surgical microscope and a model of brain surface derived from the pre-

operative MRI. A 3D/2D non-rigid registration method is applied to align the vessels. This 

alignment is propagated to the rest of the brain using a biomechanical model to provide a 3D 

model of brain shift.
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Figure 2: 
Input data processing: (a) interactive points selection, (b) centerlines between starting and 

ending points, (c) pre-operative vessel with region of interest, (d) zoom on the region on 

interest, (e) centerline extraction using mean curvature skeletonization.
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Figure 3: 
Constructing the biomechanical model: (a) a 3D surface model S derived from the 

preoperative MRI scan and (b) a 3D hexahedral volume model generated using the 

geometrical properties and the stiffness matrix
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Figure 4: 
Synthetic data experiments: (a) tumor positions inside the brain, tumor 1 is in purple, tumor 

2 is in yellow and tumor 3 is in green. (b) Simulated force applied to mimic brain sliding 

towards the back of the skull. (c) Simulated force applied to mimic protrusion deformation 

that occurs during craniotomy.
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Figure 5: 
Quantitative evaluation of registration error on tumors.
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Figure 6: 
Color maps corresponding to the registration errors for the simulated data experiments: (a) 

and (b): brain surface registration errors for gravity-induced deformation with 10% matching 

and 90% matching respectively, (c) and (d) brain surface registration errors for protrusion 

deformation with 10% matching and 90% matching respectively.
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Figure 7: 
Registration errors on a sub part of the brain for both types of deformations.
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Figure 8: 
Experiments using real-world data: (a) inital rigid registration, (b) non-rigid registration, (c) 

alternate point of view showing the 2D constraints and (d) deformation propagation onto the 

volume model
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