Table 4:
Sequence features | Example-based metrics | Label-based metrics | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F1 score | Subset_accuracy | Hamming-loss | Rank-loss | Macro_precision | Macro_recall | Macro_F1 score | Micro_precision | Micro_recall | Micro_F1 score | |
PseACC | 0.896 | 0.897 | 0.895 | 0.896 | 0.894 | 0.041 | 0.104 | 0.708 | 0.510 | 0.559 | 0.897 | 0.894 | 0.895 |
PSSM profiles | 0.937 | 0.938 | 0.937 | 0.937 | 0.935 | 0.025 | 0.062 | 0.909 | 0.763 | 0.812 | 0.938 | 0.935 | 0.937 |
GO terms 0/1 | 0.959 | 0.959 | 0.958 | 0.959 | 0.957 | 0.016 | 0.041 | 0.952 | 0.785 | 0.791 | 0.959 | 0.957 | 0.958 |
GO terms ppv | 0.962 | 0.962 | 0.961 | 0.962 | 0.960 | 0.015 | 0.038 | 0.927 | 0.803 | 0.819 | 0.962 | 0.960 | 0.961 |
PseAAC+PSSM+GO | 0.947 | 0.949 | 0.947 | 0.948 | 0.946 | 0.020 | 0.052 | 0.931 | 0.772 | 0.824 | 0.949 | 0.946 | 0.947 |
PSSM+GO | 0.948 | 0.950 | 0.948 | 0.949 | 0.946 | 0.020 | 0.051 | 0.920 | 0.822 | 0.851 | 0.950 | 0.947 | 0.948 |
ConsensusPseAAC+PSSM+GO | 0.924 | 0.924 | 0.978 | 0.941 | 0.871 | 0.033 | 0.050 | 0.855 | 0.858 | 0.839 | 0.871 | 0.977 | 0.921 |
ConsensusPSSM+GO | 0.950 | 0.950 | 0.974 | 0.958 | 0.924 | 0.021 | 0.038 | 0.886 | 0.854 | 0.851 | 0.924 | 0.973 | 0.948 |