Corrigendum: Analysis of cluster-randomized test-negative designs: cluster-level methods

NICHOLAS P. JEWELL*

London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London, WC1E 7HT, UK nicholas.jewell@lshtm.ac.uk

SUZANNE DUFAULT

Division of Biostatistics, School of Public Health, University of California, Berkeley, CA 94720, USA

ZOE CUTCHER, CAMERON P. SIMMONS, KATHERINE L. ANDERS

World Mosquito Program, Institute of Vector Borne Disease, Monash University, Level 1, 12 Innovation Walk, Clayton, Victoria 3800, Australia

Biostatistics (2019) **20**, 2, *pp*. 332–346 doi:10.1093/biostatistics/kxy005

In the original article, there were errors in simulation calculations that have since been corrected. Table 2 has now been amended.

The corrected table appears below.

Table 2. The proportion of simulations that returned significant results for each intervention effect of interest (λ)

Relative risk (λ)	Test-positive fraction	Odds ratio	GEE	Random effects
1	0.0497	0.0749	0.0779	0.0743
0.6	0.4916	0.5795	0.5936	0.6143
0.5	0.7498	0.8238	0.8266	0.8445
0.4	0.9298	0.9620	0.9603	0.9670
0.3	0.9951	0.9985	0.9983	0.9988

The GEE assumed an exchangeable correlation matrix. Each approach was applied to the results of the 10 000 random intervention allocations with 1000 cases and 4000 controls (r = 4).

^{*}To whom correspondence should be addressed.