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A B S T R A C T   

Macrophages represent the first line of anti-pathogen defense - they encounter invading pathogens to perform the 
phagocytic activity, to deliver the plethora of pro- and anti-inflammatory cytokines, and to shape the tissue 
microenvironment. Throughout pneumonia course, alveolar macrophages and infiltrated blood monocytes 
produce increasing cytokine amounts, which activates the antiviral/antibacterial immunity but can also provoke 
the risk of the so-called cytokine “storm” and normal tissue damage. Subsequently, the question of how the 
cytokine spectrum is shaped and balanced in the pneumonia context remains a hot topic in medical immunology, 
particularly in the COVID19 pandemic era. The diversity in cytokine profiles, involved in pneumonia patho-
genesis, is determined by the variations in cytokine-receptor interactions, which may lead to severe cytokine 
storm and functional decline of particular tissues and organs, for example, cardiovascular and respiratory sys-
tems. Cytokines and their receptors form unique profiles in individual patients, depending on the (a) microen-
vironmental context (comorbidities and associated treatment), (b) lung monocyte heterogeneity, and (c) genetic 
variations. These multidisciplinary strategies can be proactively considered beforehand and during the pneu-
monia course and potentially allow the new age of personalized immunotherapy.   

1. Introduction 

Monocytes and macrophages (MՓs) are among the first responders 
against any type of invading pathogens, primarily of viral and bacterial 
origin. Monocytes/MՓs are the components of the innate immune sys-
tem with the essential ability for phagocytosis, cytokine production and 
release, and antigen presentation. Monocytes are normally present in 
the blood, while MՓs are found in all the tissues, including so-called 
immune-privileged zones (microglia of the central nervous system, 
MՓs of eyes, testis, and placenta). The ubiquitous location of mono-
cytes/MՓs makes them one of the first cell populations, which encounter 
the invading pathogens. 

Both monocytes and MՓs express Toll-like receptors (TLRs), which 

recognize pathogen-associated molecular patterns, such as bacterial li-
popolysaccharides (LPS) (TLR 2,4), bacterial or viral DNA and RNA 
(TLR3, 7–9) [1,2]. The ligand-receptor engagement leads to the mono-
cyte/MՓ proinflammatory activation and cytokine release, which re-
sults in increased cellular phagocytic and cytotoxic activity and further 
regulation of innate and adaptive immune systems together with the 
surrounding tissues. Thus, cytokines, which include interleukins, in-
terferons, chemokines, colony-stimulating and growth factors, are 
essential communication molecules involved in cellular cross-talk and 
signaling. Cytokines shape pro- or anti-inflammatory microenvironment 
and are involved in a broad number of physiological processes - cell 
attraction and differentiation, - and pathological events - bacterial and 
viral infections, autoimmunity, metabolic disorders, and cancer [3]. 
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In pneumonia the cytokine signaling network is formed by multiple 
cell populations, including airway epithelium, fibroblasts, and MՓs. 
Here, we address the roles of lung resident MՓs and monocytes in 
cytokine network in the context of cell microenvironment, disease his-
tory, and genetics. 

2. Diversity of lung monocytic subsets and cytokine profiles 

Host response to viral or bacterial pathogens, which generally 
penetrate the lungs via inhalation or swallowing, requires the activation 
of local and systemic components of inborn (monocytes/MՓs, neutro-
phils, natural killer cells) and adaptive (T- and B-lymphocytes) immu-
nity together with nonimmune resident cells (fibroblasts, airway 
epithelium) to counteract the pathogen and promote tissue recovery. 
While all of the cell populations are essential for proper antiviral and 
antibacterial responses, lung MՓs and infiltrated blood-derived mono-
cytes represent an important cytokine source and remain in focus of 
attention for understanding the lung homeostasis in health and disease 
[1]. 

In the physiological conditions, only tissue-resident MՓs - alveolar 
and interstitial - populate lungs (Fig. 1). Although the precise origin of 
alveolar MՓs is yet to be established, the developmental studies suggest 
that they migrate from two independent sources, yolk sac and fetal liver, 
and populate the alveolar and airway lumen [2,3]. Interstitial MՓs are 
also essentially present in the lung tissue and comprise around 5–10 % of 
all lung monocyte cells [4]. Various genomic and single-cell studies in 
mice and humans distinguish from 2 to 3 various subsets of interstitial 
MՓs basing on major histocompatibility complex (MHC) II and CD11c 
expression levels, antigen presentation and phagocytic activities [5–7]. 
When compared with alveolar MՓs, interstitial MՓs show higher mRNA 
levels of cytokine (interleukin (IL) 4, IL6, IL10) and interferon (IFN) (IFN 
A, G) receptors and chemokines (CC-chemokine ligand (CCL) 3,4,6− 9; 
chemokine (C-X-C motif) ligand (CXCL) 1314; CC chemokine receptor 
(CCR) 1,2) in a non-activated state and increased cytokine (CXCL 1, 2, 
9− 11, IL11, IL33) expression upon LPS stimulation [5,6,8]. 

IL10-producing MՓs, predominantly represented by interstitial MՓs, are 
reduced in asthma patients, and are, thus, believed to play an essential 
role in physiological and pathological immunoregulation [9,10]. 

While pathological inflammation arises resident MՓ subsets are 
supplemented with the peripheral monocytes infiltrated from the blood 
(Fig. 1). Lymphocytes and eosinophils are also recruited to the lungs, 
and their amounts gradually decrease with time, while monocytes can 
remain in the lung tissue for longer periods and convert into MՓs. To 
address the functional activity monocytes / MՓs can be roughly classi-
fied into unprimed (non-stimulated), pro-inflammatory (M1-like) or 
anti-inflammatory (M2-like) cells (Fig. 2). 

Recent works show that monocytic cell roles throughout pneumonia 
course significantly depend on the phenotypic subset and origin together 
with the microenvironment, as different activating stimuli show similar 
outcomes within one tissue/organic location, but not throughout the 
whole organism [11]. Alveolar and interstitial MՓs vs. monocytes have 
different potency for cytokine production in healthy lungs and during 
the early disease stages (Table 1, Fig. 1). Blood-derived monocytes 
produce the highest levels of proinflammatory cytokines (Fig. 1). Of 
note, younger patients exhibit higher levels of peripheral monocytes and 
inflammatory cytokines in the nasal lavage than adults, and these pa-
rameters are not associated with disease severity and outcome. How-
ever, the presence of proinflammatory monocytes in the systemic 
circulation is a risk factor of uncontrolled cytokine storm and sepsis in 
all cohorts of patients [12]. During later stages of the disease 
lung-resident myeloid cells become a predominant source of immuno-
suppressive cytokine IL10 and effectively control T helper 2 cell activity 
[13]. Further, lung-resident MՓs, but not monocytes, exhibit reduced 
capability for phagocytosis long-term after recovery from infectious 
pneumonia, and nuclear factor kappa-light-chain-enhancer of activated 
B cells (NFκB) transcriptional regulation seems to be among the major 
mechanisms of this dysfunction [14]. This can be one of the key reasons 
of chronic lung inflammation and fibrosis, when alveolar MՓs become 
dysfunctional and fail to remove the damaged cells and debris and 
perform physiological surfactant turnover. MՓs originated from the 

Fig. 1. The monocyte / macrophage (MՓ) activity throughout the pneumonia course. Under physiological conditions lung monocytic populations include resident 
alveolar and interstitial MՓs, located in the alveolar and airway lumen and interstitial space, respectively. During infection, the blood derived monocytes penetrate 
the lung tissue. During the early, or acute, stage monocytes / MՓs develop proinflammatory phenotype and produce proinflammatory cytokines essential for 
attraction of other immune cell subsets. Among monocytic cells, infiltrated monocytes are the major source of pro-inflammatory cytokines. Later during subacute 
phase macrophages switch towards anti-inflammatory profiles, which support the lung tissue reorganization (chronic phase) and/or recovery. 
Created with BioRender.com 
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infiltrated monocytes can unlikely replace them since blood-derived 
MՓs more intensively undergo Fas-dependent apoptosis and are thus 
eliminated from the lung microenvironment [15]. Initially, Fas signaling 
cascade is required for IL1β production via caspase-mediated inflam-
masome formation in monocytes exclusively and is associated with 
strong antiviral activity [16,17]. CD44-expressing blood-derived MՓs 
are more resistant towards Fas-dependent apoptosis, and MՓ migration 
inhibitory factor (MIF)/CD44 signaling axis can thus be used to expand 
this cell population and to eliminate the viral/bacterial pathogens more 
efficiently if needed [18]. Less is known about the distinctive features of 
interstitial MՓs. Considering their location and predisposition for high 
IL10 production in the resting state, it may be suggested that this subset 
prevents systemic monocyte activation, as anti-inflammatory IL10 can 
be released by interstitial MՓs both into alveolar space and blood flow to 
restrict cytokine storm on both local and systemic levels [19]. 

Importantly, the cytokine contribution to the disease pathogenesis is 
completely rearranged if a joint bacterial infection develops. For 
instance, cytokines, such as IL33, which are considered as negative 
factors and are associated with the cytokine storm in viral infections, 
become essential for bacterial clearance and further recovery after 
associated bacterial pneumonia [47]. Moreover, while IL33 is consid-
ered as highly proinflammatory, as it promotes γδT cells via IL9 axis in 
COVID19 disease, can also act as immunosuppressor long-term during 
and after sepsis [48–50]. 

Whether the cellular source of IL33 in the listed situations is 

diversified remains unclear. Conclusively, the functional outcomes of 
cytokine signaling have to be considered when cytokine profile is shaped 
in pneumonia therapeutics. With that, it is particularly important to 
address the monocyte cell origin together with the pathological context 
for targeted subset re-polarization and controllable cytokine regulation 
in personalized and stage-dependent modes for further clinical 
implementations. 

3. Proinflammatory cytokine network in pneumonia 

The overstimulation and prolonged activation by proinflammatory 
stimuli lead to overproduction of cytokines and emerged inflammation, 
which can also impact surrounding tissues and provoke lung and car-
diovascular damage, and even septic-like conditions. An anti- 
inflammatory cytokine network is on hand for restriction of M1-like 
polarization at the later stages of pneumonia. Certain cytokines, such 
as granulocyte-monocyte colony stimulating factor (GMCSF), can be 
used to redirect MՓs towards less inflammatory and more protective 
phenotype, and suppression of cytokine storm remains a major thera-
peutic strategy against pneumonia [51,52]. 

In general, monocytes/MՓs release a broad spectrum of proin-
flammatory cytokines (Table 1). The major contributors to the disease 
course during bacterial or viral-induced pneumonia are IL6, IL1β, tumor 
necrosis factor alpha (TNFα), IL8, IFNI, and others, which are produced 
under control of signal transducer and activator of transcription 1 

Fig. 2. Functional polarization of monocytic/macrophage cell subsets. Macrophages can obtain the distinctive phenotype depending on the microenvironment. 
Polarization towards pro-inflammatory (M1-like) macrophages is triggered by pathogen-associated molecular patterns (PAMPs) such as LPS, bacterial or viral DNA, 
and some cytokines (IFNγ) via STAT1, NFκB and interferon regulatory factor (IRF) transcription factor signaling, which leads to high pro-inflammatory cytokine 
production. M1-like monocytic cells are responsible for anti-pathogen defense, acute inflammation, other immune subset attraction and can provoke cytokine storm. 
Anti-inflammatory (M2-like) polarization of macrophages is elicited by cytokines IL4, IL13, and TGFβ and leads to the resolution of inflammation, tissue reorga-
nization, and regeneration. The balance between M1/M2 states is required for proper pathogen elimination and efficient structural and functional recovery. 
Created with BioRender.com 
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(STAT1) and NFκB transcription factors (TFs). Another important group 
of TFs is an IFN regulatory factor (IRF) family, primarily, IRF 3, 7, and 9, 
which positively regulate of viral-induced IFN transcription. Altogether, 
activation of these proinflammatory TFs is a double-edged sword, as 
they promote proinflammatory M1-like polarization, cytokine release, 
and attraction of other immune cells for antibacterial or antiviral ac-
tivity but may also lead to poor recovery and damage of lung tissue, 
vasculature, heart, and even more distant organs if sepsis arises. For 
instance, the high levels of antiviral interferons α and β increase the 
disease severity, lung damage, and mortality in animal models [53]. 

It is known that viral components actively modify the cytokine 
network and can shape the immune microenvironment [54,55]. For 
instance, numerous works report that viral proteins, such as ORF and 
NSP families (severe acute respiratory syndrome CoV, SARS-CoV-2) and 
H5N1, can suppress STAT1 phosphorylation and promote antagonistic 
STAT3 signaling, which results in impaired IFNI production and 
signaling in airway epithelium and dendritic cells during pneumonia 
[55–57]. Of note, STAT3 signaling is also related to apoptotic escape in 

H5N1 (avian influenza)-loaded bronchial and alveolar epithelial cells. 
Interestingly, STAT3 signaling is more IL6-dependent and proin-
flammatory in peripheral monocytes, while STAT3 of MՓs is associated 
with IL10-mediated response and results in immunoregulatory profile, 
so that viral STAT3 manipulation may lead to infiltrated monocyte 
survival and excessive inflammation or development of immunosup-
pressive microenvironment, which has to be further investigated [58, 
59]. Moreover, the dysregulated STAT signaling is a hallmark feature of 
MՓs during various viral infections, other than respiratory: hepatitis B, 
hepatitis C, human cytomegalovirus, oncolytic vesicular stomatitis 
[60–63]. However, the details of the interaction between viral proteins 
and monocytes/MՓ transcriptional machinery in pneumonia remain 
poorly investigated, so that the viral impact onto M1/M2 polarization is 
not fully understood. 

3.1. Cytokine network in monocyte-to-macrophage transition 

As it has been mentioned, alveolar MՓ origin from the fetal liver and 

Table 1 
General Characteristics of Lung Monocytic Cell Subsets.  

Mononuclear cell subset Transcription factor Secretory profile Functional role 

Alveolar macrophages (SiglecF þ CD11c þ CD11b ¡ CD71þ) 
Unprimed alveolar macrophages PPARγ, STAT6, STAT3, 

FOXP3, SOCS3 [20] 
Immunosuppressive prostaglandins, 
TGFβ, GMCSF, retinoic acid, IL10 

Lung microenvironment maintenance; Debris 
phagocytosis, surfactant turnover. Low antigen 
presenting activity, suppression of T cell activation [1, 
21] 

CD206þCD14þCD169þ
M1-like alveolar macrophages STAT1, NFκB, IRF3,7 9 

[22] 
IFN I, IL6, TNFα, IL1β, IL8, MCP1, 
MIP1β, IP10, CCL5,CXCL1 

Anti-pathogen defense, acute inflammation and 
immunoregulation; Attraction of cytotoxic T cells, T 
helper cells, B-lymphocytes [1,23] 

CD40þCD80þCD86þ
M2-like alveolar macrophages PPARγ, STAT6, STAT3, 

KLF4, c-MYC, IRF4 [22, 
24,25] 

Arg1, MRC1, CCL17, CCL18, IL10, 
TGFβ 

Alveolar formation in embryogenesis 

CD71þ CD206þ RELMα þ CD163   Regulatory T cell infiltration, resolution of 
inflammation; lung tissue reorganization and 
regeneration [26] 

Interstitial macrophages (SiglecF ¡ CD11bþHLADR þ CD71low) 
Unprimed interstitial macrophages PPARγ, Maf, Maf B, HIF1 

[4,5] 
IL7, IL10low, IL6, IL4, TNFα, CCL3, 
CCL4, CCL6− 9, CXCL13− 14, CCR1, 
CCR2, IFNA, IFNG 

Lung immune homeostasis 

CD11b þ CD11c þ CD14þ Relatively high antigen presenting activity [4,9,10] 
M1-like interstitial macrophages CD206- STAT1, NFκB, IRF3 PTX3, IL-12, CXCL13, CCL5, 

CXCL1,2,9− 11, IL11, IL33 
Th1 cell activation    

T and B lymphocyte chemoattraction    
Phagocytosis [6,27] 

M2-like interstitial macrophages CD206+ STAT6 IL10 high, IL1-Ra, CXCL11, CXCL10, 
CXCL9, CXCL2, CCL12 [6] 

Immunoregulation,lung tissue reorganization and 
regeneration [6,28]  

STAT3    
KLF4   

Blood-derived monocytes CD14þ CD16þ/- CCR þ CCR5þ CD62Lþ
Unprimed monocytes CD80þCD163þ

(CD14þþCD16-CCR2þ classical, 
CD14dimCD16þþCX3CR1þ

Irf8, Klf2, Klf4, C/EBPβ, 
Nur77 [31,32] 

IL1β low, IL6, TNFα, CCL2, CCR2, 
CCL24 [33] 

Blood homeostasis 

Non-classical, CD14þþCD16 þ C £ 3CR1þ
(intermediate) [29][30]   

Maintenance of macrophage and dendritic cell 
populations [34] 

M1-like monocytes/macrophages STAT1, STAT2,NFκB, 
IRF1,3,5 [37] 

IL6, IL1β, IL8, TNFα, MCP1, MCP3, 
MIP1β, IP10, GMCSF, CXCL10, GBP1 
[38] 

Acute inflammation 

CD14þ CD16þ/- HLADR þ CD80þ CD163- 
(predominantly from classical monocytes) 
[29,35,36]   

CD8+ T cell attraction    

Reactive oxygen species production    
Pro-inflammatory activity during late stages of 
pneumonia    
Maintenance of dendritic cell pool [30,39,40,41] 

M2-like monocytes/macrophages STAT6, STAT3, KLF4, 
IRF4 [44] 

IL10, CXCL2 (MIP2), Arg1, IL1ra [45] Immunoregulatory activity 

CD14DIM CD16- CD80- CD163þ
(predominantly from non-classical 
monocytes) [29,42,43]   

Alveolar epithelium restoration    

Lung tissue reorganization and regeneration    
Fibrosis [28,45,46]  
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yolk sac monocytic precursors during the development, while in adult-
hood majority of alveolar MՓs are maintained without bone marrow cell 
contribution unless lung pathology develops (Fig. 3) [64,65]. An em-
bryonic monocyte-to-MՓ switch is not passive but occurs in cytokine 
(transforming growth factor beta (TGFβ), GMCSF)-dependent mode and 
requires activation of a specific transcriptional program, which relies on 
key TFs peroxisome proliferator-activated receptor γ (PPARγ) and 
STAT6, which, in their turn, form a MՓ cytokine profile, distinct from 
those of monocytes [64–67]. 

TFs PPARγ and STAT6 are highly expressed in alveolar MՓs of 
healthy subjects; PPARγ and STAT6 constitutively orchestrate auto-
phagic activity and cytokine production and are thus required for 
normal MՓ activities [68]. TFs PPARγ, STAT6, and others downregulate 
proinflammatory cytokine transcription via direct DNA binding or 
suppression of M1-related TFs STAT1 and NFκB [69] (Fig. 3). Disruption 
of PPARγ or STAT6 machinery could lead to certain pathologies. For 
instance, the PPARγ deficiency was found in patients with pulmonary 
alveolar proteinosis, a condition when lung surfactant deposits within 
alveoli likely due to MՓ insufficient phagocytic activity [65]. In pneu-
monia pathogenesis, resident MՓ activation and peripheral monocyte 
infiltration also require the transcriptional program switch and improve 
antipathogen response during the early stages and restrict tissue 
regeneration in later stages [70]. 

Indeed, mouse research models show that the factors, involved in 
monocyte-to- MՓ differentiation, can be connected to pneumonia 
severity. While infiltrated monocytes are major contributors of IL6 
during pneumonia, monocytes can become one of the risk factors when 
the recirculation from the blood to lung tissue is prolonged or monocyte- 
to- MՓ differentiation is suppressed [70]. The decreased activities of 
PPARγ and STAT6 are associated with the prolonged inflammation, 
higher levels of proinflammatory cytokines IL6, IL1β, IL12, CCl2, TNFα, 
and reduced pathogen burden at the same time complicated with the 

extensive lung tissue damage during viral infections; therefore, it likely 
impacts the destiny of resident and infiltrated cells [25,71–73]. More-
over, infiltrated monocytes are exposed to local cytokines such as 
granulocyte-macrophage colony-stimulating factor (GMCSF) within the 
lung tissue, undergo transcriptional reprogramming, and become func-
tionally indistinguishable from resident cell populations, once inflam-
mation is completely resolved [51,74]. Indeed, increased levels or 
externally (intranasal) delivered GMCSF are protective against viral and 
bacterial pneumonia, first of all during the most severe pneumonia 
cases, including COVID19 [51,75–79]. Interestingly, Ly6Clo lung MՓs 
exhibit even higher proinflammatory activities in the absence of type I 
interferons deactivating stimulus, than newly infiltrated Ly6Chi mono-
cytes during influenza A and SARS-CoV-2 [80,81]. Moreover, certain 
viruses, such as middle east respiratory syndrome coronavirus, but not 
SARS-CoV-2, utilize PPARγ activity to stimulate the production of 
anti-inflammatory cytokines (primarily IL10) and suppress the host 
immune system [82–84]. The alterations in the cytokine spectrum itself 
may also participate in various antipathogen responses. TGFβ-TGFR is a 
cytokine axis, which regulates the monocyte repopulation of lung tissue 
exclusively [64,85]. TGFβ promotes immune cell infiltration to the lung 
during bacterial and viral infections, while also worsening the lung 
injury [86,87]. 

4. Personalized look onto cytokine profiles in pneumonia 

The emerging amount of data shows the substantial roles of genetic 
signatures, expression levels, and functional activity of cytokines and 
their producing machinery during pneumonia pathogenesis. While the 
majority of patients survive pneumonia and completely restore the 
normal lifestyle, the substantial cohort undergoes undesired complica-
tions such as cytokine storm, excessive fibrotic tissue formation, and 
chronic lung dysfunction, which may be due to individual genetic 

Fig. 3. Monocyte-to-macrophage differentiation within lung tissue. Switch from monocytes to macrophages occurs during embryonic development or upon acute 
inflammation or lung damage. This process is governed by locally produced GMCSF, MCSF, IL3, IL34, and others under control of the transcription factors PPARγ, 
STAT6, and IRF4. In long-term periods cells of peripheral origin become phenotypically similar to the lung-resident macrophages. 
Created with BioRender.com 
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variations and preliminary history. 
In general, the severity and negative outcomes of viral-induced 

pneumonia are associated with the high cytokine levels, primarily, 
IL33, IL6, TNFα, IL10, monocyte chemoattractant protein (MCP) 3, 
which can be detected in plasma, bronchoalveolar fluid, and nasal 
lavage of patients [12,88–91]. At the moment, the plasma cytokine 
patterns, which reflect systemic events and risk of cytokine storm and 
sepsis, are considered more suitable for evaluation of disease course and 
hospitalization pre-requisite. Moreover, transcriptional profiles of the 
peripheral blood mononuclear cells are also reflective for disease 
severity and outcome [92]. Bronchoalveolar fluid and nasal lavage can 
also be of use, while some patients with high local levels of proin-
flammatory cytokines show fast viral removal and efficient recovery 
after infection [12]. 

4.1. Altered cytokine network within risk groups 

Many bacterial and viral infections, including COVID-19, showed 
that certain comorbidities - chronic pulmonary and cardiovascular dis-
orders, diabetes, autoimmune conditions - are increased risk factors of 
cytokine disbalance and severe pneumonia [93]. Additionally, the pa-
tients undergoing regular therapy such as in cancer are also at risk and 
have to be considered with particular attention. The substantial cohort 
of patients (around 60 %) hospitalized with pneumonia undergo medical 
interventions for other reasons [94]. Here, we address the most common 
examples of correlations between chronic conditions and cytokine 
signaling networks involved in pneumonia. 

4.2. Systemic disorders 

Diabetes. Current studies on COVID-19-related pneumonia show that 
diabetic patients comprise 5 to more than 50 % of total cases [95]. Such 
a high disease prevalence can be explained by altered immune status, as 
well as applied therapeutic interventions against diabetes. Patients with 
diabetes using PPAR-γ agonists have decreased levels of proin-
flammatory cytokines during lung infections; however, develop severe 
forms of bacterial pneumonia with high bacterial burden [96]. Elevated 
IL6 levels are often found in diabetic patients, suggesting the increased 
risk for cytokine storm [95]. Statins are commonly used to control hy-
percholesterolemia and may inhibit NFκB signaling preventing excessive 
inflammation; however, most studies show no impact of statins in 
pneumonia prevalence or severity [95,97,98]. 

Autoimmune conditions require the life-long intake of immunosup-
pressive medications, such as corticosteroids or hydroxychloroquine 
[99,100]. In general, autoimmunity is associated with impaired IFN 
signaling and reduced production of cytokines, such as IL1α and IL6 
[101,102]. Indeed, patients with inflammatory bowel disease, systemic 
lupus erythematosus, rheumatoid arthritis are more susceptible to 
pneumonia [103–105]. At the same time, the therapeutic interventions 
used to control autoimmunity relapses may be on hand to restrict 
cytokine storm severity in pneumonia, which is becoming particularly 
prominent in COVID-19 treatment [99]. For instance, corticosteroid 
treatment, which reduces the systemic levels of IL6, IL1RA, and MCP, is 
widely used in pneumonia management [106]. 

Cancer. In general, oncological conditions are strongly associated 
with an immunosuppressive status of the patients due to cancer-related 
processes and relevant radio- or chemotherapeutic treatment. Lung tu-
mors are among the most prevalent cancer types found in COVID-19 
patients. Interestingly, patients after several pneumonia episodes have 
a lower risk of lung cancer development, which is probably due to their 
prolonged hyperactivated immune responses within lung tissue [107]. 
For patients already diagnosed with cancer-specific treatment ap-
proaches significantly impact cytokine profiles, as well as other pa-
rameters. Anti-epidermal growth factor receptor (EGFR) therapy, for 
example, is one of the most common approaches in lung cancer patients. 
However, EGFR signaling is protective against TNFα-induced airway 

epithelium apoptosis, and anti-EGFR treatment leads to pneumonitis 
development, the major death cause in lung cancer patients [108]. On 
the other hand, the excessive activity of the EGF/EGFR axis, found in 
patients with severe pneumonia course, leads to the risk of lung tissue 
fibrosis, chronic pulmonary obstruction, and poor recovery prognosis 
[109,110]. Anti-programmed cell death protein 1 (PD1) immuno-
therapy is also found to cause pneumonia with subsequent cytokine 
storm and risk of lung fibrosis and organ failure in various forms of 
cancer [111–113]. This side effect, which can be corrected by anti-IL6 
treatment, is a matter of concern and has to be considered as a dra-
matic risk factor for prospective patients. Cytokine-based therapies, 
which implement the antitumor activities of IL2, IL15, IL21, GMCSF or 
suppress tumorigenic properties of CCL2, 3 and 5 chemokines, are under 
development and applied in combination with other approaches in 
clinical trials [114,115]. 

4.3. Chronic lung pathologies 

Chronic obstructive lung disorder (COPD) is associated with an 
increased predisposition and a less favorable outcome of pneumonia. 
COPD patients exhibit elevated CXCL1 levels in response to external 
proinflammatory stimuli, while serum levels of TNFα, IL1β, and IL6 are 
reduced when compared with patients with pneumonia alone [116, 
117]. In accordance with these data, peripheral monocytes of COPD 
patients have reduced cytokine release following ex vivo total bacterial 
extract or LPS stimulation [118]. Suggesting that COPD is associated 
with functional deficiency of peripheral monocytes, this cell subset has 
to be a primary therapeutic target for these patients. 

Asthma is also reported as a susceptibility factor for pneumonia by 
numerous studies, while the underlying mechanisms of this connection 
are not fully understood [119]. One possible factor is IL17 production by 
Th17 cells, and high levels of IL4 and TNFα, which leads to MՓ / 
monocytes and neutrophil recruitment with subsequent excessive 
inflammation [120–122]. Second, corticosteroid-based therapy is often 
used in asthma management and can be relevant to insufficient immune 
responses, including cytokine production, and increased bacterial/viral 
burden in infectious pneumonia [123,124]. 

The major challenge of cytokine profiling in respect to comorbidity- 
pneumonia correlations is that the exact cellular cytokine source cannot 
be precisely determined in the patients. The subset contribution can only 
be accessed by 1) isolation of peripheral blood monocytes and myeloid 
cells of bronchoalveolar fluid and their further ex vivo stimulation with 
bacterial/viral pathogens, 2) by translational research derived from 
animal model studies, or 3) computational modeling of the cell behavior 
in microenvironmental and genetical contexts. The first two approaches 
are not universal as in vitro cellular responses significantly differ from 
those in the organism, while cytokine profiles and monocyte/MՓ subsets 
are not uniformed in humans and animals in health and disease. Genetic 
analysis may assist this issue implying a side-by-side comparison of in-
dividual genetic variations and linking them with the functionality of 
desired cell populations. Moreover, the same genetic variations may 
overlay pneumonia predisposition and comorbidities, as it will be 
further discussed (Table 2). 

4.4. Genetic predisposition of pneumonia risks 

The growing numbers of evidence suggest that genetic background 
including variations in viral/bacteria-host interactome and the host 
immune profile is an important factor that impacts disease predisposi-
tion and progression. While adaptive immunity is pathogen-dependent, 
factors of the innate immune system are more universal and can be used 
for a generalized prediction of inflammatory processes. The genetic 
component of the infectious conditions, such as pneumonia, can be 
detected via single nucleotide polymorphisms (SNPs) of the receptors, 
which form the first line of anti-pathogen defense (TLRs, pathogen- 
associated molecular patterns (PAMPs), and cytokine networks, which 
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are responsible for correct pathogen elimination and tissue repair and 
are described in the current review [125,126]. 

The genetic predisposition to pneumonia can be associated with the 
dysfunction in both pro- and anti-inflammatory cytokine systems and 
lead to excessive (cytokine storm) or insufficient (increased bacterial/ 
viral burden) immune responses. The major gene polymorphisms found 
in cytokine network genes and associated with pneumonia are summa-
rized in Table 2. IL6 and TNFα can be listed among the major proin-
flammatory cytokines, and the positive correlation between the severity 
of illness and the IL6/TNFα allele frequency was demonstrated in the 
cases of community-acquired pneumonia [127]. In progressive pneu-
monia and sepsis, anti-inflammatory cytokines such as IL10 are pro-
duced to control excessive inflammation. IL10 SNP, which is located in 
the ETS-like transcription factor recognition site for ETS-like TF, can be 
used as diagnostic criteria since the increase in its level is also closely 
related to the severity of disease symptoms. The IL10 level is also higher 
in patients with sepsis [128]. Pro-inflammatory cytokines including IL1α 
and β, IL6, IL8, and TNFα can also bear SNPs in the promoter regions. For 
instance, the presence of SNP in IL1β, IL10, IL17, and IL28 genes de-
termines the outcome of the H3N2 (influenza A) virus-driven pneu-
monia, and similar results are shown for other viral strains [129]. 
Interestingly, the same polymorphisms are linked to the predisposition 
to cancer, asthma, autoimmunity, diabetes, as well as other chronic 
conditions (Table 2) [130,131]. This connection has to be considered in 
personalized medicine, as the same genetic background can link 
together acute (pneumonia or other infections) and chronic 
immune-related disorders. 

The study of SNP contribution has been demonstrated via imple-
mentation in-silico studies of pro- and anti-inflammatory cytokine genes 
as well as of transcription factors. In particular, rs1800795 in IL6 genes 
can aggravate the course of the disease, leading to sepsis and septic 
shock due to the cytokine storm. Oppositely, certain polymorphisms can 
be protective against pneumonia. For instance, SNP rs1800896 in IL10 

Table 2 
Genetics of cytokine network and viral pneumonia pathogenesis.  

Gene Genetic background Pneumonia and comorbidity states / 
prognosis (+/-) 

Cytokines and their receptors 
IL1A A114S (rs17561) H1N1 influenza A pneumonia 

predisposition / - [132]   
Cancer (lung, ovarian, breast) 
predisposition / - [133,134,135]; 
Asthma prevalence / - [136] 

IL1B rs1143627 Influenza A pneumonia / - [137]  
rs16944 (511*C/T) Cancer (lung, cervical) / + [138, 

139]; Autoimmunity / - [140]   
Systemic inflammatory response 
syndrome / - [141]   
Diabetes / + [142]; Asthma / - [143] 

IL1R1 rs3917254; rs2160227 Invasive pneumococcal disease / - 
[144,145] 

IL1RA (secreted 
inhibitor for 
IL1) 

A1A1 genotype Community-acquired pneumonia / 
+ [146]  

A2A2 genotype Asthma / - [147]; Diabetes / - [148]   
Community-acquired pneumonia / - 
[146]   
Sepsis / - [149] 

IL4 C− 590 T (rs 2,243,250) Respiratory syncytial virus / - [150]  
rs2070874 Respiratory infection predisposition 

/ - [151]   
Asthma / - [152]; Autoimmunity 
(rheumatoid arthritis) / - [153]; 
Cancer / - [154] 

IL4RA Q551R (rs1801275) Respiratory syncytial virus / - [151] 
Asthma / - [155] 

IL6 GG genotype, G allele of 
IL6− 174 G/C SNP 
(rs1800795) 

Community-acquired pneumonia / - 
[156]   

Immunodeficiency / - [157]   
Pneumonia-induced sepsis /- [158]   
Sepsis / + [159]; Cancer (various) / - 
[160]; Asthma / + [161] PMCID: 
PMC4612856 

IL9 rs2069885 Respiratory syncytial virus / - [162] 
Asthma / - [163]; COPD / - [164]; 
Lung inflammation (cystic fibrosis) / 
- [165] 

IL10 rs1800896-A Community-acquired pneumonia / 
+ [156]  

rs1800871 (− 819 T/T 
genotype) 

Diabetes / - [166,167]; Asthma / - 
[168]; Breast cancer /- [169]   
Postoperative pneumonia / - [170] 

IL12B rs2195940, rs919766 Invasive pneumococcal disease / - 
[145] 
Acute chest syndrome / - [171]; 
Inflammatory cardiomyopathy / - 
[172] 

CCL5 rs2107538*CT Respiratory syncytial virus / - [173]   
Cancer (breast, prostate) / - [174, 
175] 

CCL2 rs1024611 (G-2518A) SARS-CoV / - [176]   
Autoimmunity (multiple sclerosis) / 
- [177]; Cancer / - [178,179] 

CCR5 CCR5-Δ32 allele Influenza A / - [180]   
Diabetes / - [181,182]; Breast cancer 
/ - [183,184] 

TNFα rs361525 Influenza A / - [185]  
308*G/A (rs1800629) Systemic inflammatory response 

syndrome / - [185]; 
Pneumonia-induced sepsis /- [158]  

− 238A allele 
(rs361525) 

Diabetic nephropathy / - [185,186]; 
Pneumonia in patients with systemic 
lupus erythematosus / - [187] 

TNFRSF1B TNFRSF1B + 676 
(rs1061622) 

Community-acquired pneumonia / 
+ [188]   
Autoimmunity (systemic lupus 
erythematosus, rheumatoid 
arthritis) / - [189,190]   
Lung cancer / + [191]  

Table 2 (continued ) 

Gene Genetic background Pneumonia and comorbidity states / 
prognosis (+/-) 

MIF C allele at − 173 G/C (rs 
755,622); rs5844572 

Pneumonia-induced sepsis / + [89]   

Meningitis and bacterial pneumonia 
/ - [192]   
Autoimmunity (systemic lupus 
erythematosus, rheumatoid 
arthritis) / + [193,194] 

Transcription factors 
NFκB cREL rs842647*G sepsis / - [195,196] 
NFκB RelA 

(p65) 
− 94delATTG 
(rs28362491) 

autoimmune (Behcet’s Disease) / - 
[197]   
acute respiratory distress syndrome 
/ - [198]   
cancer / - or + [199,200]; diabetes / 
- [201] 

STAT1 L706S, Q463H, E320Q, 
P293L 
Complete Stat-1 
deficiency 

mycobacterial disease / - [202,203] 
pneumonia / - [204] 
autoimmunity / - [204]; viral 
infections / - [205,206] 

IRF5 rs77571059, 
rs2004640, haplotype 
GTAA 

community-acquired pneumonia / -  

rs77571059 autoimmunity (systemic lupus 
erythematosus, systemic sclerosis) / 
- [207,208,209,210,211]   
diabetes / - [212]; melanoma / - 
[213] 

IRF7 F410 V (rs 786,205,223) influenza A / - [214]  
rs375323253; Q421X  

IRF9 Loss-of-function IRF9 
allele 

Influenza A, parainfluenza virus, 
respiratory syncytial virus / - [215]  

loss-of-function c.991 G 
> A 

Influenza A, respiratory syncytial 
virus / - [216]  
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protects the body from weighting the symptoms of these diseases [217]. 
Interestingly, some genetic factors can be either harmful or protective 
throughout the disease course. For instance, GG genotype and G allele of 
IL6− 174 G/C SNP are associated with higher pneumonia rates, while 
the risk of sepsis is significantly reduced (Table 2). This may be 
explained by the increased IL6 activity with the suppressed initial 
antipathogen response and negative prognosis during the early stages of 
pneumonia, while later the reduced pro-inflammatory activity lowers 
the risks of cytokine storm [218]. Accordingly, the genetic background 
contributes to the development of infectious diseases and their pheno-
typic manifestations. The activity of TFs relies on their interaction with 
the relevant DNA binding sites and TF-encoding genes. SNPs in the DNA 
binding sites or target gene promoters can affect TF-DNA interactions, 
thus impacting transcriptional regulation. These alterations can be 
predicted by bioinformatics approaches. In particular, it has been 
identified that out of 80 polymorphisms found in STAT1 or IRF1 motifs, 
about 34 SNPs impact the TF-DNA interactions [219]. The in-silico ex-
periments predicted that IRF1 can bind T rs9260102 allele, located in 
the HLA-A promoter, but TF is unable to interact with another allele (G) 
and fails to perform its transcriptional activity. Later, similar results 
were obtained by in vitro experimentations [220]. In this way, in-silico 
methods allow highly efficient and time- and resource-saving prediction 
of SNP effects on cytokine transcriptional machinery and cytokine 
functionality [156]. 

We can also conclude about the impact of SNP on the development of 
concomitant diseases, which was demonstrated by the example of 
pneumonia. However, it has to be specified one more time that contri-
bution of each particular protein and corresponding gene poly-
morphisms is a matter of spatiotemporal factor and disease origin. With 
that, the additional computational analysis of the SNP association with 
pneumonia origin (viral, bacterial, or mixed) and its stage (acute, sub-
acute, or chronic) is also essential. 

5. Cytokine network in COVID-19 lung pathology 

Cytokine storm is a key feature of COVID-19 pathology associated 
with local lung injury and systemic organ failure if inflammation goes to 
the systemic level. Anti-cytokine therapy, for instance targeting the IL6- 
IL6R axis, improves survival and milds symptoms and adverse events 
throughout the disease course [221]. Cytokine network during 
COVID-19 course shows some distinctive features when compared with 
other pneumonia types. For example, the peripheral monocytes from 
COVID-19 patients are enlarged in size, comprised of mixed M1/M2 
polarization with higher, than in influenza, levels of cytokines and their 
receptors (TNF, IL6R, IL10R) and certain TFs (STAT1, IRF3) [222,223]. 
At the same time, other researchers report the presence of peripheral 
myeloid-derived monocyte-like cells, which exhibit signs of immuno-
suppression with impaired antigen presentation and cytokine produc-
tion [224,225]. Alveolar MՓs of all Covid19 patients are highly 
pro-inflammatory, while levels of anti-inflammatory cytokines are 
elevated only in severe disease cases [224,226]. 

Transcriptional profiles of SARS-CoV-2-infected human cells and 
tissue samples reveal the dysregulated chemokine and cytokine (pri-
marily, various interleukins and TNFα) networks, and this dysregulation 
- at least partially – is mediated by viral protein impact onto host TFs 
(STAT1, STAT3, IKKβ – NFkB inhibiting protein) [56,227–229]. For 
instance, the most severe COVID-19 patients exhibit 
de-mono-ADP-ribosylation of STAT1 by viral nsp3 protein [229]. 
Additionally, alveolar monocytes and MՓs show the repressed activity 
of PPARγ TF complex, which is required for maintenance of physiolog-
ical cytokine levels and resolution of inflammation [230]. Current 
studies suggest that although monocytes express Ace2 receptor, the 
SARS-CoV-2 replication does not occur within monocyte/MՓ subsets, 
and transcriptional alterations are expected to fade gradually once the 
viral particle number is lowered in the organism [231]. 

Similar to other viral infections, chronically dysregulated 

transcriptional factors can be risk factors for increased cytokine pro-
duction, as it is observed for increased NFkB activity and IL1, IL6, and 
TNFα cytokine production in the elderly and people with metabolic 
disorders [232]. Particularly, sensitized IFNα and IL6 signaling path-
ways of monocytic cells can be associated with the higher predisposition 
for severe disease course in aged patients [233]. The lung microenvi-
ronment is altered in pneumonia higher glycolytic activity alterations 
triggered during infection lead to metabolic switches in alveolar MՓs 
with higher glycolytic activity and reactive oxygen species generation, 
thus, directly connecting the glucose levels – and diabetes – with disease 
pathogenesis [234]. While the risk factors, such as age, cardiovascular 
and metabolic disorders, have to be considered for therapeutic design in 
individual patients, the therapies applied for immunomodulation in a 
general situation also have a potential for new coronavirus disease 
management. For instance, tocilizumab (anti-IL6R monoclonal antibody 
applied in rheumatoid arthritis), metformin, fenretinide (used in type 2 
diabetes and metabolic syndrome), and other drugs have been suggested 
as promising adjuvant therapies in COVID-19 disease [235–237]. 

At the moment the major attention is attracted to the studies of the 
genetic variations and expression patterns of proteins responsible for 
SARS-CoV-2 intracellular entrance to follow disease predisposition and 
clinical picture [238]. At the same time, the SNPs within the cytokine 
network are potential predictive markers of cytokine storm accidents 
and multiorganic failure in individual patients. As for today, the SNPs in 
chemokines CCR9, CXCR6, in TMEM189–BE2V1 and 
TEMEM189–UBE2V1 gene loci (involved in IL1 signaling) have been 
connected to increased COVID-19 risks [238–240]. It is worth noting 
that no links between SNPs in TFs STAT1, NFkB, and IRFs have been 
reported so far, and the search on individual predispositions for 
COVID-19 predisposition and severity has to be continued. Of note, the 
genes and SNPs mentioned in the review reflect the distinctive features 
of cytokine network and can appear to be universal clinical markers for 
viral-induced pneumonias (Table 2, Fig. 4). 

6. Conclusions and future directions 

Modulations of cytokine levels remain one of the most important 
strategies in pneumonia treatment [241]. First, cytokines are required 
for proper antiviral responses (proinflammatory) and further tissue 
repair (anti-inflammatory). Second, dysregulated cytokine profiles are 
risk factors for pneumonia predisposition and severity. Improper cyto-
kine signaling may arise from hereditary factors, chronic metabolic and 
immune disorders, and therapeutic interventions, and consideration of 
all the listed factors is essential for pneumonia prognosis and successful 
treatment. Moreover, the associations between a growing number of 
newly discovered SNPs for cytokines, their receptors and TFs have not 
been found; however, these genetic variations can still be connected to 
certain forms of viral or bacterial pneumonias, and have to be consid-
ered in case of further epidemics. Moreover, the cytokine profiles are not 
uniformed within monocyte/MՓ subsets and other lung cell pop-
ulations, and this diversity can serve as an important and more sensitive 
mechanism of immunomodulation. Phenotypic and genetic screening of 
individual patients may establish the most efficient cellular and mo-
lecular targets to prevent and overcome pneumonia and link the genetic 
variations found in comorbidity conditions and pneumonia. 
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inflammasome genes and risk of asthma in Brazilian children, Mol. Immunol. 93 
(2018) 64–67, https://doi.org/10.1016/j.molimm.2017.11.006. 

[137] H. Lind, A. Haugen, S. Zienolddiny, Differential binding of proteins to the IL1B 
-31 T/C polymorphism in lung epithelial cells, Cytokine. 38 (2007) 43–48, 
https://doi.org/10.1016/j.cyto.2007.05.001. 

[138] K.D. Eaton, P.E. Romine, G.E. Goodman, M.D. Thornquist, M.J. Barnett, E. 
W. Petersdorf, Inflammatory gene polymorphisms in lung Cancer susceptibility, 
J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer. 13 (2018) 649–659, 
https://doi.org/10.1016/j.jtho.2018.01.022. 

[139] L. Wang, W. Zhao, J. Hong, F. Niu, J. Li, S. Zhang, T. Jin, Association between 
IL1B gene and cervical cancer susceptibility in Chinese Uygur Population: a Case- 
Control study, Mol. Genet. Genomic Med. 7 (2019) e779, https://doi.org/ 
10.1002/mgg3.779. 

[140] M.P. Ponomarenko, O. Arkova, D. Rasskazov, P. Ponomarenko, L. Savinkova, 
N. Kolchanov, Candidate SNP Markers of Gender-Biased Autoimmune 
Complications of Monogenic Diseases Are Predicted by a Significant Change in 
the Affinity of TATA-Binding Protein for Human Gene Promoters, Front. 
Immunol. 7 (2016) 130, https://doi.org/10.3389/fimmu.2016.00130. 

[141] E. Watanabe, H. Hirasawa, S. Oda, H. Shiga, K. Matsuda, M. Nakamura, R. Abe, 
T. Nakada, Cytokine-related genotypic differences in peak interleukin-6 blood 
levels of patients with SIRS and septic complications, J. Trauma 59 (2005) 
1181–1190, https://doi.org/10.1097/00005373-200511000-00025. 

[142] A.E. Iglesias Molli, M.F. Bergonzi, M.P. Spalvieri, M.A. Linari, G.D. Frechtel, G. 
E. Cerrone, Relationship between the IL-1β serum concentration, mRNA levels 
and rs16944 genotype in the hyperglycemic normalization of T2D patients, Sci. 
Rep. 10 (2020) 9985, https://doi.org/10.1038/s41598-020-66751-x. 

[143] R. Falfán-Valencia, G.F. Pavón-Romero, A. Camarena, M. de la, L. García, 
G. Galicia-Negrete, M.C. Negrete-García, L.M. Teran, The IL1B-511 polymorphism 
(rs16944 AA genotype) is increased in aspirin-exacerbated respiratory disease in 
mexican population, J. Allergy (Cairo) 2012 (2012) 741313, https://doi.org/ 
10.1155/2012/741313. 

[144] A. Sangil, M.J. Arranz, R. Güerri-Fernández, M. Pérez, H. Monzón, A. Payeras, 
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